
BURN PIC MICROCONTROLLERS
WITH A “No PARTS”

PIC PROGRAMMER

W hen creat-
ing and de-
signing a

new electronics project,
the current trend is to
try to keep the descrip-
tive terms “low-cost,”
“full-featured,” and
“ultra-compact” in the
top slots in a list of fea-
tures. That used to be
hard to do. Fortunately,
over the last several
years, designing a pro-
ject with those attribut-
es has become much
easier thanks to the de-
velopment of program-
mable devices such as
the PIC microcontroller
family from Microchip
Technologies. Looking
over the last year’s worth
of construction articles
that have been pub-
lished in Electronics Now
shows just how com-
monplace those mic-
rocontrollers have become.

Unfortunately, some sort of pro-
gramming device is needed to
“burn” the software into those pro-
grammable chips. The cost of such
a device could easily wipe out any
savings from using a microcontroller
in a project-until now.

Obviously, the PIC programmer
presented here needs some parts
in order to build it. The nicest fea-
ture of the unit is that it needs no
specialized parts, and it’s a very
simple circuit. The unit can be built
in about an hour with parts from
either your junk box or the nearest
Radio Shack store. Connect it to the
printer port of any handy PC (the
port need not be bi-directional),
run the free software, and you can
get started programming PIC16F84,
16F83. and 16C84 microcontrollers

Now you can magically ”
create your own custom
PICs with this simple

programmer:

MICHAEL A. COVINGTON

immediately. With an adjustable
power supply, you can even do
production-grade work.

What's a PIC? A PIC, like most micro-
controllers, is a tiny computer with
CPU, ROM, RAM, and I/O circuits all
on one chip. Microcontrollers are the
fastestgrowing segment of the elec-
tronics industry; the average home
now contains about 100 of them in

everything from micro-
wave ovens to wrist-
watches.

Many microcontroller
applications don’t in-
volve computing, at
least not as you’d nor-
mally think of it. A micro-
controller is best thought
of as an IC that you can
customize by writing a
program in assembly
language. You then
download the program
into the ROM area of
the microcontroller, and
the microcontroller be-
comes a custom IC.
Sometimes the program
is designed to be little
more than a logic gate
or an oscillator, but
what’s important is that
it does exactly what you
tell it to do.

Among the low-end
microcontrollers, the PIC
family from Microchip,

inc. is especially popular because of
their simplicity and low cost. Add-
itionally, much of the software used
to create the program code
needed for programming PlCs is
available free for downloading
from Microchip’s Web site (www.
microchip.com).

Of the various types of PlCs that
are available, the 16F83, 16F84 and
16C84 are probably the easiest to
work with. Those particular models
are the ones that our programmer
supports. They cost less than $6
each, and their ROM is electrically
erasable so that you don’t need an
ultraviolet light to erase and repro-
gram the devices.

The 16F84 is the most popular of
the threti has 68 bytes of RAM
and 1024 words of program memo-
ry. The program memory is a “flash”

EEPROM that can be rewritten over
a million times. Any stored informa-
tion will be preserved for over 40
years without any power. The 16C84
is very similar but uses an older type
of EEPROM. The 16F83 can be con-
sidered a “little brother” in that it has
only half as much memory; on the
plus side, it is somewhat lower in cost.

Unlike most microcontrollers,Those
PlCs don’t require quartz crystals or
resonators for their clock; you can
use a resistor and capacitor as the
oscillating elements. They also do
not need a tightly-regulated power
supply. The supply voltage for the
16F84 can be anywhere from 4 to 6
volts. An extended-voltage-range
version can work with the supply
being as low as 2 volts. There are 13
input/output pins, each of which
can be set individually to be either
an output or an input-with or with-
out a built-in pull-up resistor.

The “No Parts” Programmer. Pro-
gramming the above-mentioned
PIC chips is unusually simple. Apply 5
volts to pin 14 (with pin 5 connected
to ground) and raise the voltage on
pin 4 to between 12 and 14 volts.
The data is then clocked in one bit
at a time through pins 13 and 12. The
data itself is sent to pin 13. Once the
bit is ready, the voltage on pin 12 is
raised to 5 volts for at least 0.1
microseconds before being low-
ered back to ground. The data
stream going into the chip contains
both commands that specify the
various steps in the programming
process and the data that will be
stored in the chip’s ROM. To verify
that the PIC was programmed cor-
rectly, the PIC can also send Its con-
tents back out through pin 13. For
those who are interested In the full
technical details on programming

 PIC chips, specifications for pro-
 gramming and verification can be
 found on Microchip’s Web site
 (www.microchip.com).

The schematic diagram for the
“No Parts” PIC Programmer, as

 shown in Fig. 1, is as simple as the
 programming process that it sup-

= ports, The circuit is designed to plug
 into the printer port of any PC. The
 programming data and clock sig-

nals are applied to IC1-the PIC
being programmed-through R2

6 and R3. Diodes Dl , D2, and resistor

R1 let pin 13 of IC 1 be used as both
an input for programming and as
an output for verification. When pin
17 on the printer port is high, the PC
can read data from pin 13 of IC1
through pin 11 of the printer port. In
that mode, R1 and D2 provide pull-
up for the data signal. When pin 11
of the printer port is low, D1 con-
ducts. The anode of D2 is grounded,
blocking current flow. The PIC chip is
then free to receive data from pin
14 of the printer port. The connec-
tion that D1 creates between pins
11 and 17 on the printer port lets the
programming software detect if the
programmer is connected to the
printer port.

Capacitors Cl and C2 eliminate
noise in the DC power lines. The
programming voltage is switched
by Q1.

Two power supplies are needed
to run the ‘No Parts” PIC Pro-
grammer: 5 volts and 12-14 volts. If
you’re doing any experimentation
with digital circuits, you probably
already have a power supply avail-
able that provides those voltage lev-
els. Obviously, that supply can also
be used for the programmer.
Another alternative is to “borrow” the
voltages from a diskette-drive power

connector inside the PC. Make sure
that the 12-volt line is not less than
12.0 volts. If you use that power
source, you should be comfortable
opening up your PC and working
with the internal components, If you
aren’t and don’t know someone
qualified that can help you, you can
use the power-supply schematic
shown in Fig. 2. That schematic is
taken from the data sheet for the
LM317 adjustable-voltage regulator,
and is provided here only for experi-
mentation purposes, The complete
data sheet for the LM317 is available

from National Semiconductor’s Web
site (www.nationalcom).

The programmer’s circuit is so
simple, it can be easily built on a
piece of perfboard using standard
construction techniques, A zero-
insertion-force (ZIF) socket can be
used at IC1 as a professional touch
but is not required. With a suitable
adapter, surface-mount PlCs can
also be programmed. The packag-
ing of the unit can be as simple or
as fancy as you want. The author’s
prototype, shown in Fig. 3, was
mounted on a hardwood base that
was stained and varnished for a
“home-built-with-old-world-pride”
look. Mounting the cable connec-
tor separately as shown makes the
‘No Parts” PIC Programmer easy to
use-simply connect it to the PC’s
printer port with a suitably-long 25-
conductor cable.

PIC Programming. The easiest way
to learn to use the ‘No Parts” PIC
Programmer is to actually write a
simple program and burn a chip.
Learning about the programmer
that way is also a good way to test
out the hardware and software.

For example, let’s look at the sim-
ple problem of building an LED ‘light
chaser,” a circuit that will light up
one LED after another, in sequence,
over and over. You could do it with
three ICs: an oscillator, a binary
counter, and a decoder/demulti-
plexer. A PIC version of the circuit is

shown in Fig. 4.
Although that circuit might cost a

bit more than a traditional digital cir-
cuit, it is certainly smaller in terms of
the physical size of the board need-
ed to hold all of the components.
However, there is another feature to
using a PIC for such a mundane
task-intelligence. Different patterns
can be generated or multiple pat-
terns can be selected with the addi-
tion of a simple switch arrangement,
With discrete components, the cir-
cuit would have to be scrapped
and re-designed to accommodate
changes like those: With a PIC, it is a
simple matter of modifying the pro-
gram, erasing the PIC, and re-pro-
gramming it.

Let’s get back to our example.
The program itself, written in PIC
assembly language, is shown in
Listing 1. The most important part of
any program is the documentation.
If you leave notes in the program,
you’ll remember what you were try-
ing to do if you have to review the
program at some time in the future.
In the program listing, those notes
are any lines that start with a semi-
colon, Those lines will be ignored by
the software, called an assembler,
that will turn the text in the program
into the binary numbers that the
PIC recognizes as instructions,

The first three instructions, proces-
sor, include, and _config, are in-
structions to the assembler. The first
instruction tells the assembler to use

P A R T S LIST FOR THE "NO
PARTS" PIC PROGRAMMER
SEMICONDUCTORS
IC1-PIC16C84, PIC16F84, or PIC16F83

microcontroller, unprogrammed
D1,D2--1N914 silicon diode
Ql~2N;sW NPN sixicon h-an&&;

misrcms
(A l l resistors are Ijq-w&t& 5% u&Q
&_.&~00_ohm
R2-R4-_1ooa_ohm
w--22m-dun,

AlBDWIQrUA~~ARTS:
AND,MAwa&$$
Cl, cW:l-p &xs+&$~~ta;,.
&-DB25malecxGsct~.
Socket for IC1, 25conductor cab le ,

hardware, etc. _,

16F84 instructions. The second in-
struction says to include a set of
predefined constants in a file called
P16F84.INC. Finally, the third instruc-
tion sets various configuration bits in
the PIC to turn some hardware fea-
tures on or off, In this example, the
chip will be using its RC oscillator, its
“watchdog” timer will be turned off,
and the automatic power-up reset
timer will be turned on. That way, the 37

PIC will reboot whenever power is ing up” or for a special timing
applied, but it won’t automatically arrangement in a control applica-
reboot several times a second. That tion.
feature may be used if there is the It is important to use the _config
possibility of the PIC program "lock- instruction in any programs used

with the “No Parts” PIC Programmer.
The assembler program will not be
doing the actual programming-it
will only be creating a file with the
numbers that will be transferred to
the PIC chip as a second step.

The two equ Instructions reserve
memory space In the PIC’s RAM for
two variables, which we’ll be calling
"J " and “K.” It is just like declaring
variables In BASIC, only we need to
say which physical RAM locations
will be used. In this case, those loca-
tions are (in hexadecimal number-
ing) 1E and 1 F. Those locations will
be used to store counters to keep
track of how many times a loop has
been repeated.

The org instruction tells the assem-
bler that the program starts at loca-
tion 0 in program memory and that
the actual program is next.

The first real PIC instruction is a
movlw instruction that clears the
working register (called W). That
number is then copied into the TRIS
control register for port B, setting pins
6-13 to output pins instead of input
pins. Next, the program puts binary
00000001 into the W register and
copies it to Port B. That lights the LED
connected to pin 6. But before you
have time to actually see the LED
come on, the program executes an
r/f Instruction that rotates the con-
tents of Port B to the left, changing
the data to 00000010. That will light
the second LED attached to pin 7
instead. Repeating that instruction
will give 00000100, then 0 0 0 0 1 0 0 0 ,
and so on,making the LEDs flash in a
marching pattern,

In between rotations, the pro-
gram needs to wait about ½ sec-
ond so that the action isn’t too fast
to see. That’s why we have a delay
loop In the program. It stores the
decimal number 50 in memory
locations “J” and “K,” using the
de&z instruction to count down
from 50 to 0.

Conditional instructions on the
PIC are somewhat unusual, and
decfsz is no exception. It stands for
“Decrement and skip next instruc-
tion if zero.” Translating the program
into English, the instructions

kloop: decfsz K,f
got0 kloop

mean “Subtract 1 from variable K,

and if the result is zero, skip the goto
instruction,” Normally, the result is not
zero and the goto part of the in-
struction is not skipped. Instead, the
loop executes repeatedly until K

 reaches zero. As you can see, if you
like double negatives-or rather,

don’t not like double negatives,
you’ll love programming PICs. The
actual program uses two loops, one
nested within the other.

Finally, goto mloop sends execu-
tion back to the beginning of the
program. The end Instruction is not

! a CPU instruction; instead, it tells the

assembler that the program Is over.
The 16F84 has 35 different CPU

instructions. As you can see from the
simple program we just created, you
don’t have to master all of them in
order to write useful programs.

Compiling Programs. At the Micro-
chip Web site, you can get data
sheets, application notes, and best
of all, MPLAB, which is a full-featured
development program for compil-
ing and testing PIC programs. It is
designed to run under Microsoft
Windows. A sample screen shot

seen in Fig. 5 shows our demo pro-
gram being edited. The MPLAB soft-
ware lets you edit assembly-lan-
guage programs (also called source
code), assemble them into object
code, and then step through the
resulting binary code to see what it
will actually make the microcon-
troller do. That way, you can spot
any logical errors in your program
ming before you actually commit
any code to hardware.

The Microchip software is well
documented on its use. We are go-
ing to be using MPLAB to create an
object-code file from the source-
code text we typed in from Listing 1.
Be ready for an error message when
compiling the program. MPASM will
complain mildly that you’re not sup
posed to use the tris Instruction.
Microchip has dropped support for
that Instruction and some future PIC
processors might not support it. A
nice feature of the PIC from a soft-
ware point of view is what is called
source-code compatibility. If your
design outgrows the resources of
the chip that you started with, you
can use another chip with more
resources without having to rewrite
the program from scratch. For our
purposes, using the tris instruction on
the 16C34, 16F84, and 16F83 works
fine. Besides, the alternative way of
setting up Fort B for output is much
more complicated.

"Burning" a PIC. A second piece of
software is needed for actually using
the “No Parts” PIC Programmer. That
software is available at the Gerns-
back Web site (ftp://ftp.gernsback.
com/pub/EN/noppp.zip). That MS-
DOS program runs well under Win-
dows 3x or Wlndows 95. If, however,
you are running it under Windows
3.1, it will work best If you run the
application “full screen” Instead of in
a window. Timing is critical for the
programming pulses, and full-screen
DOS applications get full control of
the computer. If for some reason you
have difficulty running the NOPPP
program under Windows 3.1, try exit-
ing to a DOS prompt and run it from
there. You can even run the program
under OS/2; if you do, be sure to set
the HW_TIMER to “on” In the DOS set-
tlngs for the program.

The first step is to connect the “No
Parts” PIC Programmer to the PC’s

printer port and start the NOPPP
program without any power con-
nected to the programmer. If the 5
volt line is grounded, the software
will not be able to detect D1, and
will assume that the programmer is
not attached to the printer port.

if all is well, you should see a
screen similar to the one shown in
Fig. 6. The menu of choices is self-
explanatory, In general, you would
want to load an object-code file
(with a .HEX extension in the file-
name) into memory, select the type
of PIC that you will be programming,
program the part, and then verify
that the code was programmed
into the chip correctly, You can also
erase a PIC that has already been
programmed for re-use or updating
of the programming. One note of
caution: you should never insert or
remove a PIC from the programmer
while the power to the programmer
is on. When programming a PIC, the
software will tell you what to do and
when to do it.

Since the programmer software
requires some tricky timing, it was
written to run as a DOS program.
Recall that the clock pulses for pro-
gramming the PIC have to last at
least 0.1 microseconds. In practice,
they are somewhat longer in order
to overcome any signal "bounce” in
the cables. However, they shouldn’t
be too long or the programming
process will go too slowly. It is also
important that the pulse timing
not depend on the speed of the
computer’s CPU. Because the
software was written with that in
mind, it will run on any IBM-com-
patible from a 4.77-MHz XT up to
the latest Pentiums.

To achieve that, the programmer
software uses one of the timers built
into the PC motherboard. One of the
PC’s built-in timers produces an inter-
rupt 18.2 times per second (65,536
times in a 24-hour day). That timer is
used to update DOS’s time-of-day
clock, and some software uses it to
manage any concurrent processes.
However, 18.2 times per second is far
too slow to be useful for PIC pro-
gramming. The software instead uses
the other timer that is normally used
to control the tones in the internal
speaker. The time delay available
from that timer can be set to 25
microseconds, so that even on the

fastest Pentiums, the programming
pulses are not too short. There will be
some unpredictable software over-
head, so the pulses wi l l come out a
bii too long on the slowest PCs, but
not long enough to do any harm.

Production-Grade Programming.
As cheap and as simple as it is, the
‘No Parts” PIC Programmer can
qualify as a productiongrade pro-
grammer for confirming the rellabili-
ty of your programmed PICs. How?
By varying the 5-volt supply over the
entire specified range while verify-
ing the PIC. To do that, you’ll of
course need an adjustable 5-volt
supply First program and verify the
PIC with the 5volt supply set to 5.0
volts. Next, set the 5volt supply to 6.0
volts and verify again. Finally, verify
the PIC a third time with the 5-volt
supply set to 4.0 volts.

Why does that guarantee reliabil-
ity? Because the main source of
unreliability in EPROMs of any type is
that some of the cells might not be
completely programmed or com-
pletely erased. If a particular loca-
tion is only “half on” or *half-off”, it
might read correctly for a while but
then shift to the wrong value with
age or changes in the supply volt-
age. The result is that the ROM con-
tents change unpredictably and
the microcontroller fails during use.
By shifting the 5-volt supply voltage
up and down, you change the
threshold voltages that define 0 and
1 so that you can detect marginally
programmed bits. The cheapest
commercial programmers don’t
have that feature at all. Higher-qual-
ity units do it partly in that they raise
the supply voltage but not lower it.
The ‘No Parts” PIC Programmer gives
you full control over the supply volt-
age, making it easy to test any pro-
grammed part over the chip’s full
voltage range.

The author would like to acknowl-
edge David Tait in England for his
work on TOPIC, a PIC programming
package of which the “No Parts” PIC
Programmer is a direct descendant.
Mr. Tait’s work has been distributed
on the Internet, and he has given his
permission for this adaptation. The
TOPIC software works with “No Parts”
PIC Programmer hardware and vice
versa. Because of that compatibility,
the TOPIC package has been in-

cluded with the NOPPP software
on the Gernsback Web site (www.
gernsback.com).

