Low-voltage reset operates below 2.7V

BOB KELLY, MAXIM INTEGRATED PRODUCTS, SUNNYVALE, CA

New personal digital assistants, pagers, and other batterypowered systems operate at or below 2.7V, but power-on resets with thresholds below 2.6V are not commonly available. You can resolve this problem using a circuit that combines a 1.2V reference and a micropower regulator (**Figure 1a**). IC₁ integrates these two functions in a tiny SOT-143 package. A power-on-reset function must become active before the supply voltage reaches its nominal value, and IC₁

operates properly for supply voltages above 1.21V. The R_1/R_2 divider and internal 1.204V reference establish a threshold that determines when the circuit asserts an active-low at the output. For the values in the **figure**, this threshold is 2.25V (**Figure 1b**). IC₁ has an open-drain output, so R_3 and C_1 control the length of the active-low pulse, RESET. In this case, the pulse length, or reset interval, is approximately 54 msec, which is sufficient reset time for

most μ Cs and other digital circuits.

Low power consumption distinguishes this circuit. The IC typically draws only 5 μ A, and the R₁/R₂ divider draws slightly more than 1 μ A in a 2.7V application. Pullup resistor R₃ consumes power only when the supply voltage droops out of tolerance, so the power loss is minimal in normal operation.

To prevent erratic behavior, IC_1 offers approximately 6 mV of built-in hysteresis. For more hysteresis, you can add a large-value resistor, R_{HVST} , between the IC's input and output;

to reject short transients, IC_1 has an inherent glitch immunity of 35 μ sec with 100 mV of overdrive. The input capacitance works with R_1 and R_2 to provide some lowpass-filter action. For further immunity from transients, which is unnecessary unless the power bus is noisy, you can form an additional lowpass filter by adding a small-value capacitor, C_c , to the input pin. (DI #2174)

To Vote For This Design, Circle No. 419

A 1.2V reference and micropower regulator in IC₁ (a) provide an active-low reset pulse of approximately 54 msec at power-up or when V_{cc} dips below 2.25V (b).