Fusible-link p.r.o.m. programmer

Fusible-link p.r.o.ms such as the SN74S288 and SN74S188 can be programmed directly and, by adding up to three more address lines from the counter and using a larger socket, the following devices can also be programmed.
$74 \$ 287$
$74 \$ 387$)
74 S 470
8 inputs 4 outputs

74S471)
748472
8 inputs 8 outputs

745473
Als5o, data can be easily verified before or after programming. These small low-cost p.r.o.ms can be used to replace logic elements by programming the desired truth table into the device. Although they are not low-power memories, they can reduce
system power by replacing several packages.

Without +12 V , the circuit reads a p.r.o.m. powered through D_{1}, and eight i.e.ds monitor the data outputs via inverters. The device is addressed by a 4040 binary counter which is incremented by a push button. The address is monitored by a further five l.e.ds and inverters and, in a 5 -bit address range, a reset button is not necessary. For larger p.r.o.ms, a reset button can be added across C_{4}. Switch S_{3} should be set to 0 or 9 during the reading.
To program a device, the address must be set and the bit to be programmed high (the 74S288 is supplied with all locations low) is selected by S_{3}. This saturates one of the eight transistors and clamps the data outputs low. S_{2} is then pressed to trigger a flip-flop which then feeds clock pulses to the 4017 counter. The counter outputs sequentially set and reset two flip-flops to give outputs Q_{1}, Q_{2} as shown in the timing diagram. Chip select on the p.r.o.m, is
taken high, a +10.5 V program pulse is applied to V_{cc} for 4 clock cycles, and for the second and third clock cycles $\overline{\mathrm{CS}}$ is taken low to program the bit.

Flip-flop 3 is reset on the ninth clock cycle and stops the program cycle. Capacitor C_{4} and R_{1} set the counters and flipflops to the correct initial states, and the 3 k 9 resistors apply the correct loads to the unprogrammed outputs during the programming cycle. Diode D_{1} disconnects the +5 V supply to the p.r.o.m. during programming.

The +12 V supply should be rated at 1 A , and the only important constructional note is to ensure that a low resistance path exists between the emitters of the eight transistors, 0 V on the p.r.o.m., and the +12 V ground, so that the programmed bit is held low and a 750 mA current pulse flows through it.
S. Kirby

Heslington
N. Yorkshire

