C-MOS reset circuit ignores brief outages by Roger F. Atkinson ITEC Inc., Huntsville, Ala. If the voltage supply to a C-MOS circuit drops much below 3 volts during a power failure, a reset signal is necessary to initialize the logic and perhaps also to indicate that the power has failed. But, unlike conventional power-fail circuits, the reset should ignore transient interruptions that do not drop the supply below 3 volts, the level at which the logic states of the latches, counters, and the like may change randomly. Such a reset signal can readily be derived. An isolated reference voltage is applied to the input of a Schmitt trigger having threshold voltages that are a function of the logic-supply voltage. In the complementary-metal-oxide-semiconductor circuit shown, the Schmitt trigger is a National MM74C14. Diodes D_1 through D_4 and resistor R_1 establish a reference voltage of approximately 2.5 volts across capacitor C_1 . D_5 isolates the energy-storage capacitor C_2 from the supply and from any higher-current loads such as relays and displays that are not needed during a power failure. D_6 assures that the reference cannot exceed the supply voltage by more than one diode drop. When power is first applied, C_2 is at zero volts. As C_2 charges through D_5 and R_2 , the reference at first exceeds the high threshold of the Schmitt trigger, causing its output to go low and thus resetting associated circuits. This signal remains low until the logic supply voltage (across C_2) is high enough (about 8 v) for the low threshold to exceed the reference and to switch the Schmitt high. During subsequent power failures—provided the logic supply voltage across C_2 remains above 3 v—the high threshold (about 80% of supply at low voltages) will remain above the reference, so that the Schmitt output will not switch when power is reapplied. However, should the supply fall so low that the high threshold is lower than the reference when power is restored, the Schmitt output will go low, thus resetting **Resets if necessary.** During brief interruptions of dc power, the charge on C_2 maintains voltage to C-MOS digital circuits, preserving their logic states. But if the power failure lasts so long that the voltage across C_2 drops below 3 V, the Schmitt trigger resets the logic circuits when power is restored.