
projects led cube

28 elektor - 1/2009

Three-Dimensional Light Source
Programmable LED matrix with 125 LEDs
Jerry Jacobs (The Netherlands)

Everyone will have encountered a 2D LED matrix at some time, but the version described here is of
a completely different calibre: namely five matrices stacked together into a cube; a true 3D matrix
therefore, every LED of which can be switched on and off individually.

Most people are fascinated by flash-
ing LEDs. But these are usually lim-
ited to just a few LEDs or only a small
display. This LED cube is something
entirely different however, because
there is an additional dimension for
even more LEDs. Here we present a
3D display of LEDs, each of which can

be controlled individually.
This magnificent cube has at its heart
an Atmel AVR microcontroller.
These controllers are easy to obtain
and superb open-source tools are
available. Not only for Windows, but
also for the Linux and Mac operating
systems.

Operation
You would expect that with 125 LEDs
in the cube you would need a large
number of wires to be able to control
them individually, but that is not so. A
lot of wires can be saved because the
signals are multiplexed. One ‘layer’,
that is all 25 LEDs which are all at
the same height in the columns, can
be controlled with a single wire. This
results in a total of 26 signal wires.
If each LED were to be connected
individually then 50 wires would be
required.

To turn an LED on we switch the pos-
itive voltage to the desired layer on
and select the appropriate column.

Table 1. Layer drivers & column drivers

PORT A

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

PA7 PA6 PA5 PA4 PA3 PA2 PA1 PA0

Column 8 Column 7 Column 6 Column 5 Column 4 Column 3 Column 2 Column 1

PORT B

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

PB7 PB6 PB5 PB4 PB3 PB2 PB1 PB0

Column 25 – – Layer 5 Layer 4 Layer 3 Layer 2 Layer 1

PORT C

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

PC7 PC6 PC5 PC4 PC3 PC2 PC1 PC0

Column 16 Column 15 Column 14 Column 13 Column 12 Column 11 Column 10 Column 9

PORT D

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

PD7 PD6 PD5 PD4 PD3 PD2 PD1 PD0

Column 24 Column 23 Column 22 Column 21 Column 20 Column 19 Column 18 Column 17

Hardware specifications
• 125 LEDs in a special 3D matrix

• ATMEGA32 microcontroller running @ 1 MHz internal clock

• 10-way ISP-connector for reprogramming

• 5 transistors for switching the layers

• 25 transistors for switching the columns

291/2009 - elektor

Three-Dimensional Light Source
Programmable LED matrix with 125 LEDs

Our cube has
5 layers and
25 columns. That
means then that we
have 30 wires for 125
LEDs. Without multiplex-
ing the signals we would end
up with 250 wires!

With a clock speed of 1 MHz we obtain
a refresh rate of 39 ‘frames’ per sec-
ond. Every 1024th clock tick a coun-
ter is incremented (the clock divider
used for this is also called a prescaler).
When this counter reaches the value
of 5, an interrupt is executed and the
counter is reset.

This interrupt takes care of sending the
value in the buffer to the LED matrix.
The controller in the cube has a clock
speed of 1 MHz (internal clock). The
software updates every 5 counter clock
ticks. The internal clock is divided by
the prescaler to become the counter
clock. This results in a refresh rate of
195 Hz for the entire cube. Since we
have five layers we divide this rate by
five and arrive at 39 Hz per layer.

Software
The software (firmware) is written in
C and can be compiled with avr-gcc
[1]. It is also documented in such a
way that it can be viewed as a web-
site. This is made possible because of
Doxygen [2].

Buffer
Because it is quite complex to get the
cube to display and arbitrary pattern
in a simple way, a buffer is used for

this purpose. The
advantage of this is that
you manipulate the bits
in the buffer using functions
which means that you do not need
to write to outputs directly yourself.
That’s the job of the interrupt routine.
The buffer, just like the cube, has mul-
tiple dimensions, so you can ‘draw’ a
pattern in the buffer and the interrupt
routine takes care of the rest.

Interrupt
The interrupt routine in the code, as
already mentioned, ensures that the
pattern on the cube is refreshed 39
times per second.

This interrupt routine writes the val-
ues, which you wrote to the buffer
using another function, from the buffer
to the appropriate ports and puts the
bits in the correct place. We use bit
masks which ensure that we only look
at the corresponding bits which have
to be low or high at the pins..

Low -level graphical
instructions

The routines have been put
together in such a way that you

can create your own effects for the
cube. In Table 1 you can see exactly

which pin connects to where on the
cube. This makes it easier for begin-
ners to get started quickly without the
need to immediately understand how
bit-masks, bit-shifts and other compli-
cated functions work. These low-level
instructions are defined in draw.h, this
is the interface file for the instructions
to control individual columns, layers,
rows, etc. Below are a few examples
which show how these functions can
be used.

For controlling a row on a certain layer
we use

set_row(ROW_1, LAYER_1);
clear_row(ROW_1, LAYER_1);
toggle_row(ROW_1, LAYER_1);

The following functions can be used

projects led cube

30 elektor - 1/2009

1
2

3
4

5
6

7
8

9
10

K2

25V

C1470u

C2100n

C3100n

PB0 (XCK/T0)
1

PB1 (T1)
2

PB2 (AIN0/INT2)
3

PB3 (AIN1/OC0)
4

PB4 (SS)
5

PB5 (MOSI)
6

PB6 (MISO)
7

PB7 (SCK)
8

RESET
9

PD0 (RXD)
14

PD1 (TXD)
15

PD2 (INT0)
16

PD3 (INT1)
17

PD4 (OC1B)
18

PD5 (OC1A)
19

PD6 (ICP)
20

PD7 (OC2)
21

XTAL212

XTAL113

GND11

PC0 (SCL)
22

PC1 (SDA)
23

PC2 (TCK)
24

PC3 (TMS)
25

PC4 (TDO)
26

PC5 (TDI)
27

PC6 (TOSC1)
28

PC7 (TOSC2)
29

AREF 32

AVCC 30
GND31

PA7 (ADC7)
33

PA6 (ADC6)
34

PA5 (ADC5)
35

PA4 (ADC4)
36

PA3 (ADC3)
37

PA2 (ADC2)
38

PA1 (ADC1)
39

PA0 (ADC0)
40

VCC 10

IC2

ATm
ega32-16PC

1
3

2

IC17805

T1

+5V
D1

1N4001
2 31

K1

R1100k100V

C41u

+5V

+5V

T6

R2330R

+5V

T2

R3330R

+5V

T3

R4330R

+5V

T4

R5330R

+5V

T5

R6330R

+5V

R15

1k8
T21

T7

R16

1k8

T8

R17

1k8

T9

R18

1k8

T10

R19

1k8

T11

R20

1k8

T12

R21

1k8

T13

R22

1k8

MOSI

MISO

RST
SCK

GND

COL1R7150R

COL2R8150R

COL3R9150R

COL4R10

150R

COL5R11

150R

COL6R12

150R

COL7R13

150R

COL8R14

150R

R31

150R

R23

1k8
T20

COL16
R32

150R

R24

1k8

T19

COL15
R33

150R

R25

1k8

T18

COL14
R34

150R

R26

1k8

T17

COL13
R35

150R

R27

1k8

T16

COL12
R36

150R

R28

1k8

T15

COL11

R37

150R

R29

1k8

T14

COL9R38

150R

R30

1k8

COL24R54

150R

R46

1k8

T28

COL23
R53

150R

R45

1k8

T27

COL22R52

150R

R44

1k8

T26

COL21R51

150R

R43

1k8

T25

COL20R50

150R

R42

1k8

T24

COL19R49

150R

R41

1k8

T23

COL18R48

150R

R40

1k8

T22

COL17R47

150R

R39

1k8

T30

R56

1k8

COL25R55

150R

COL10

LAY5
LAY4

LAY3
LAY2

LAY1T29
T1 ... T5 = BC337

T6 ... T30 = BC547

080355 - 11

Figure 1. The AVR microcontroller is at the heart of this project.
What is immediately obvious is the large number of transistors.

311/2009 - elektor

for switching a column on
and off:

set_column(COLUMN_1, ON);
set_column(COLUMN_1, OFF);

We use handy names such
as ON, OFF and COLUMN_1.
These are defined names, also
called macros, which have a
fixed value. For example, ON
has the value 1 and OFF the
value 0.

All these functions can be
used one after the other to
draw the desired picture.
Because we cannot show all
the source code and examples
here, you can download them
from the Elektor website.

Hardware
Normal ‘through-hole’ com-
ponents are used to build the
cube. The PCB is still very
compact nevertheless.

A mains adapter supplying at
least 9 volts and rated 600 mA
can be used as the power sup-
ply. IC1 (a 7805) provides the
voltage regulation and protec-
tion diode D1 guards against
accidental reverse polarity.

Transistors T1 through T5 are
used to connect the 5-volt
power supply voltage to the
different layers. The columns
are switched with T6 through
to T30. The return current
flows through these latter
transistors to ground and com-
pletes the circuit through the
LEDs (see Figures 1 and 2).

The value of the column resis-
tors depends on the voltage
drop across the LEDs. We
make the assumption that
each LED requires 20 mA.
This is also the current that
will flow through the entire
column. The power supply for

R2 T1
PB0

LAY1

R3 T2
PB1

R4 T3
PB2

R5 T4
PB3

R6 T5
PB4

R7

T6R15PA0

+5V

LAY2 LAY3 LAY4 LAY5

COL1

080355 - 12

Figure 2. In this figure you can see the path that the current takes through
the middle LED in the first column.

Figure 3. The component overlay of the PCB shows the neatly arranged layout of the parts.

projects led cube

32 elektor - 1/2009

each layer is 5 V. The calculation for the
resistance is then approximately:

R = (5 V – ULED) / 20 mA

Assuming the voltage drop across the
transistors can be neglected.

For reprogramming of the cube the ISP
interface is connected to K2. Table 1

Internet Links
[1] AVR-GCC Tool chain:

- For Windows: http://winavr.sourceforge.net

- For Mac: www.obdev.at/products/avrmacpack

- For Linux: depends on the distribution

[2] Doxygen:
www.doxygen.org

shows which column and which row
is connected to which bit.

(080355)

COMPONENTS LIST
Resistors
R1 = 100kΩ
R2-R6 = 330Ω
R7-R14, R31-R38, R47-R55 = see text
R15-R30, R39-R46, R56 = 1kΩ8

Capacitors
C1 = 470µF 25V

C2,C3 = 100nF
C4 = 1µF 100V

Semiconductors
IC1 = 7805
IC2 = Atmega32
D1 = 1N4001
T1-T5 = BC337
T6-T30 = BC547
125 LEDs for cube

Miscellaneous
10-way boxheader (2x5), 2.54mm lead

pitch
10-way SIL pinheader (IC socket)
Heatsink, TO-220, 5°K/W for IC1
4 off M3x5 bolt with 10-mm long hex

spacers
Mains adapter socket for 2.5mm pin diam.
PCB, order code 080355-1 from the Elektor

SHOP.

Get cracking!
Step # 1
The ‘pillars’, made from PCB stand-offs, are mounted on the PCB first. The holes in
the PCB serve as a guide so that each layer of LEDs can be soldered neatly. Use a
sheet of paper so that the LEDs can be fitted tightly in the holes. It is best to pre-
punch the holes first, using a ballpoint pen, for example.

Step # 2
Fit five LEDs in the top row with the anodes (long pin) at the top and the catho-
des (short pin) at the bottom. Next, bend the anode lead of the first LED to the left
and move on to the second LED. The second LED is then soldered to the first LED.
Repeat this until the entire row is complete. For each layer, five rows are required.
We therefore repeat the whole story for the second to the fifth row. Once all five
rows are complete, the bent anodes are all connected together with two perpen-
dicular connections. After that the whole layer can be pushed out of the guide in
one move using a flat plate.

Step # 3
Once all five layers are finished, they are soldered together until they form the final
shape. You do this by placing a layer on the PCB. On the next layer, bend the ends

331/2009 - elektor

of the 25 column leads over by about 3 mm, to reach around the LEDs of the pre-
vious layer. The second layer is subsequently placed above the first layer and we
solder this layer at every connection, with a uniform spacing between the layers
and the LEDs neatly lined up.

Step # 4
All the other components are now mounted on the PCB. Make sure that the BC337
and BC547 transistors are not mixed up!
The voltage regulator with its heatsink is mounted last.

Step # 5
The final step is connecting each of the layers to their corresponding transistors.
T1 is connected to the bottom layer and T5 to the top. Use tinned copper wire for
this.

Step # 6
The example software can be programmed into the chip. This software, together
with the source code, can be downloaded from the Elektor website. You can also
order the bare PCB from the SHOP section.

The
author
Jerry Jacobs
(1989) is a
third-year
Telecommu-
nications/ICT
student at
ROC Leeu-
wenborg
College in
Sittard, The
Nether-
lands. From
a young age
Jerry’s been fascinated by the inner
workings of computers and electronics.
He is also a big Linux fan. The project
described in this article was designed
and produced during Jerry’s traineeship
period at Elektor.

