|

|

B

|

|
-
|

!

J|

|

o)y
< |

I;_

w

| i,
N N
| A g

v/

ERNEST MEYER

The new reconfigurable logic devices
revolutionize the design of logic systems

| IF YOUR PROJECT DESIGNS USE 7400-SERIES

discrete components for random-log-
ic or state-machine control, you’ll
probably find that you can simplify
both the design and the assembly by
merely substituting Programmable
Logic Devices (PLD’s) for the 7400-
series hardware.

Programmable logic devices con-
tain gates and flip-flops, just like reg-
ular 7400-series [C’s. However, in the
7400 series, which is often considered
to be standard parts, the gates and
flip-flops are wired together in fixed
configurations. On the other hand,
PLD’s aren’t hard-wired; instead,
they contain small fuses that are
blown or left open to connect their
internal gates and flip-flops in any
nceded configuration.

A PLD’s fuses are similar to those
used in PROM’s (Programmable
Read-Only Memories), EPROM’s
(Erasable PROM’s), and EEPROMs
(Electrically Erasable PROM'’s). Usu-
ally, the fuse is blown by addressing
the location and applying a high-volt-

age pulse (12-30 wvolts, depending on
the device) across the fuse while the
IC is in its programming mode. Most
standard PROM programmers can be
used to configure PLD’s.

Erasable PLD’s (like EPROM'’s
and EEPROM’s) can be wiped clean
and reprogrammed—although the
wiping is actually a way of bypassing
the blown fuses. In that way, hob-
byists can reuse a single PLD for a
variety of projects or applications.

Circuit designers have traditionally
used PLD’s for logic functions that
are not generally available in standard
oft-the-shelf components. If not for
PLD’s, a large number of con-
ventional IC’s would otherwise be re-
quired to perform a relatively simple
non-standard logic task.

A lot for a little

Because they provide the circuit de-
signer with an enormous array of user-
programmable fuses, recent PLD de-
signs can substitute for dozens of
standard parts. Typically, a PLLD can

replace about a half-dozen standard
parts, although the exact number of
required PLD’s depends on the actual
circuit. Without PLD’s, the increased
number of parts increases the size of
the circuit board, which in turn lowers
the system reliability while increasing
the system’s cost.

Because a single PLD replaces a
variety of standard parts, manufac-
turers also prefer them to standard
parts because inventory is mini-
mized—the number of different IC’s
which must be stocked is sharply re-
duced. Also, the integration of dis-
crete parts into a single device puts all
the wiring inside an IC rather than on
the circuit board, which means that
the board’s design is simpler and the
logic can run faster.

Programmable logic is therefore an
excellent choice in systems where
board size, board complexity, system
reliability, inventory considerations,
or speed is important. Even if no sin-
gle factor is crucial, their combined
weight can easily swing the balance

8861 AHVNHG3d

[4)]
©

RADIO-ELECTRONICS

D
=]

toward a clean and simple PLD design
rather than a large composite of stan-
dard parts. :

Even so, as we will show, some
standard parts are so complex they
don’t fit very well into a programma-
ble logic architecture. To resolve the
problem of complexity, there is now
under development hybrid PLD’s that
contain many large standard-logic
functions combined with a program-
mable logic array.

Since the proliferation of different
logic architectures will inevitably
bring PLD’s into common use by both
the hobbyist and the professional, we
will look at the extraordinary develop-
ment of complex reconfigurable
PLD’s, and examine their diverse ca-
pabilities.

Programmable logic technology

To understand how fuse technology
works, we must look at the techniques
used for fabricating integrated cir-
cuits. Silicon processing, as it is
called, is very complicated; but a
quick-and-dirty description will make
it a little easier to understand.

To make a silicon-based chip, waf-
ers of silicon crystal are first pro-
cessed to make transistors. The
silicon crystal itself does not really
conduct electricity at all. The tran-
sistors are created by doping selected
regions of the silicon with phosphorus
or arsenic, and metal lines deposited
on the wafer connect the transistor
sites. The transistors and metal lines
are called features.

Simply speaking, each feature is
formed on the crystal at the selected
locations by spraying a light-sensitive
protective chemical, called pho-
toresist, in a thin, even coating on the
wafer’s surface. The wafer is then
bombarded with light at selected lo-
cations through a precise slide proj-
ector. The slide projector (called an
optical aligner) uses a very small
slide, called a mask, to screen out the
light where it isn’t wanted. The chem-
ical decays where the light strikes the
photoresist-covered wafer, and is sim-
ply washed off, leaving bare silicon at
selected locations.

The precision of the optical aligner
determines how fine a feature can be
made. In the early 1970’s, it was diffi-
cult to make transistors smaller than
10 microns, Now, transistors can be
less than a micron in size, meaning
the same-size chip can hold more than
100 times as many transistors. More-

METAL 2 CONTACT Si0, INSULATOR

SILICON SUBSTRATE
a 3

&METAL 2

L .
METAL 1
b

FIG. 1—THE METAL LAYERS on two-level
chips are insulated by a layer of SiO; (a).
The first programmable IC (b) provided 64
cross-points (fuses).

over, as features get smaller, the tran-
sistors are packed more densely;
hence, the devices can work faster.
The bared silicon can be treated in
various ways. For example, the sil-
icon can also be treated to recast the
crystalline structure into an amor-
phous form called polysilicon, which
conducts electricity and therefore can
be used to form wires. Single-level
metal chips use polysilicon wires to
cross under the metal wires at inter-
section points. However, polysilicon
conducts electricity over a hundred
times worse than metal, which sub-
stantially degrades performance.
The wafer is heated after the ap-
plication of each wiring level, which
causes the silicon on the surface to
oxidize. Since the resultant Si0, is
more bulky than crystalline silicon,
the oxide blooms over any raised fea-
tures (such as previously deposited
metal lines) during oxidization. Since
SiO, does not conduct electricity, it
forms an insulating sheet a few mi-
crons thick over the entire wafer sur-
face. The oxide can again be
selectively etched: Photoresist is
again applied to the wafer, selectively
etched away again, and the wafer is
exposed to chemicals that attack the
SiO, (but not the pure Silicon) at the
chosen feature locations. Further

layers can be grown on top of the
resultant planarized wafer to form a
sandwich-like structure, with SiO, as
the “bread,” and metal or doped sil-
icon as the “meat.”

Several levels

The transistors on the chip are
wired together with deposited strips
or spots. The various layers are con-
nected by holes (called contacts)
through the SiO, layers. Although up
to three levels of metal can be used,
the metallization process is expen-
sive, and so IC’s are mostly made
with two, or even only one, metal
level. A cross section of a chip with
two-level metal construction is shown
in Fig. l-a.

To make the first fuse-programma-
ble chip, as shown in Fig. 1-b, eight
12-micron wide horizontal lines were
deposited in first-level metal over the
bare silicon substrate. The wafer was
then heated up to cover the metal with
the insulating SiO,. After applying
photoresist, sixty four very small
holes (five microns in diameter) were
etched into the insulator in eight rows
over the first-level metal. The contacts
could be much smaller than the first-
level metal because they just needed
to touch the edge of the metal line to
provide a conducting path. (Small
contacts were necessary for program-
mable technology, but such contacts
greatly reduced the reliability of the
device.)

Next, photoresist was applied again
to the wafer, and aluminum was de-
posited in the holes (or contacts). An-
other eight metal lines were deposited
in second-level metal, but those were
stacked in the vertical direction,
crossing over first-level metal at each
contact site. The final product was
therefore an 8 X 8 grid having a very
small aluminum contact between
cach metal-1/metal-2 crosspoint.

Although the contacts—called
fuses—are made as wide as the wires
in standard silicon chips, they are nar-
rower than the wires in programmable
logic chips. The interconnecting alu-
minum is burned away (blown) by ap-
plying a very large current across the
fuse connection. At lower voltage lev-
els, the fuses that have not been burnt
away conduct normally. That is why
the metal lines were made so wide and
the contacts so small—they had to be
made larger than the contacts so that
the contacts and not the metal lines
would burn away.

Early PLD’s

The earliest programmable chip is
the one shown in Fig. 1-b; it contained
nothing more than a fuse matrix and a
wire grid. The crosses represent fuses
that can be blown or left open.

The PLD pioneers were quick to
stack transistors around the metal grid
to make true programmable devices.
Also, nichrome (nickel-chromium)
fuses were used instead of contacts. In
that kind of programmable tech-
nology, regular contacts are run from
the lower metal to the upper metal
layer; those contacts miss the actual
wire intersection point by 3 microns.
A 3-micron strip of nichrome com-
pound is then deposited laterally to
connect the contact site to the second-
level metal strip. Because of its lower
melting point, nichrome fuses out
more cleanly than aluminum; in fact,
the nichrome actually vaporizes dur-
ing fuse programming. Therefore, a
lower programming voltage is
needed, which means that less power
needs to be put into the chip. That
simplifies programming while mak-
ing the devices more reliable. Also,
the metal lines are not much wider
than the fuses themselves, which al-
lows a greater density.

The PROM

The earliest fuse-programmable
device was the PROM. As shown in
Fig. 2, PROM input logic (the AND
plane) is fixed, while the output logic
(the or plane) is programmable. The
upper non-fused fixed-wire matrix
feeds a set of anD gates. In the fixed
AND array, the output of any one col-
umn is high only if all the connected
inputs to the column are high. In
PROMs, the fixed AND array provides
one and only one high output for each
possible condition that can exist on
the inputs. The non-fused matrix is
called a fixed anp plane.

The lower matrix is fuse-program-
mable. Simply speaking, each of the
wiring rows feeds into a single enor-
mous ORr gate. That description is a
simplification, of course, but it is ade-
quate for our purpose.

TABLE 1
IN, IN, | our, our, our,
i R | R i
(R e Tl
B LTl e]
el

FIXED anp PLANE

J000

INg

N,

ouT,

PROGRAMMABLE or PLANE

FIG. 2—IN THE EARLIEST FUSE-PRO-
GRAMMABLE device, the anp plane was
fixed; only the or plane was programmed.

The oR gate is set so that the output
is high if any connected input to the
fuse row is high, a configuration that
is called a programmable or plane. If

" the only fuses left connected in Fig. 2

are those indicated by a circled- X,
the ones and zeros in Table [con-

stitute a truth table for a PROM pro-
grammed (blown) with the fuse
pattern shown in Fig. 2

Conventionally, PROM’s are re-
garded as programmable memories;
however, the devices can obviously be
used for logic as well. For example,
logic equations can be written for the
above device as follows:

OUT, = IN, and NOT-IN,

OUT, = NOT-IN; and IN,

OUT, = (NOT-IN, and NOT-IN,) or
(INg and IN))

Obviously, OUT, is a genuine XOR
(exclusive-or) of IN, and IN,. That
may seem like a very clumsy way of
making a simple gate, but by expand-
ing the size of the array very complex
logic terms can be created. In par-
ticular, that kind of architecture is
very good for bus-decoding func-
tions. For example, if an 8-bit-wide
bus must be decoded in six different
ways to provide six enable signals in a

Lo (LOGIC TERMS-P) -
ly
h
I, %
|3
s
15
lg €
b
'8
lg =
hg %
Iy
hy
ha
ha
¥
tﬁ((:‘(‘i ﬁnl\ v C\'.Q ((ﬁ(fﬁ C E((ﬁl()q &R,“(q(? Sy
Sl
XHD—-F,
)
X;FD +F,
S
X;He—*F,
Sy
X. ﬁD—!"Fn
S
Xﬁ—ﬂD—b—Fs
S
xs-:)D-—I»F,
$
470ess 0040390 0vees3)on o0 se)) 3esessn|glGencseacy Jasssnsy fo ﬁgF,
: e

FIG. 3—THE FIRST COMMERCIALLY AVAILABLE FPLA was a single-level device having

approximately 2,000 fuses.

8861 AHvNdg3d

[+;]
-

RADIO-ELECTRONICS

=13
N

o

0,
JD—°
B >—

FiG. 4—IT’S EASY TO IMPLEMENT COM-
PLEX logic functions in an FPLA. As
shown, the functions previously de-
scribed for a PROM can also be mapped
directly into an FPLA’s architecture.

complex digital system (like a com-
puter), one 16-pin device can replace
at Jeast a half-dozen IC’s.

Since each possible input combina-
tion has a corresponding unique input
to the fuse array, the fixed AND array in
the above device is termed a full de-
coder. Of course, decoders can be
constructed from simple logic gates in
many ways, but we have depicted the
logic structure in an array fashion to
show how the AnND gates themselves
can be made part of an array structure.

PROM’s are useful as memory
components. When used as a memo-
ry, each input combination (on the left
of Table 1) is considered an address.
Similarly, the output resulting from
any particular input combination (on
the right of Table 1) is considered the
data at that address. In that way, fuse-
programmable ROM’s provide the de-
signer with a fast, static, long-term
storage medium for fixed-data ap-
plications. However, even though
PROM’s are ideal for fixed memory,
and even though they can be used for
logic, they are not very efficient be-
cause they always contain a full de-
coder, which isn’t always needed.

The full decoder increases the size
of the fuse array, which restricts the
number of possible input connec-
tions. To understand that, consider
how two signals have four fully-de-
coded conditions, and three signals
have eight fully- decoded conditions.
Since every input is fully decoded in a
PROM, each additional input doubles
the number of fuses required. In a

PROM, the total fuse-array size is
therefore:

21 x O

where 1 is the number of inputs and O
is the number of outputs. However,
for logic functions, not every input
combination is crucial; therefore, a
simpler and more compact approach
is to make both the or and the aND
planes programmable.

Exploring PLA’s

IBM, using an architecture called
PLA (for Programmable Logic Ar-
ray), was the first company to use a
device having both programmable or
and programmable anD planes. In the
earliest PLA’s, the array was metal-
programmed rather than fuse-pro-
grammed. In other words, the device
was customized during the actual chip
fabrication rather than by the chip
user, and was therefore used only by
manufacturers needing a large quan-
tity of chips.

Signetics was the first company to
manufacture Fuse-Programmable
Logic Arrays” (FPLA’s), which have
fuses both in the or and the anD
planes. The first commercially avail-
able FPLA, the 828100 (Fig. 3), was
introduced in 1977; it is a single-level
metal device having approximately
2,000 fuses.

At the same time, a similar fusing
technique was also applied to PROM
design, resulting in a rapid movement
from 256-bit to 2K-bit PROM’s.
Also, single-level metal technology
was used, with polysilicon for the
lower interconnection level and metal
for the upper interconnection level.
As mentioned earlier, that technique
reduces chip cost. In fact, to further
reduce chip cost, some vendors now
use fuses made of polysilicon rather
than nichrome.

Because there is no full binary de-
coding, each additional input added
to an FPLA structure does not double
the required number of fuses. Instead,
the fuse array is increased in size by
an amount directly proportional to the
number of vertical channels (which
are called logic terms or product
terms). Note, however, that because
both non-inverted and inverted sig-
nals are provided for each input, there
are two inputs into the fuse array for
each pin input.

Each product term added to an ar
ray allows one additional set of AND
products to affect an output con-

dition. Therefore, in the 828100,
there are 48 possible unique AND

~ products that can affect the output.

Since the anD-products can be com-
bined together in the or plane, more
than 48 unique input combinations
can affect the output. Therefore, three
numbers are used when measuring the
size of an FPLA: the number of in-
puts, the number of product terms,
and the number of outputs. Those
numbers are combined to form the
IPO number. To calculate the total
number of fuses, the number of inputs
is doubled (to provide noninverted
and inverted inputs to the array), add-
ed to the number of outputs, and mul-
tiplied by the number of product
terms, or:

(2 x D+0) x P

For the 828100, the IPO is 16:48:8.
The total number of fuses is therefore
((16 x 2)+8) X 48, or 1,920. By
contrast, a PROM having 16 inputs
and 8 outputs, like the 825100, would
require 216 X 8, or 52,488 fuses—
more than 25 more.

The smaller size of the FPLA archi-
tecture yields four advantages to the
logic designer: 1) The array size is
smaller, which makes the devices less
expensive to manufacture and there-
fore less expensive to sell; 2) The
smaller number of fuses makes pro-
gramming faster; 3) The reduced ar-
ray size makes the devices quicker to
test; 4) The smaller size of the array
makes it possible to make larger pro-
grammable devices, which increases
their usefulness and power.

Additional features

Architectural enhancements in-
crease the flexibility of the device
even farther, The Signetics 825100
FPLA, for example, adds two addi-
tional programmable features to the
basic AND/OR plane.

First, the FPLA can be perma-
nently set to give inverted or nonin-
verted outputs. To achieve the
complementary output, the outputs of
the programmable or plane feed into
one input of an additional XorR gate.
The other input to the XORr gate can be
connected to ground. If the grounding
fuse is left intact, the xOR gate inverts
the output from the or plane. If the
fuse is blown, the input floats high,
and the logic signal passes through
the gate unaffected. Table 2 shows a
truth table for the complementary-
output feature.

TABLE 2
Output from array Output
inverting fuse from IC
0 0 0
1 0 1
0 X 1
1 X 0

The second feature, three-stated
output, is not programmable but
greatly improves the IC’s usability. If
many fuses are left intact in the pro-
grammable array, the increased load-
ing slows the device’s switching
speed. Conversely, if there is a prod-
uct term with only one or two intact
fuses, the output switches much more
quickly. As array size increases, the
difference in switching speed be-
tween the least- and most-loaded
gates can produce glitches in the IC’s
output. Erroneous logic states can be
avoided by disabling the outputs until
all the signals have settled.

Using an FPLA

It is easy to implement complex
logic functions in an FPLA. For ex-
ample, the functions previously de-
scribed for a PROM can also be
mapped into an FPLA’s architecture.
The connections required to do that
are shown in Fig. 4.

Four fuse columns were necessary
for a PROM, but note from Fig. 4 that
the FPLA architecture and comple-
mentary output permits only two
product terms to be used for the three
functions, freeing the other inputs,
outputs, and product terms for other
logic operations.

Logic minimization

In Fig. 4, it is relatively easy to
work out the connections to use.
However, as logic complexity in-
creases, it becomes more difficult to
work out which fuse combinations
use the product terms most efficiently.
When large numbers of logic signals
interact, the product-term columns
can be tied to different combinations
of inputs, and or-ed together in re-
spectively different ways to generate
the same functions. Finding the op-
timal fuse map through logic mini-
mization (the act of reducing logic
equations to their most basic form)
has two advantages: 1) The danger of
running out of product terms is mini-
mized; 2) The number of unblown
fuses is minimized, which increases
the speed and reliability of the device.

About the time when new software
tools were developed to optimize fuse
maps, a new development brought
about a revolution in programmable-
logic philosophy.

Y

Y

DUAL
FUSE

=7

s
INPUTS MAIN FUSE ARRAY

" By 4
OQUTPUT MACROS

FIG. 5—PLA’S DON'T HAVE A PROGRAMMABLE or plane at all; they have a programma-
ble anp plane instead, making them the opposite of PROM’s.

The PAL

The revolution in programmable
logic was the 825100 PAL (Program-
mable Array Logic). PAL’s were mar-
keted by Monolithic Memories as a
simple alternative to standard parts—
the emphasis being on simple. To that
end, they supplied an easy-to-use pro-
gramming language called PAL-
ASM, a FORTRAN 1V program that
translates logic equations into a fuse
map suitable for use with a standard
PROM programmer. At about the
time that PAL’s were released into the
marketplace, 512 X 4-bit (2048-bit)
PROM programmers were also inter-
faced with IBM computers, making it
possible for designers to design, doc-
ument, and program a simple PAL
within minutes.

PALASM accepts six distinct data
entries as input. First, the PAL part
number is entered so that the program
knows what sort of fuse map to make.
Second, the pattern number is en-
tered, so that the generated file con-
taining a fuse map can be named.
Third, the name of the device and the
author’s name is entered for archiving
(so when someone else looks at the
file, they know who made it and what
it’s for). Fourth, a pin list is entered,
which contains the symbolic names
for the pins that are used in the equa-
tions. The symbolic names can be
numbers, or signal names like INIT,
RESET, NMI, etc. Fifth, the actual equa-
tions are entered. A field is left open
for the designer to enter notes about
the design.

PALASM removes the designer
from the world of fuse maps and ar-
chitectures. However, to use PAL’s
most efficiently, it is important to
choose an architecture that maps on to
the type of logic you want to have.
Also, PALASM allows designers to
generate fuse maps (now often called
JEDEC maps) directly. But some-
times it is actually easier to type in a
fuse map than the equations. Indeed,
depending on the needed functions,
sometimes it is easier to draw a truth
table or a state diagram.

From the architectural point of
view, PAL’s are easier to use than
PLA’s because they don’t have a pro-
grammable OR plane at all: in its place
they have a programmable AND plane
instead, making them the opposite of
PROM’s. However, as we'll see very
shortly, additional architectural fea-
tures make PAL’s just as flexible to use
as FPLD’s. As shown in Fig. 5, a

(1]
[X]

8861 AdvNnydad

RADIO-ELECTRONICS

D
3

D U173 ss87 RN Puan WUIEE 0G0 AAR7 8RN
I" 4'1
4
3
: 1>
£
7
st —x
| N
(3 —
[-
:? :i;
[+ —
It} -
" !
" »
oy <
%
17
1] ﬁ
;: % .
n
2 _
u
2% —
7 5l
n o o
n
] _
n Q
q__ E_l
“
g !
<
g !
“

il il b R Ly
E4 PLURYLESE sEbokots BeugEEEY

s s
4 Ba.
4 o »
-
C—
: : gl
5
“
P
@ =
>
I g 1L 4
N

|
Gi73 1387

101 TSI 16719 BNRY WBBA BYN

FIG. 6—THE COMMON PAL16R4 provides fuse-programmable three-stated outputs and

four flip-flops.

PAL’s inputs feed directly into the AND
matrix.

Figure 5 also shows a new range of
functions, called macros, at the out-
put of the anp plane. In 1978, pro-
grammable logic components came
to differ not only in their IPO ratios,
but also in their macros, so that pick-
ing the best device for a particular
application often hinged on choosing
the one with the macros that incorpo-
rated the needed logic functions for
that application.

In the top macro, the anp plane
feeds a single AND gate with optional
fuse-programmed inversion. Thatis a
very simple macro; and because the
inputs to the array are all inverted, we
find that the output inversion is not
needed at all.

The second macro down incorpo-

rates a very useful feature: the output
of the AND gate is fed back into the
programmable AND plane, permitting
the output of the anp function to be
used again in the array without feed-
ing the output back around to the out-
side of the device into another input.
Using a macro’s outputs as inputs to
other macros allows the chip to con-
tain multi-level logic—which is to
say, the signal can pass through a se-
ries of gates. By judicious manipula-
tion of the logic equations, it is
possible for an ingenious logic de-
signer to put just about any digital
function in a PAL architecture; we
shall show you exactly how that’s
done in the next part of this series.
In the bottom macro, the output
driver is replaced by a bidirectional
driver consisting of dual fuses. De-

pending on how the fuses are blown,
the macro can be configured as an
output or as an input. If the output of
the AND gate is broken, but the feed-
back path and the input driver are left
intact, a signal can pass through the
input driver and feedback path—
however, the AND macro function then
cannot be used at that location. On the
other hand, if the output of the anD
gate is broken and the input driver is
taken out of the circuit, the AND macro
functions normally, and the AND gate
function is available for multi-level
logic.

[t should be obvious that there are a

" large number of possible macro con-

structions for combinational logic.
However, that is just the beginning.
Incorporating sequential logic ele-
ments in a PAL opens whole new di-
mensions of design. In Fig. 6 we see
the architecture of the common

WHILE PAL’s won’t really relegate other
technolgies to the scrap heap, they do of-
fer the designer another usable and useful
alternative.

PALI6R4, which provides fuse-pro-
grammable three-stated outputs and
four flip-flops.

That’s all we have room for this
month. In the next part of this series
we will start off by seeing how mac-
rocells containing flip-flops can be
used for counters, for complex pattern
generators, and even for state ma-
chines.

After that, we will also explore a
number of more recent technologies,
such as erasable and reprogrammable
devices, universal programming sys-
tems, and advanced programmable-
logic architectures; and to demon-
strate the feasibility of the technology
being used, we will show you how to
actually program a programmable-
logic device with commercially-avail-
able software. R-E

Program
Logic
Devices

ERNEST MEYER

Both PLD’s and their programming devices
are available at hobbyist prices.

P t 2 LAST TIME OUT WE
a r looked at the early
history of programmable logic be-
cause it gave us an understanding of
how easily programmable IC’s can be
used. And to make practice conform
to theory, we even designed and blew
an actual PLD (Programmable Logic
Device) just to demonstrate how it
might be done by a hobbyist.

As we continue our journey
through programmable-logic history,
we will go a little way beyond the
technology actually available to most
hobbyists. However, because the field
is developing so rapidly it won’t be
long before even the most sophisti-
cated devices find their way into com-
mon digital projects.

Of course, while being able to pro-
gram a PLD will naturally make it
easier for you to use more sophisti-
cated devices as they appear in the
marketplace. Even now the PLD’s
available to hobbyists can replace

i

more than a half-dozen conventional
parts. Indeed, PLD’s are already so
complex they warrant-the use of soft-
ware for device design and verifica-
tion, which is a fancy way of saying
*“creating a fusemap.”

As with everything- else, there is
both a hard and easy way to do things.
In this article we’ll program PLD’s
the easy way by using inexpensive
software that will run on any standard
[BM-PC or compatible.

Software to design hardware

A considerable number of pro-
grams are presently available that will
help you design a programmable IC:
We looked at the earliest program,
Monolithic Memories’ PALASM, in
the previous part of this series.

The idea of PALASM was to make
programmable-logic design more ac-
cessible to digital designers working
in small design houses. Previously,
the large programmable-logic dis-

tributors (such as Harris and Sig-
netics) had sought to sell only to
“captive” markets—large companies
like IBM and AT&T. In that way, one
service-support engineer could be as-
signed to each large customer, there-
by providing efficient service at a low
cost to the distributor. (Harris and
Signetics reasoned that providing ad-
equate support for many smaller com-
panies would be too expensive.)

With PALASM, however, even the
smallest design house could easily
use programmable logic, so reckon-
ing that it would boost the company’s
sales of programmable IC’s, Mono-
lithic Memories made the software
available free of charge to qualified
businesses.

The strategy worked, and Mono-
lithic Memories rapidly became the
largest programmable-logic dis-
tributor in the world at that time. The
other players in the market were quick
to follow suit. For example, Sig-

8861 HOWUVIN

[+
w

RADIO-ELECTRONICS

(1]
H

netics, the company that had pi-
oneered the commercialization of
PLD’s, realized it was losing market
share to the newcomer, and released
its own design software toolkit, called
AMAZE. Signetics also provided its
software free of charge to digital-de-
sign houses.

However, as we discussed in Part 1,
the FPLD architecture from Signetics
has both a programmable AND plane
and a programmable OR plane, where-
as Monolithic Memories’ PAL archi-
tecture has only a programmable AND
plane. As a consequence, PALASM
cannot program FPLD’s, and
AMAZE cannot program PAL’s.
(Which is why MMI and Signetics
gave away rather than sold their soft-
ware—anyone using the software had
to use the corresponding IC’s.)

It is therefore hardly surprising that
some independent software compa-
nies seized on the opportunity to
provide a software tool for both device
types. Assisted Technologies de-
veloped the first universal PLD de-
sign tool, CUPL, which is now sold
. by PCAD (1290 Parkmore Ave., San
Jose, CA). Indeed, many of the de-
sign examples you get with CUPL
still have the name Assisted Tech-
nologies on them.

The software ABEL, developed by
Data I/O (10525 Willows Rd. NE,
Redmond, WA 98073), does much
the same thing as CUPL, but is much
easier to use, although it is a great
deal more expensive (around $1,000)
than hobbyist-versions of CUPL.

Getting started

A starter kit version of CUPL is
available for $50 from JDR Micro-
devices (110 Knowles Drive, Los
Gatos, CA 95030). In addition to the
software, the kit contains one each of
four ready-to-program PAL'’s: the
16L8, 16R8, 16R6, and the 16R4;
their characteristics are shown in Ta-
ble 1. Keep in mind that the starter-kit
CUPL can only program those four
devices. The supplied PAL’s are actu-
ally manufactured by Texas Instru-
ments, but they are functionally
identical to the same parts from
Monolithic Memories.

How the software works

All the software tools for program-
mable logic design have a similar
structure, whose basic design flow is
shown in Fig. 1. As you can see, there
are a number of different ways where-

TABLE 1

FUNCTION 16L8 _ 16R4 16R6 = 16R8

DEDICATED INPUTS 10 8 8 8
DEDICATED REGISTERED 24 4 6 8
QUTPUTS (TRI-STABLE)

BI-DIRECTIONAL COMBINATIONAL 8 At > r
OUTPUTS (TRI-STATABLE)

SCHEMATIC STATE TABLE §§g[§' HARDWARE -
ENTRY DEFINITION DEFINITION DESCRIPTION —
DESIGN SPECIFICATION

TEST PATTERN
GENERATION

SIMULATION

NO

—rFLD CUSTOMIZATION

DEVICE BAD

USE

DESIGN BAD

FIG. 1—THE FIRST STEP IN SPECIFICATION ENTRY can be done by schematic, state-
table definition, truth-table definition, or a description of the hardware itself.

by the first step—the design specifi-
cation entry—can be done: by
schematic, state-table definition,
truth-table definition, or a description
of the hardware itself. In the commer-
cial world, engineers like to use a
schematic-entry system, whereby the
logic-circuit schematic is entered in
the computer and the software is then
able to derive the fuse map from the
schematic.

The most commonly used drafting
software used to generate fuse maps is
the DASH drafting software from
Data I/O’s subsidiary, FutureNet.
Both ABEL and AMAZE accept data
from DASH, while CUPL accepts
schematics designed on PCAD’s de-
sign system, PCAD-CAEI. Since
DASH and CAEIl cost $25,000 and
$7,500 respectively, they are beyond
the budget of most hobbyists.

Although PALASM, AMAZE,
CUPL, and ABEL do not accept
schematics by themselves, hobbyists
can use the design-entry systems ac-

tually built into the software and enter
a high-level description of the logic in
a text-form input file.

CUPL

CUPL is the highest language,
hence, it’s the easiest for the hobbyist
to use. Using an ordinary word pro-
cessor, such as WordStar or XyWrite,
you can create a logic-description
file. CUPL then performs both auto-
matic logic minimization of the file
and compiles a documentation file
having the extension .PLD. For exam-
ple, if we described a logic descrip-
tion of a two-bit counter in CUPL
format and told CUPL to give it the
name DIVIDER, CUPL would create
a disk file DIVIDER.PLD.

There are separate fields in the in-
put file: header information (included
at the tap of all the files created by
CUPL, so you can make sense of your
old printouts), notes, pin labels, and
logic description. In CUPL, you
don’t include the part number in the

CUPL 2.11c Seriald# 2-29999-001
Device plér8 Library DLIB-f-23-10
Created Tue Jan 01 00:37:57 1980
Name Divider

Fartneo EMO0O01

Revision nz2

Date 8/30/87

Designer E. Mever

Company ULSI

Assembly Breadboard

Location uz

*QP20

*QF2048

*QU1 3

#5350

*F0

*L0S12 O11111 1111118010101t 881118111
¥L0S449 1141181111001 8881111
#0748 O111111110 0210180020820 2108111
*L.0800 f111111111011108810 1802382122411
#0832 11111111411011101111811 188211111

*C131A

*P'{ 2345 67 8¢9 10 11

*¥J0001 C1XXXXXXXNOXXXXLLXXN
*#J0002 C1XXXXXXXNOXOCKLLXXN
#0003 C1XXXXXXXNOXXXXLLXXN
*#U0004 C1XXXXXXXNOXXXXLLXXN
#J000T PXUXXXXXKNOXXKXT 1 XXN
*¥U0006 COXXXXXXXNOXXXXLLXXN
#0007 COXXXXXXXNOXXXXLHXXN
*0008 COXXXXXXXNOXXXXHLXXN
#0009 COXXXXXXAXNOXXXXHHXXN
*¥U0010 COXOXXXNOXXXXLLXXN
#0011 COXXXXXXXNOXHXXXLHXXN
*#J00 12 COXKXXXXXNOXXXXHLXXN
*¥0013 COXXXXXXXNOXXXXHHXXN

12 13 14 15 16 17 18 19 20

*E797

. FIG. 2—THIS IS THE FUSE MAP compiled by a CUPL for a 16R8 PLD.

logic-description file, although it
helps to write your intended part
number in a notes field so that you can
remember the target device for which
the pin assignments were specified.
Note that the pins must be labeled
before the logic equations; otherwise,
CUPL cannot tell what pins the logic
should be attached to.

CUPL then uses DIVIDER.PLD to
create additional files: DIVID-
ER.DOC (a documentation file), DI-
VIDER.LST (a file showing all the
line numbers given to the lines in
A:DIVIDER.PLD—so if there’s an
error message reported for a particular
line, you can find it), DIVIDER.ABS
(a binary code file), and DIVID-
ER.JED (the fusemap file).

One of CUPL’s advantages is that it
creates an error file. If you make an
error in the file used to blow the fuses,
CUPL reports the error and its loca-
tion. If there’s an error in your .PLD
file (which is likely on your first at-
tempt), CUPL reports the error and its
line number in an .LST file, whose
information is used to correct the
original .PLD file.

Although CUPL programming
might appear to be time-consuming,
it won’t take very long after you’ve
done it a couple of times. Figure 2
shows the fusemap for a 16R8 that was
compiled by a CUPL .PLD file with
the filename DIVIDER.

We can, if we choose, edit the
fusemap directly. In fact, we can
create the fusemap directly with the
fusemap editor, and not bother with
the logic description at all. However,
if we do that we cannot then simulate
the design.

A logic simulator is a program that
processes two input files to create one
output file. The first input file con-
tains a logic-description. The second
input is a test pattern file; a set of
logical ones and zeros that you want
to put into the circuit. The simulator
puts the ones and zeros into the soft-
ware model and outputs the pattern of
ones and zeros that the logic sim-
ulator thinks the device will make.

PLD programmers
Simple PLD programmers are
available from a number of sources,

among them JDR, whose PLD pro-
grammer sells for about $300. Most
modern PLD programmers are run by
a control board that uses one adapter
slot in an IBM-compatible computer.
An umbilical cord connects the con-
trol board to an external box con-
taining a ZIF (Zero Insertion Force)
socket into which PLD’s are inserted.

Every PLD type has its own unique
internal fuse arrangement. Most
PLD’s use different pins for program-
ming. The JEDEC fusemap produced
by CUPL (the .JED file), includes a
section that tells the programmer
which pins are where. To program a
PLD, one pin is raised to a high-
voltage (typically 12 to 25 volts),
which puts the IC in the programming
mode. The high voltage enables the
MODE pin to double as a normal signal
pin when the device is not being pro-
grammed. The high voltage level also
ensures that power-supply glitches
will not set the PLD into the program-
ming mode during normal operation,
which would be disastrous.

Each fuse to be blown can then be
addressed by another set of pins that
act as fuse-address lines for the device
in the programming mode. The ad-
dressed fuse is blown when a final pin
is toggled high.

Since two pins are needed for
power and ground, one further pin is
needed for setting the programming
mode, and yet another pin is needed
to trigger the fuse-blowing operation;
only 16 pins are left for addressing
fuses on a 20-pin PLD, meaning there
are 216 fuses. Devices with a larger
number of fuses can use a multiplexed
address bus to define all the possible
fuse locations. However, the only
parts that most hobbyists will use that
are multiplex-addressed are PROM’s.

However, a designer doesn’t need
to worry about exactly how a PLD
programmer works. A software shell
supplied with the programmer on
floppy disk disguises the operation of
the actual hardware from the user. The
designer specifies the type, manufac-
turer, and JEDEC file to use during
programming: the programmer blows
the PLD and checks that the blow is
performed as expected by the user.

Unusual architectures

Although most PLD’s have 20 or 24
pins, some larger PLD’s have as many
as 64 pins. Currently, the largest PLD
device with a standard architecture
contains about 2,000 equivalent

8861 HOHVIN

[+2]
[2,]

RADIO-ELECTRONICS

[+2]
[+

gates, making the IC big enough to
contain an entire 32-bit floating-point
accelerator. (Available from Intel,
1900 Prarie City Rd., Fulsom, CA,
and Altera Corp. 3515 Monroe, Santa
Clara, CA), Unfortunately, the sheer
size of that IC really places it beyond
the capabilities of standard ABEL
and CUPL software. Stand-alone de-
sign systems priced at around $5000,
which both include schematic entry,
have been developed by Intel and Al-
tera Corp. for that massive chip.

Even more

An even larger IC, the X3090,
from Xilinx (2069 Hamilton Ave.,
San Jose, CA 95125), which uses
multiplexers instead of fuses, con-
tains about 9,000 equivalent gates,
and the device can be configured “on
the fly” with standard logic levels.
Just to confuse things, people still
refer to the internal connections—the
multiplexers—as fuses. Design sys-
tems for the X3090 are presently
priced in excess of $20,000, although
prices are destined to drop.

The Xilinx X3090 is just one part
with the new architectures that are just
emerging in PLD technology. An-
other IC with unusual architecture is
the 39V18 from Lattice Semiconduc-
tor (5555 Northeast Moore Ct., Hill-
sboro, OR 97124). The 39V18 is
unique in that it was specially de-
signed to emulate all the standard
PLD architectures. Fuses in all the
macros enable them to be configured
like any of the macros in a range of
PLD’s; thus, one Lattice part can be a
direct-pin replacement for a large
number of PLD’s in existing designs.

Beating the equivalent gate

We have previously alluded to
equivalent gates. In essence, the den-
sity of customizable components is
measured by the number of 2-input
NAND gates that would be required to
perform the same function for the
largest circuit that can be configured
in a programmable IC. However, that
measurement can be very misleading.
The logic in the macros, and their
interconnection, really determines
the power of a PLD.

For example, a 16R8, which con-
tains eight flip-flops, is perfect for a
complex function requiring eight
counting stages. A 16L8, which con-
tains about 50 less gates, also con-
tains eight macros, but it does not
contain any flip-flops in the macros:

Two macros are needed to make a flip-
flop. Therefore, at most, the 16L8 can
contain a 4-bit counter—half the size
of the 16R8.

But, then you must wonder, why is
the equivalent gate count of the 16L.8
so high? Well, the large fan-in into
each of the macros—there are eight
separate summing inputs into each
macro—enables the building of very
large sums-of-product terms. Func-
tions that need gates with a large
number of inputs therefore fit par-
ticularly well into a PLD. Bus decod-
ing and state machines both fall into
that category.

A 16L8 can provide eight bus-de-
coding functions at the same time. If a
circuit has an 8-bit bus that turns on
eight peripherals at eight separate and
distinct addresses, then all eight ad-
dresses can be decoded by one IC.
That accounts for the high equivalent-
gate count. An equivalent SSI imple-
mentation could require as many as 14
quad 2-input NAND-gate devices.

In view of the particular suitability
of PLD architectures to bus decoding,
some manufacturers have enhanced
the power of the programmable-plane
structure by combining standard logic
functions into the programmable
IC’s. Harris Corp. (Semiconductor
Section, PO Box 883, Melbourne, FL
32901), the company that pioneered
programmable logic, was the first to
take that architectural path. Harris’
82C339 combines a multiplexed bus
interface with a summing plane that
acts as a programmable comparator.
As a consequence, the device can pro-
duce four decoded outputs from a 16-
bit bus multiplexed onto eight signal
lines, as implemented by the 8088
(the microprocessor in the IBM-PC).
Intel has made a special PLD called
the BIC (Bus Interface Controller),
which contains eight bidirectional
latches, with the control-logic lines
for the latches fed by a conventional
programmable AND plane.

Registered PLD’s are good for state
machines. The output of state-ma-
chine devices depend on the previous
input as well as the current input.
Since a 16R8 contains eight flip-flops,
the device can record eight states,
with one flip-flop putting out a high
logic leve] for each on state. Each flip-
flop’s output can be fed back into the
array and logically combined with the
other flip-flop states and the current
inputs to switch the device into the
next state.

Monolithic Memories, Altera, and
Signetics have all made programma-
ble sequencers containing a large
number of extra “buried”” flip-flops to
contain “‘buried states” (states that do
not cause any change at the outputs).
.MDNM/

Altera and Monolithic Memories
have taken the alternative approach of
combining a programmable AND
plane and a PROM into one device, in
which PROM outputs can be fed back
into the PLD portion. The PLD can
combine that data and the inputs to
produce a new address in the PROM
to go to. Up to 256 states are sup-
ported by those IC’s. Unfortunately,
CUPL is not capable of programming
those state machines as yet, although
ABEL can program some of them.
With time, of course, all of those de-
vices will come within the reach of
the hobbyist.

Process technology

We have already tracked the de-
velopment of new PLD architectures,
from the very first programmable de-
vice to the most recent innovations.
To make things easier to follow, in the
course of our discussion we side-
stepped the advances in process tech-
nology (how the devices are manufac-
tured), although they have also been
very important in PLD development.

Originally, PLD’s were all made
using TTL (Transistor-Transistor-
Logic). Modern variations of TTL are
very fast, but all types of TTL devices
use a great deal of power. MOS tech-
nology, which uses electric fields
rather than current to switch the gates,
uses much less power and packs high-
er densities of transistors into ever
smaller areas of silicon. Most modern
devices are CMOS. As a matter of
fact, except for the programmable se-
quencer from Signetics, all the ad-
vanced architectures we have dis-
cussed in this article use CMOS
technology.

In the first part of this article we
discussed the difference between sin-
gle- and dual-level metal. Typically,
densities higher than 2,000 gates, and
I/O delays of less than 45 nanose-
conds (speeds higher than 15 MHz)
are not possible with single-level met-
al. In some situations, I/O delay is
very important.

Different fuses
We also discussed different fuse
technologies. As you might re-

member, nichrome and polysilicon
fuses were the first types to be used.
Nichrome fuses are still in use. Cur
rently, tungsten, and sometimes ti-
tanium, are added to the fuse material
because they burn out more cleanly.
Also, the electric field across the va-
cated space left by a vaporized fuse
can cause metal migration. In other
words, over time the metal ions are
magnetically dragged back into the
fuse cavity; that is, the fuses can actu-
ally grow back. Thankfully, grow
back is relatively rare with modern
technology and standard operating
conditions.

With some modern PLD’s, the re-
verse of metal growback—called ava-
lanche-induced migration—is actu-
ally used to remove the fuse. Also,
lower temperatures can be used with
avalanche-induced migration, which
increases device reliability. Further,
the fuses in some modern PLD’s are
fashioned in a bow-tie shape rather
than the traditional hourglass. The
sudden narrow taper at the point of
fuse burnout in bow-tie fuses reduces
the rate of metal migration.

Besides traditional fuse tech-
nologies, several newer processes are
now used for manufacturing PLD’s,
which allow the device to be re-
programmed.

Those erasable PLD’s (usually
called EPLD’s) use the same tech-
nology as EPROM’s in that they don’t
use fuses at all, but rather contain
Sfloating gates. Those are small semi-
conducting regions between the two

SELECT TRANSISTOR

METAL BIT LINE
(WORD LINE} : Y

" CONTROL GATE

) =
N+ % J _UN+ f/\\ N+
BIT LINE CONTACT / FLOATING GATE

TUNNELING AREA
P-PUMPED SUBSTRATE

FIG. 3->THE STRUCTURE. OF a floating
gate. A charge on the floating gate creates
a small electrical field that acts as a con-
ducting link between the two metal levels.

metal levels. The electrical charac-
teristics of the floating gate are very
carefully selected so that its polarity is
not affected by normal + 5-volt con-

_ ditions. But the floating gate can be

charged up in the high-voltage pro-
gramming mode. The charge creates
a small electrical field that acts as a
conducting link between the two met-
al levels. On the other hand, un-
charged gates do not act as a
connection. Figure 3 shows the struc-
ture of a floating gate.

EPLD’s are usually programmed at
a higher voltage level than standard
PLD’s (which reduces the rate the
charge can leak off a charged gate),
placing them beyond the reach of
most inexpensive PLD programmers.

EPLD’s, like EPROM’s, contain
small windows that allow them to be
wiped clean by exposure to ultraviolet

FIG. 4—A PLD PROGRAMMER CARD and an inexpensive PAL introduction kit containing
four different PLD’s and a simplified version of CUPL are all you need to get started in PLD
design. Both are available at JDR Microdevices.

light. Thus EPLD’s can be re-
programmed by the circuit designer.

In the most recent PLD technology
developments, EPLD’s have largely
been replaced by EEPLD’s, which are
like EEPROM’s. Since “E-squared”
devices, as they are called, use elec-
tricity rather than ultraviolet light for
the cleaning procedure, they don’t
need windows, thus making the pack-
age less expensive, even though the
silicon is more difficult to make. Lat-
tice Semiconductor uses E-squared
for the 39VI8.

EPLD and EEPLD technologies al-
low the factory to check that the de-
vices are fully functional before
shipping by programming and check-
ing a pattern. If there’s an error, the
PLD can be wiped clean and re-
programmed. Also, designers can re-
use the same device for different
circuits when prototyping. Similarly,
hobbyists can use the same device
over and over, in different projects.

Conclusion

PLD’s are becoming commonplace
in a diverse variety of applications. In
computers, PLD’s are particularly
suitable for use in the state machines
that control such system-level opera-
tions as start-up sequences, interrupt
handling, control transfer, I/O arbitra-
tion, and peripheral-processor con-
trol. In the consumer world,
programmable logic has found its way
into video/audio control systems,
washing machines, toys, automobile
dashboards, and even traffic lights
and elevators. Programmable logic is
also common in military and aero-
space applications, as well as in hos-
pital equipment, nautical navigation
systems, and telecommunications.

Quite possibly, in the near future a
single PLD might provide all the cir-
cuits for any kind of device because
PLD implementation avoids the pro-
cess of “‘gluing’ circuits using
custom IC fabrication. By using a
PLD instead of a custom IC, virtually
any logic circuit can be almost in-
stantly refabricated by simply creat-
ing a new fuse map and using it to

blow a new device.
Figure 4 shows some of the mate-

rials that can be used by the average
hobbyist and technician to design and
create custom PLD circuits. Radio-
Electronics will soon feature an arti-
cle on how you can use that equip-
ment to design and blow useful
experimenter PLD circuits. R-E

8861 HOHVIW

<N
~

