EDN Design Ideas

PLL-based converter controls light source

Massimo Gottardi, ITC-IRST, Trento, Italy

Using the circuit in Figure 1, you can digitally control the light intensity of a lamp. The control loop is based on a PLL, in which the VCO comprises a light-to-frequency converter (TSL220) coupled to a light source that derives its drive from a switching regulator (L4970A). The output of the phase/frequency comparator (4046) serves as the control voltage for the switching regulator. The control voltage is proportional to the frequency error between the reference frequency ($\mathrm{f}_{\text {REF }}$) and the signal frequency (f_{IN}) coming from the light-to-frequency converter.

Changing the reference frequency regulates the voltage supplied to the lamp to force the output of the TSL220 to lock to $f_{\text {REF }}$. The two resistors at the output of the 4046 provide an attenuation of 1000 to guarantee the loop stability. As an example, we used the L4970A to drive a 12 V , 50 W halogen lamp. The control loop operates over a frequency of dc to 500 kHz . To prevent the system from entering a positivefeedback condition, the maximum allowable value of $f_{\text {REF }}$ should not exceed the saturation frequency of the TSL220.
mer limits the voltage $\mathrm{V}_{\text {out }}$ applied to the light source. (DI \#2219) This maximum value depends on the integrating capacitor used for the light-to-frequency converter and must not exceed 750 kHz . To prevent lamp damage, the $10-\mathrm{k} \Omega$ trim-

A PLL and a light-to-frequency converter allow you to digitally control the intensity of a lamp.

