Four-digit, seven-segment LED display - Part 3

'VE BUILT a 24-hour clock with an LED display, but

we want more! This month, we're going to add to the

design and build a simple calculator — but, all the available
GPIO pins have been used up; what to do?

In Part 1 and Part 2 of the four-digit seven-segment display,
we built a simple clock, and you will need to re-read Part 1 in
order to build and understand this month’s design. However,
as just noted, we find we have a few problems. The higgest
head scratcher is the number of available pins. We have used
up all the GPIO pins on the PIC16LF1829 to control the LED
display. So, to add extra functionality, we will need to figure
out a way to connect any additional hardware.

Another problem to work around is the limited number of
digits. There are only four digits on the display, limiting the
range of numbers from 0 to 9,999. We also have decimal points
on the display, which should allow us to display numbers as
low as 0.001. For the moment, however, we will treat this as a
software issue, which will be covered next month.

The keypad
We want to convert our design to behave like a calculator,
which means we will need a keypad of some sort. Ideally,
we want a keypad displaying the numbers from zero to
nine, and keys for the basic arithmetic functions of addition,
subtraction, multiplication and division. We also need a key
for the equals sign to indicate we have completed entering
our calculation. In total, this means fifteen keys. A 4x4
keypad would be ideal for this situation, giving us one extra
key, which can be used as a clear display button, or maybe
we could use it for the decimal point. Fig.1 shows the layout
of these keys on a keypad, with the suggested numbering.
Now let’s consider the behaviour we want for the
calculator. We need to enter a first number followed by some
mathematical function (add, subtract, divide and multiply)
and then another number. Once the second number has
been entered, we need some means of indicating we want
the answer. The equals key tells the ‘calculator’ that we
have entered the two values with some math function in
between, and it’s time to calculate and display the answer.

:§321588¢3
|2 9 0 0 0 0 0 0
E—

i 8 9 *
=L I o =]
4 5 6 !
i L. i Sa[Es
| e I vl) s I ol
1 2 3 -
1 i [i 1 i
CLR 1] = +
L - [- o

Fig.1. 4x4-keypad layout

I

R e N

Fig.2. The underside internal working of a 4x4 keypad

There are going to be a few error scenarios that will need to
be covered, which we will look at in the software next month.
Examples include getting negative numbers, whole numbers
rounding up and results that exceed the displays capacity.
There are creative ways to work around these obstacles, but
it's best to start simple and build on that.

The keypad operates in a 4x4 matrix. Fig.1 shows the
schematic for the keypad, which is arranged into rows and
columns. Fig.2 shows the underside internal workings of
the keypad used in this project (the 4x4 AC3561 by APEM).
The pads themselves are interleaved pieces of exposed
copper. When a key is pressed, two pieces of copper are
connected. The PIC microcontroller detects which row and
column have been connected, allowing it to determine,
which key was pressed.

The keypad’s eight output pins are connected to each of
these four rows and four columns. Typically, these keypads
are configured by connecting all of the row and column
pins to individual pins on a microcontroller. These pins are
also connected to ground via a resistor, and are known as
weak pull downs. The microcontroller cycles through each
column, pulsing it high, and checking the state of each row.
If a row pin goes high, then it knows a button has been
pressed relating to that row and column.

There’s just one problem here; we don’t have eight pins
available on the PIC. We have three options: 1) we could
redesign our original design, cutting tracks and wires and
adding in awkward connections, or 2) we could add a port
extender, adding more GPIOs to our design, adding further
complexity, or 3) something else!

In the original design, we switch between the common
cathodes for each of the four digits. We could potentially
hijack this behaviour and attach it to our row pins. This
could cause some timing problems with our display. Not to
mention, we're still four pins short.

All on one pin
In fact, we still have one pin available, which is currently
used to program the PIC. Port RAO is connected to the

Everyday Practical Electronics, February 2018

ICSPDAT on the programmer. This is a
digital data pin used for programming
the PIC. It is possible to use this one
pin to figure out what key has been
pressed on the keypad. By using seven
resistors, we present a unique voltage
to RAO for each key. RAO will use an
analogue-to-digital conversion (ADC)
to translate these unique voltages into
button presses.

By using a series of resistors that
will behave as multiplexed voltage
dividers, we can establish unique
voltages for each key, and that unique
voltage will be seen by the ADC
module. We can then map these
values to each key being pressed. The
resistor values need to be calculated
to ensure sufficient spacing between
each voltage value. A 10-bit ADC
typically yields an accuracy of about
2-3 bits. At 3.3V, this gives us around
10mV margin of error. Ideally, we
want to ensure the difference between
each value is much more than this.

Using an excel spreadsheet, I
quickly worked out one set of values
for these resistors, giving a decent
spacing between each value. This
could be optimised further. The
spreadsheet will be included with the
software download on EPE’s website
next month. Check it out and see if
you can improve the values to reduce
possible errors.

Fig.3 shows the schematic of our
modified design. We use a 1kQ pull-
up resistor on RAO to V... This ensures
when no button is pressed, our ADC
value should be 1023 bits or 3.3V.
When a button is pressed, what we are
really seeing is a multiplexed voltage
divider circuit. By pressing the number
2 on the keypad (Fig.1), we connect
row 3 and column 2, which adds R13,
R14 and R17 into the circuit.

A typical voltage divider circuit
in shown in Fig.4, and the voltage
divider equation is:

V_ =V, xR2/(R1+R2)

Here, V_ is our ADC voltage. In the
above ‘2’ example, V. = 3.3V, R1
refers to the R11 1kQ pull-up resistor,
and R2 is the sum of R13, R14 and
R17 (1kQ + 1kQ + 220Q = 2.2kQ). This
should give us a value of 2.275V or
716 bits. When we capture this value,
we now know the number 2 has been
pressed. And we can add a debounce
or delay afterwards to ensure we only
recognise one press of the button (a
particularly nice example of why
debounce is important).

One small problem with
programming

I mentioned earlier that RAO is also
a programming pin. The addition of
the resistor network in Fig.3 poses
problems when trying to program
or debug the microcontroller. The
1kQ pull up on R11 will hinder
programming the board by making
it harder for the programmer (eg,

Fig.3. Modified four-digit
seven-segment calculator

Jumper/shunt

Vop

R12
1kQ

1kQ

R11
% P 1kQ j‘
/=1
R13

R14
1kQ

R17
220Q

R16
470Q

R15
680Q

Vpp ©
" 5605606060 o= -4
e U < T Y% Y5883)
o o o [=}
O | 100nF mm g g g g © 9 ©0©
v
DD o)
Vss I
O
PGD/RAO =
O
PGC/RAL
O
Ic1
PIC16F1829
R1
20 150Q
Vop Vss f—
19
RA5 RAO
18
RA4 RAL
— 17 |
MCLR RA2 R2

RC5

RC4

RC3

RC6

RC7
RB7

N
Iowmwmmbwml»—-

13)12] 11] 10§ 9

RIRYENN

e

4am»'e am» e
DP DP

am»e aE e
DP DP

1|234567s

R8

150Q W

R9

150Q
A

R10

150Q W

PICKit3 or ICD3) to output a logic low.
In theory, we could scale the resistor
values up so that they do not affect
the programming. This could be done
by multiplying each value by ten or a
hundred. We would still get the same
unique voltage for each key. The only
problem here is that the resistors will
start affecting the capture time of the
ADC. The capture and conversion for
the ADC needs to be quick to avoid
problems on the display. Increasing
resistor values will slow the voltage
rise on the ADC pin as a key is pressed.

Everyday Practical Electronics, February 2018

R1

Fig.4. Voltage
divider circuit =

The only way to make this work
is to disconnect the resistor circuit
during programming. Soldering and

51

resoldering would be a nuisance, so
I recommend using a two-pin header
and a jumper or a shunt bar across the
header to reconnect it — see J2 in Fig.3.

Constructing the circuit
To build the circuit, you need the
following components:

Four-digit seven-segment display
circuit from last month (December 2017)

Resistors

4 1kQ (R11, R12, R13 and R14)
1 2209 (R17)

1 470Q (R16)

1 680Q (R15)

Miscellaneous
1 2-pin header (J2)
1 Jumper or shunt bar (J2)
1 8-pinright-angled header (J3)
1 4x4 keypad (eg, AC3561
by APEM, as used here)

Fig.5 shows the veroboard layout for
the components on the top side and
the underside of the board. Don’t forget
to carefully make the jumper track cut
between the holes on C22 and D22.
Everything from Column B upwards
is from the original design (excluding
the connector J2). There are only nine
components and two wires to add. The
spacing for some of the resistors is a
bit tight, so it might be easier to stand
these up instead (see Fig.6).

Fig.6 shows the complete working
calculator. The keypad from APEM
comes with two silver inserts with the
digits printed on them. These inserts
originally came with other signs on
them, which have been covered over for
this project. Notice in Fig.6 that I have

ghi jkmABCDEFGHIJKLMNOPQRSTUVWXYZahbcdef
1 1
2 2
3 3
4 4
5 5
6 | R4_| 6
7 7
8 | R6 | 8
9 9
10 10
11 11
12 12
13 |33 13
Row4 _(?Rlz C o q1 16 14
Row3 - (Pma o ° o o 15
Row2 (?Ru o ® eo{ R8s |- d 3 16
Row1 & q . [| . 17
Col1 ¢ Cl o e{RI |-o a > 18
Col2 - o » [| » 19
Col3 - J1 o] = o] 20
Col4 o] 32 o ° us 1) 21
22 Ei_}]l o » 22
PGC/RA1<% @' - I ;i
PGD/RAO‘E—l 1 25
Vss <436 26
Vop <77 27
MCLR
ghi jkmABCDEFGHI JKLMNOPQRSTUVWXYZahbocdeHf
27100 0 000 0000000000000 000000000000000O0O0O0O0|27
2600 000000000000 00000000000000000O000O0O0O0O0[26
2510 0 0 0 0 0 0 0 00O 0O 000000 ®000000000000000O0O0O0|[2
2400 0000 ®O0O0O0O0 O O O O 0O O 0O O 0 0000000000000 O0]|24
230 ® ®©® 8000000 O O O O O O 0000000000000 O0O0]|23
| Cuttrack 220 © O O O @ O @|e O O O O O O O O O O O 0000000000002
21 ® O O 0O ® O O O O O O O O ® O O ® O O ® 00O 00000 821
2000000000 ®0000008®.0 ﬁo ©0QO0®000000®0]20
19 O O @ OO O O ® 0O 0000 O O O 0 00O O O O O 0O O ® O 0Of19
18 O 0 O @O O O O ® 0000 O 0.0QO. O O O O 0O ®eO0 O 018
17 O O [el) O O 0O ®®O0O0O0 O O O 0 0O 0O O O O O O ® 00O 0f17
16 O O O O OO0 OO ®O0O0 O O e 00O e O O O O @ O 0 0 O 016
i3 O 0 O O O 0000 @O0 O O O 0 00O O O O ® 0 O 00O 015
14 O O 0 O O O 0O0O0O0O0e O O O 0 00O O O ® O 0 O 00O O0f14
131000 0 00 0000000000000 00000000000000O00O0O0O0[13
12|00 0 000 0000000000000 00000000000000O00O0O0O0[12
110000 0000000000000 000000000000000000O0O0O0[ll
10|00 00 0000000000000 0000000000000000O00O0O0O0[10
900 000000000000 ®0O00O0O0 O O O O O00O®O0O00O00O0O0|9
800 00000000000 ®®00O00O0O0 [e) [e) OO0 0000 ®O00O0O0O0O0]|8
7100 0000000000 ®000O0O0O0O0 [e) [e) O 000000 ®O000O0O0]|7
600 000000000600 0000O0O0 O O O O 000000 ®O0O0O0O0|6
50000000000 ®00000O0O0O0O0 O O O O 0000000 ®®O0O0O0|5
4]/00 0000000 ®O00000O0O0O0O0O0 O O O O 00000000 ®O0O0]|4
3[0 0000000 ®000000000000000000O000000O0O0O0eO0|3
20000000 ®0000000000O00eo0 O ® 00 0000000000 e|2
10000 0000000000000 000000000000000000O0O0O0(l1
ghi jkmABCDEFGHIJKLMNOPQRSTUVWXYZabcdeHf
Note: the x-coordinates A to f match the layout from Part 1 (December 2017). The additional coordinates (g to m) indicate the new
area of the board. (‘' — lower case ‘L’ has been skipped to avoid confusion with upper case ‘I'.)

Fig.5. Veroboard project layout

made my own mathematical symbols
using a bit of black electrical tape. Feel
free to move these around, but don’t
forget to make the adjustments in the
software next month.

It is interesting to consider this
solution compared to the alternative
methods of adding functionality to an
existing design. It happens a lot more
than I like to admit, where a project
suffers from feature creep. Often this
means a complete redesign, but in this
case, a little bit of creative ingenuity
saved us the hassle of creating a
completely new design or some
awkward wiring and track cuts.

All in all, T believe this method is a
lot less complicated than the original
method of controlling the keypad. There
is a little more in the build, albeit only
seven resistors. In fact, the true beauty
of this design will reveal itself in the
software next month. If we did have the
necessary pins and we had to look at
several inputs to discover what key has
been pressed, this would add significant
delays to the code, which would affect
the behaviour of the LED display.

The software involves using an
ADC to capture the input voltage
and a function that maps that value

to the corresponding button pressed.
After that, it’s a matter of calculating
everything quickly enough without
affecting the display.

Next month

We’ve now built the guts of the simple
calculator; next month we’ll look at
how to program the microcontroller to
capture the keys pressed on the keypad,
display them on screen and perform
simple calculations. As we mentioned
last month, any delays in our code will
cause the segment LEDs to flicker. This
means our code will need to be quick
enough that we don’t notice what is
happening in the background.

Not all of Mike’s technology
tinkering and discussions make
it to print.

You can follow the rest of it on
Twitter at

@MikePOKeeffe, on the EPE
Chat Zone or EEWeb'’s forums as
‘mikepokeeffe’

and from his blog at
mikepokeeffe.blogspot.com

Everyday Practical Electronics, February 2018

