Low-voltage reset operates below 2.7V

Bob Kelly, Maxim Integrated Products, Sunnyvale, CA

New personal digital assistants, pagers, and other batterypowered systems operate at or below 2.7 V , but power-on resets with thresholds bel ow 2.6 V are not commonly available. You can resolve this problem using a circuit that combines a 1.2 V reference and a micropower regulator (Figure la). IC ${ }_{1}$ integrates these two functions in a tiny SOT-143 package. A power-on-reset function must become active before the supply voltage reaches its nominal value, and IC ${ }_{1}$
operates properly for supply voltages above 1.21 V .
The R_{1} / R_{2} divider and internal 1.204 V reference establish a threshold that determines when the circuit asserts an active-low at the output. For the values in the figure, this threshold is 2.25 V (Figure 1b). IC ${ }_{1}$ has an open-drain output, so R_{3} and C_{1} control the length of the active-low pulse, RESET. In this case, the pulse length, or reset interval, is approximately 54 msec , which is sufficient reset time for

EDN DEEIGN IDEAS

most $\mu \mathrm{Cs}$ and other digital circuits.
Low power consumption distinguishes this circuit. The IC typically draws only $5 \mu \mathrm{~A}$, and the R_{1} / R_{2} divider draws slightly more than $1 \mu \mathrm{~A}$ in a 2.7 V application. Pullup resistor R_{3} consumes power only when the supply voltage droopsout of tolerance, so the power lossisminimal in normal operation.

To prevent erratic beh avior, IC_{1} offers approximately 6 mV of built-in hysteresis. For more hysteresis, you can add a large-valueresistor, $\mathrm{R}_{\mathrm{HYST}}$, between the IC's input and output;
to reject short transients, IC_{1} has an inherent glitch immunity of $35 \mu \mathrm{sec}$ with 100 mV of overdrive. The input capacitance works with R_{1} and R_{2} to provide some lowpass-filter action. For further immunity from transients, which is unnecessary unless the power bus is noisy, you can form an additional lowpass filter by adding a small-value capacitor, C_{G}, to the input pin. (DI \#2174)

EDN

To Vote For This Design, Circle No. 419

A 1.2V reference and micropower regulator in $\mathrm{IC}_{1}(\mathrm{a})$ provide an active-low reset pulse of approximately 54 msec at power-up or when V_{cc} dips below 2.25 V (b).

