
 CIRCUIT CELLAR® Issue 115 February 2000 1www.circuitcellar.com

Build An AVR
Programmer

FEATURE
ARTICLE

Stuart Ball

i
If you’ve been looking
for an inexpensive
way to program
Atmel’s AVR micro-
controllers, then
Stuart’s project is just
what you need. With
a little work and only
six ICs, you can build
a programmer that is
perfect for working
with AVR parts.

f you’ve wanted
to experiment with

the Atmel AVR-series
microprocessors but

needed a cheap way to program them,
this project is for you. Using only six
ICs, you can start programming and
experimenting with the AVR parts.

The AVR 90S-series microproces-
sors from Atmel are RISC-based
microcontrollers. There are currently
four parts in the family, the
AT90S1200 and ’S2313 (in 20-pin
packages), and the AT90S4414 and
’S8515 (in 40-pin packages). Table 1
shows the key differences between the
parts. For a brief description of the
AVR architecture, see “What’s the
Count” in Circuit Cellar 112.

All AVR devices have 32 general-
purpose registers. On the AT90S1200,
this is the only RAM available. The

other devices in the series have addi-
tional RAM, as indicated in Table 1.

The AVR parts use flash memory
to store programs. The flash memory
can be electronically erased and repro-
grammed, so there’s no need to have a
UV eraser sitting by the programmer.

Atmel provides two methods to
program the flash memory—serial and
parallel. The serial method uses three
pins on the device and does not re-
quire any power supply other than the
normal 2.7–6-V supply voltage. The
serial method is suitable for program-
ming the devices in-circuit. However,
there is a fuse (SPIEN) in the device
that can be set to disable serial pro-
gramming. If this fuse is programmed,
serial programming and reading of the
device cannot be performed.

The parallel programming method
uses eight data lines and seven control

Table 1—The four AVR devices have different amounts of on-chip RAM and flash memory. The 40-pin devices have
more internal memory than the 20-pin devices, as well as more I/O pins.

AT90S1200 AT90S2313 AT90S4414 AT90S8515

Pins 20 20 40 40
Flash memory 1 KB 2 KB 4 KB 8 KB
EEPROM 64 bytes 128 bytes 256 bytes 512 bytes
RAM 32 bytes 128 + 32 256 + 32 512 + 32
I/O Pins 15 15 32 32
8-bit timers 1 1 1 1
16-bit timers 0 1 1 1
UART 0 1 1 1

2 Issue 115 February 2000 CIRCUIT CELLAR® www.circuitcellar.com

lines. This method also requires that
+12 V be applied to the reset pin to
enable programming. The parallel
method requires more hardware but
works regardless of the state of
SPIEN. The programmer design for
this project uses the parallel method.

Programming the AVR in parallel
mode redefines the normal pin func-
tions as shown in Table 2. Unlike a
PROM, the AVR processor doesn’t
have separate address lines to select
the location to be programmed. In-
stead, the address is written as two 8-
bit data values using the data lines.
The eight data lines get the program-
ming address, programming data, and
commands that tell the AVR what
programming operation to perform.

The AVR drives –BUSY low when
it starts to program a byte, and back
high when programming is finished.
This provides a means for the pro-
grammer to determine when a byte is
finished programming.

The –OE signal goes low to enable
the AVR outputs for reading. The
–WR signal tells the AVR to start
programming a byte and is pulsed low
after the command, address, and data
have been loaded.

BS selects either the low or high
bytes of address and data. When BS is
low, the low address or data byte is
read or written, and when BS is high,
the high byte is read or written. XA0
and XA1 determine whether the data
on the data lines is a command, ad-
dress, or data byte. XA0 and XA1 are
defined as:

XA1 XA0
 0 0 Address
 0 1 Data
 1 0 Command

Finally, the clock pulse on the crys-
tal input pin clocks the command,
data, and address bytes into the chip.

The AVR de-
vices also have an
EEPROM that can
be written by the
processor under
program control or
programmed exter-
nally. There is also
a device signature
that identifies the
device type and a
pair of lock bits. The lock bits can be
used to prevent anyone from reading
the contents of the device. The lock
bits and SPIEN fuse can be cleared
only by erasing the entire device.

The Atmel parallel programming
mode supports chip-erase, program-
ming and reading of the flash memory
and EEPROM, and reading the fuse
and lock bits along with the device
signature bytes.

Programming a location in the
AVR involves placing a command on
the data bits, setting XA0/XA1 to
two, and toggling XTAL1. Then, the
high address is placed on the data bits,
XA0/XA1 is set to 0, –BS is set to 1,
and XTAL1 is toggled again. A similar
procedure is followed to load the low
address byte and the data byte. Then –
WR is pulsed low to start program-
ming. When programming is
complete, the AVR drives the –BUSY
bit high.

Although the AVR has a program
word that is 16-bits wide, the word is
programmed one byte at a time. Fig-
ure 1 shows the waveform used for
programming the low byte of the
word. The same sequence is followed
for the high byte except the BS line is
high when the data byte is loaded.

The process of reading the AVR
device is similar to writing, except
that the read command is issued and
the –OE signal (instead of –WR) is
pulsed low to enable the AVR out-
puts. Before programming, the pro-

grammer software erases the device
using the erase command. The AVR
does not use the –BUSY bit to indicate
when the erase is complete so erase
timing is up to the programmer.

Command bytes are 0x80 to erase
the chip, 0x10 to program the flash
memory, and 0x02 to read the flash
memory. The AVR commands for
reading/programming the EEPROM
and for reading/programming the fuse
and lock bits are not implemented on
this project.

You can download an assembler for
the AVR microcontrollers from the
Atmel web site.

PROGRAMMER FEATURES
The AVR programmer provides

capability to program all four of the
Atmel AVR devices. Two ZIF sockets
are provided, one for 20-pin and one
for 40-pin parts. The programmer
plugs into the parallel printer port of a
PC. Windows 95 software to use the
programmer is available on the Cir-
cuit Cellar web site.

The programmer circuit connects
to the parallel printer port of a PC. As
you can see in Figure 2, U2 is a 74HC-
374 that latches and buffers the data
bus to the AVR. U3 is a buffer that
allows the data bus to be read. U1
drives the control inputs to the AVR
device. U4 decodes the control lines
from the printer port to latch data,
read data, or clock data into the AVR.

The printer signals –AF and –INIT

Figure 1—The timing diagram
for programming a single byte
in the AVR device is shown
here. Data, address, and
commands are written to the
device using the 8-bit data bus.

PB0–PB7 0x10 (PROGRAM COMMAND) ADDR LOW ADDR HIGH DATA LOW

XTAL 1

*WR

BS

XA1, XA0 10 00 00 01

Table 2—In programming mode, the pins of the AVR device are redefined as shown.
Program mode is entered by bringing the VPP pin to +12 V.

Pin Definition

PB0–PB7 Data and command input/output
PD1 –BUSY feedback bit
PD2 –OE (Output Enable)
PD3 –WR (Write Enable)
PD4 –BS (Byte Select, selects high or low byte)
PD5, PD6 XA0 and XA1, address inputs
Crystal1 Clock pulse

 CIRCUIT CELLAR® Issue 115 February 2000 3www.circuitcellar.com

AVR is 0 V. The actual voltage is the
saturation voltage of Q2, but that will
typically be 200 mV or so.

When output D7 of the control
register goes low, Q2 is turned off and
resistor R2 pulls the AVR 12-V input
up to the 12-V supply. The AVR
doesn’t draw significant current from
the +12-V input, the high voltage is
used to put the device into parallel
programming mode. Most 12-VDC
transformers produce an output of
15 V or so when lightly loaded, so D1
clamps the voltage to 12 V at the AVR.

Transistor Q1 is a PNP type,
2N3906. When output D6 of the con-
trol register (U1–16) is high,
resistor R3 pulls the base of Q1
to +5 V, turning Q1 off. When
control register D6 goes low,
the base of Q1 is pulled toward
ground through R4. This satu-
rates Q1 and applies +5 V to
the AVR sockets. This also
turns on the LED.

R6 ensures that the –BUSY
bit will be low if no AVR de-

vice is installed in either socket,
which will produce a device error.
Without R6, an attempt to program an
empty socket may not detect the error
until verify.

Finally, U6 (a 7805) regulates the
+12-VDC input to produce 5 V for the
logic and the Atmel devices.

ABOUT THE SOFTWARE
The software was written in

Microsoft Visual C++, as a Win 32 app
for Windows 95. Photo 1 shows the
dialog box for the programmer soft-
ware. Two clickable buttons are pro-
vided, one to Erase and one to Erase

Figure 2—Because the AVR programmer requires only six ICs and two transistors, you can build this programmer
and start experimenting with AVF parts in no time.

Table 3—The –AF and –INIT pins on the printer connector (pins
14 and 16) select which programmer register will be written or
read. The –STB signal (pin 1) is driven low to actually read the
data or clock the register.

Pin 14 Pin 16
(–AF) (–INIT) Function

0 0 Pulse AVR clock input
0 1 Write control register
1 0 Write data register
1 1 Read data from AVR

are used to select which register on
the programmer is written or read.
These pins are defined in Table 3.

To perform one of these operations,
the –AF and –INIT lines are set to the
correct state, and the –STB signal (pin
1) is pulsed low. This causes the ap-
propriate output of U4A to pulse low.

To read data, the programmer has
to turn off the printer port output
buffer and the data register on the
programmer. If the data buffer on the
port was left enabled, there would be
a bus conflict with U3, and if the data
register on the programmer was left
enabled, there would be a bus conflict
with the AVR device when it turns on
its outputs.

The printer port buffer is disabled
by writing to a bit in the printer port
control register (different from the
programmer control register, U1). To
disable the programmer data register,
bit 5 of the programmer control regis-
ter is set high, driving the output-
enable pin (pin 1) of the programmer
data register (U2) and tristating the
outputs.

The read data buffer, U3, is a bidi-
rectional device, but the direction pin
(pin 1) is grounded, allowing transfers
in only one direction. Because the
AVR programmer uses the printer
port data lines for both reading and
writing, a bidirectional printer port is
required.

The bits in the control register (U1)
are defined in Table 4. The –BUSY bit
from the AVR is buffered by U5B
(pins 3 and 4) and drives pin 11 of the
printer port connector. This is the
printer BUSY signal and is monitored
by reading the printer port status
register.

SO1 and SO2 are 40- and 20-pin
ZIF sockets for programming the AVR
device. Q1 supplies +5 V to the AVR
socket and the LED (D2) lights when
+5 V is applied.

The input power supply is a
12-VDC wall-wart transformer. Be
sure to use a supply with a DC out-
put, not AC.

Twelve volts is enabled by Q2.
When output D7 of the control regis-
ter (U1–19) is high, Q2 is saturated
and the voltage at the 12-V pin of the

Figure 3—The software inter-
faces uses a standard Windows
dialog box. The software is
partitioned into low-level code
that communicates with the port,
AVR-specific code that performs
device-level functions, and code
that communicates with Windows.

Windows dialog application

AVR support routines

Power on/off
12 V on

AVR read
AVR write

Erase

Hex file support routines

Get record length
Get address

Get record type
Get data word

C++ file open dialog

C++ CFile functions

Low-level interface
Write command register

Write data register
Read data

Wait for not busy
Convert ASCII to hex

Pulse AVR clock

and Program. The Erase button issues
an erase command to the device. No
erase verification is performed.

To program a device, a file must be
selected. The programmer software
requires an Intel-format hex file (see
the File Formats sidebar for more
information). The Atmel assembler
enables you to select either Motorola
S-record or Intel-format files. The
filename may be typed into the edit
field or you can click the Browse but-
ton to bring up the standard Windows
95 open-file dialog box to select a file.

The Erase and Program button is
grayed out until you select or enter a
filename. Clicking this button will
erase the device and then program it
with data from the selected file. If you
enter a file that doesn’t exist, you will
get a file error.

The software provides radio but-
tons for selecting the port address
(0x278 or 0x378) and a speed-compen-
sation value for the speed of your
CPU. The speed compensation con-
trols the amount of settling time

between successive operations to the
printer port and the timeouts for de-
tecting device errors and erasure. The
compensation value isn’t critical, but
if you get device errors while pro-
gramming, try a different value.

Finally, the software provides a
4-line status box where messages are
displayed. The box will display the
current address as each hex record is
programmed and the location of any
errors that occur. Messages scroll up
during operation and the last four are
displayed.

The software doesn’t check for the
correct device size, so if you try to
program 8 KB of data into a 1-KB de-
vice, it will let you. Of course, you’ll
get a verify error. The software also
doesn’t check that the file you select
is a valid hex file, although almost
any other type of file will produce file
or device errors.

The software was created using the
Microsoft C++ wizards to format the
dialog box and buttons. The program-
ming code was originally developed as
a console application, then the pro-
gramming routines were incorporated
into the Windows dialog shell.

Figure 3 shows the software struc-
ture. The Windows dialog application
passes control to other, lower-level
functions when you click on a button.
The AVR support routines provide
functions such as programming a
single location, reading a location,
etc. These functions call lower-level
routines that actually read and write
the hardware registers on the pro-
grammer via the parallel port.

CIRCUIT CONSTRUCTION
The prototype was constructed on

perfboard and wired point-to-point.
Figure 4 shows the parts layout that
was used and the parts list is available
on the Circuit Cellar web site. Use a
grid of copper EMI tape under the ICs,
or some other means to get a good,
low-impedance ground. SO1 and SO2
are located on the bottom of the board
to make final mounting easier. The
completed project was mounted in a
plastic case with holes cut in the top
for the ZIF sockets and LED.

The power supply is a 12-VDC
wall-wart transformer. Anything that
can supply 300 mA or more will be
adequate. A 2.1-mm coaxial jack is
mounted on the plastic case for con-
nection to the supply. The schematic
shows 74HCxxx parts. You can use
74HCT or 74ACT as well.

The two ZIF sockets, SO1 and SO2,
are mounted on the back of the board
to simplify mounting the board in the
case. The 40-pin ZIF sockets are
manufactured by 3M, Aries, and other
were common when a lot of PLDs
were in 20-pin DIP packages. 3M/
Textool still makes them and they are
listed in the Digi-Key catalog.

If you can’t find the 20-pin socket,
or you want a lower-cost alternative,
you can substitute a 24-pin socket and
use only the lower 20 pins. If you do
this, be sure to route the connections

Bit Definition

D0 Drives AVR –OE signal
D1 Drives AVR –WR signal
D2 Drives AVR BS signal
D3 Drives AVR XA0 signal
D4 Drives AVR XA1 signal
D5 1 disables data register U2
D6 0 turns on +5 V to AVR
D7 0 turns on +12 V to AVR

Table 4—U1 controls various programmer functions.
Five bits connect directly to the AVR sockets, one
enables the data register, and two turn the +5-V and
+12-V on and off.

Figure 4—Note that SO1, SO2, and the LED are
mounted on the back of the board to simplify mounting.

J1
U1 U3

U2U6

U5

U4

SO1

SO2

LED

C2

R5

C1 C3 Q1 Q2

C5

R2
R1
R4
R3
R6

D1

C4

 CIRCUIT CELLAR® Issue 115 February 2000 5www.circuitcellar.com

File Formats
The Intel-format hex file was developed by Intel

in the early days of microprocessors, when data was
typically read from a paper-type reader attached to a
teletype machine. The file consists of a series of one-
line records, terminated by an end-of-line character.
All the data is in ASCII, and each record uses the
following format:

:LLAAAATTDDDDDDDDDD….CC

where the colon character (:) starts each line, LL is
two hex-ASCII characters that define the number of
data bytes, AAAA is the starting address for the data
on the line (four hex-ASCII characters), TT is the
record type (00 for data record, 01 for the last record
in the file), DD is the data (two characters per byte),
and CC is a one-byte checksum.

The AVR microcontrollers use a 16-bit wide flash
memory, so the data is ordered as pairs of bytes to
make a word. The low byte of each pair is sent first,
followed by the high byte.

A line from a hex file for the AVR devices looks
like:

:100020000EBD00E00BBD08EC0ABD00E000E00DBD18

This line describes a hex record with a length of
16 bytes (10h), starting at address 0020 (hex). The
record type of 00 indicates that this is a data record.

This is illustrated by:

10 (length) 0020 (starting address) 00 (record type)

The first few bytes of data for this line are 0E BD 00
E0 0B BD 08 EC. These would be programmed into an
AVR device as words, like:

BD0E E000 BD0B EC08

The one-byte checksum at the end was an important
feature when data was sent using electromechanical
paper tape readers. In a disk-based system, a bad read
will result in a CRC error from the disk controller. The
checksum in the file is redundant, and the software for
the AVR programmer ignores it.

The four character address value limits the Intel for-
mat to a maximum of 64k addresses. There is also an
extended Intel hex format that provides a larger address
space by defining a third record type.

Although the programmer software doesn’t support it,
the Atmel assembler is capable of generating Motorola-
format hex files. The Motorola format looks like:

S1LLAAAADDDD…CC

where S1 is the start sequence, LL is the length of the
record (in bytes), AAAA is the address DD is the data,
and CC is a two-byte checksum.

to the right pins and select a socket
(such as the Aries24-65xxx series) that
accepts an IC that’s 0.3″ wide.

If you don’t plan to program many
devices, you can use machined-pin
sockets for SO1 and SO2. They obvi-
ously won’t last as long as the ZIF
sockets. And, if you plan to work only
with the 20-pin devices, you can leave
off the 40-pin socket and vice-versa.

TESTING
Three test files are provided—

TST4414.HEX, TST2313.HEX, and
TST1200.HEX. TST4414.HEX is for

’90S4414 and ’90S8515 devices,
TST2313.HEX is for ’90S2313 devices,
and TST1200.HEX is for the ’90S1200.
All of the files just blink an LED to
verify that the programmer works.

Figure 5 shows a circuit that con-
nects a 40- and 20-pin socket to use
the test software. The crystal on the
test board isn’t critical—anything
from about 3 MHz up to 10 MHz will
work. If you’re confident in your wir-
ing abilities, you can skip the test
circuit.

Using the programmer is fairly
simple. Plug the programmer into the

parallel port and plug in the 12-V
supply. When you connect the pro-
grammer to the computer, use a short
cable, 6′ or less. Avoid ribbon cable
because the crosstalk between the
wires tends to be high and may cause
errors.

From Windows Explorer, double
click on the AVRBURN.EXE file to
start the programmer software. Select
the file you want to program and
install the AVR device into the appro-
priate socket. Click the Erase and
Program button and the programmer
will erase, program, and verify the
part. If you just want to erase a de-
vice, don’t select a file.

Even though there are two sockets,
you can only program one part at a
time. Using two sockets eliminates
the need for a set of jumpers that
would be required to configure a
single socket for both device types,
but it doesn’t allow programming of

Photo 1—There are only
five user functions—select-
ing a file, erasing a device,
erasing/programming a
device, selecting the parallel
port address, and selecting
the compensation value for
CPU speed.

6 Issue 115 February 2000 CIRCUIT CELLAR® www.circuitcellar.com

Figure 5—If you program the
test files, TST2313.HEX or
TST4414.HEX, into the appro-
priate device and plug it into
this test circuit, the LED will
blink. This test will show you if
the programmer is wired
correctly.

two devices at once. If you try to do
that, you’ll get bus contention on the
–BUSY bit as both devices try to drive
it, and bus contention on the data bus
when the software tries to verify. And
besides, what practical program
would you ever want to put in both
20-pin and 40-pin devices?

ABOUT PARALLEL PORTS
The programmer requires a bidirec-

tional parallel printer port to operate.
In bidirectional mode (also called PS/2
mode), one bit of the control register
is used to turn off the data buffer so
the data lines can be used as inputs.

Most IBM PC-compatible mother-
boards include an integrated printer
port, and these usually support ad-
vanced modes such as ECP and EPP,
as well as the simpler bidirectional
mode. Some motherboards (e.g., the
one I used to develop this project)
ignore the bidirectional control bit
when in ECP or EPP mode. These
ports must be configured (in the BIOS)
as bidirectional to use them with the
programmer, and this disables the
ECP/EPP modes.

Another drawback to using the
motherboard-based printer port is the
possibility of damaging the port while
debugging. Damage can occur if you
leave the project’s read buffer turned
on while the parallel port outputs are
turned on. If the output drivers on the
printer port are destroyed, the
motherboard is ruined.

I’ve debugged the programmer
project and you may not plan to ex-
periment with other parallel-port
projects, but it’s still possible for a
wiring error to cause bus contention.
You can also get bus contention if you

plug the programmer into a port that
isn’t bidirectional.

That’s why I connected the pro-
grammer to a separate printer port
board that costs about $20 and plugs
into an ISA slot. The motherboard
printer port is addressed at x378 and
the add-in card is addressed at 0x278.
If one of my experiments damages the
output driver on the add-in card, I can
just throw it away and put in a new
one. The add-in card doesn’t support
ECP or EPP modes, but it does sup-
port bidirectional mode, which is all
this project requires.

PARAxx.ZIP (xx is the version
number) is a program that checks the
parallel ports and tells you what
modes they operate in. The program is
available from the Parallel Technolo-
gies web site. You can also get it from
any of the Simtel sites. (Simtel is a
collection of Internet shareware.)

That’s all there is to it. Now you
can begin experimenting with the
AVR-series microcontrollers. I

SOURCES
AT90Sxxx micros
Atmel Corp.
(408) 441-0311
Fax: (408) 436-4200
www.atmel.com

ZIF sockets
Digi-Key Corp.
(218) 681-6674
Fax: (218) 681-3380
www.digikey.com

SOFTWARE
The software and parts list for this
project are available for download
via the Circuit Cellar web site.

RESOURCES
Parallel Technologies,
ftp.lpt.com/parallel
Simtel, www.simtel.net

Stuart Ball works at Organon
Teknika, a manufacturer of medical
instruments. He has been a design
engineer for 18 years, working on
projects as diverse as GPS and single-
chip microcontroller designs. He has
also written two books on embedded-
system design. You may reach him at
sball85964@aol.com.

3M
(800) 364-3577
(651) 737-6501
Fax: (800) 713-6329
www.3m.com

Aries Electronics, Inc.
(908) 996-6841
Fax: (908) 996-3891
www.arieselec.com

SOURCES

Circuit Cellar, the Magazine for Computer Applications.
Reprinted by permission. For subscription information,
call (860) 875-2199, subscribe@circuitcellar.com or
www.circuitcellar.com/subscribe.htm.

