=

I

DEVELOPING

APPLIGATIONS
AROUND THE PIC

ARGHITEGTURE

by Stephen Waddington

After separately considering both the bardware and
software elements of the PIC family of microprocessors,
this month, we take a look at developing complete
applications. Here, Stephen Waddington matches
bardware and software with a collection of
design tools to create a very basic application
based around the PIC architecture.

What's vours? What do vou want to

develop? All electronic design engineers
start with an iclea. In fact, we're short-cutting
the design process before we've even
started by decicling to work with the PIC
family of microprocessors. You'll have to
forgive me for this supposition, but I want
to use this article to demonstrate how to
create a PIC based solution from initial
concept. through to a working design.

Mv idea is straightforward. 1 want to create

a circuit which will flash two LEDs alternately
on and off. And here, vou'll understand the
reason for my apologv. This is not the most
complex design - and could be solved using
a basic flip-flop ~ but its simplicity will allow
us to examine each element of the development
avcle in detail. Once we've got the basics right,
we can start to look at more complex problems.

Development Cycle

At the end of last months' feature, vou may
remember that we examined the
development cvcle for a microprocessor
application. This is repeated in detail in

I n the beginning, there is always a big idea.

Figure 1. We'll be concentrating on the left-
hand side of the process without the luxury
of an In Circuit Emulator (ICE) to test code.
While the ICE approach can simplify debugging,
it has a major downsicle in that the emulator
hardware is expensive. A basic ICE costs
approximately £500, placing it beyond the
realms of the amateur developer. Instead of
taking the ICE approach, we'll either clownload
code directly to EPROM for testing or test it
first using an event-driven software simulator.

As with the other parts of this series,
we're focusing on the PIC16C84 as the
target device. From a hardware point of
view, this is complete overkill. The flip-flop
application will require a fraction of the
Lk-bvte program memory available,
will not require anv of the four available
interrupt lines, and will require only
two of the available 13 output lines.

But the PIC16C84 is an excellent device
to learn the basics of microprocessor and
PIC development. It uses the stanclard
PIC instruction set of 33 instructions, with
onlv two additions to the address registers,
which are unique to the device. This means

Hordware
design

Softwore
design

| Assemble

— software
{ MPASM

PG A

Simulote ! [PIC in circuit
MPSIM emulator ‘
Y !—_I‘_* |
L——— Bug free? -———Y [
|
— |
Yes | No
-
Progrom PIC
PIC stort

| i

Test in circuit'

Figure 1. Development cycle for
microprocessor application.

S S ——

Initialise variables |

—

i initialise
JU———

[set LD A |
LED B

| Clear

)

Delay

LED B
LED A

Set
Clear

Y

registers

Delay

!

5| AT

LED A
LED B

]

Hardware requirements

Port B, bit 0
Port B, bit 1

Figure 2. Development cycle for
flip-flop application.

Develop code
using text editor

AT ISR
Assemble file
Lusing assembler

!

!

Simulate code
using event driven

software simulator

Port code to
PIC device using
programmer

Figure 3. Assembling and porting
PIC machine code.

Aprit 1997 ELECTRONICS AND BEYOND 57

Seurce File :
Processor Typ
Error Fil
Cress Reference Fil
Lictiag Fil

Rea Dump Type

Sesenble to Bhject File = He

t4,Teb : Move Curdor
Fi : el

stant|] 3cieen Thet | sdwupasn

FLIPFLDP LST:
THISSH FLIPFLOP.RER]

Toor the oome of your seurce file.

fhe £de Mew Go Rookmoke Qpicer Quectoy Woxow Heb
G i] W B BT T T T

&) Nett [rerers mcxochip com/

g N

Microchip Products

@ Memory Devices

@ Securlty Devices
@ ASIC Products

el |Documerk Dore

o FEREY

o8 nae

Photo 1. Microchip MPASM assembler environment.

@ PIC16/17 Microcontrollers

@
ICROCHIP.

..1';‘"'”’ L

Commagate Quorigw

New Product

& Would's First 8. Pin
Microcontrollers!

&% New Microcontrobler with LCD |
Driver!

&#' New Serial EEPROM Memories!

Q»" Check out our new ASIC
Products!

that once you have got to grips with
programming the PIC16C84, you will be
able to work with any of the other devices
in the PIC family.

The PIC16C34 has other benelfits in terms
of the design process. Its 1k-byte of local
EEPROM means that the device can be
programmed and re-programmed electronically
within 20 seconds. The majority of the other
members of the PIC family are EPROM-based
and require exposure to ultra-violet light to
erase the contents of memory, before
being reprogrammed. This typically takes
up to 20 minutes. In later parts of this series.
we will look in greater detail at other members
of the PIC family and how to best match a
device against a particular design requirement.

Design Process

The first requirement of the design process
is to develop a flowchart for our flashing LED
flip-lop problem. I've done this in Figure 2.
The Aowchart starts by initialising both the
hardware elements of the PIC16C84 and
software variables required by the application.
The remainder of the flowchart considers
the configuration of the required outputs. In
this sense, itis selfexplanatory. Of two LEDs,
LED A is switched on, while LED B is switched
oft. Following a delay, the situation is reversed
so that LED B is switched on and LED A switched
off: After a second delay, the program jumps ack
to the start to continuously repeat this loop.
After defining the function of the flip-flop
application, it would be normal to match the
hardware requirements against a target device,
but we have already decided on the PIC16C84.
What we can do though, is define the required
outputs against available ports. For this
exercise, we'll use PORTB of the PIC16C84
and defined bit 0 as LED A and bit 1 as LED B.
Our next task is to convert the flowchart
into code. This is created in a text editor
or word-processor. You can use the Notepad
in Windows, Word or WordPerfect, since all
enable files to be saved in ASCII format.
Once complete, the draft program is
saved as an assembler file in ASCII or
raw text format with an .asm extension.
A PIC assembler is used to convert the
source code into hexadecimal format
which can then be ported directly to the
target microprocessor. This process is
shown in Figure 3.

The Assembler

There are numerous PIC assemblers
available on the market which could be
used to convert the source code into a hex
file. One of the most popular is a DOS
based package from Microchip, called
MPASM. This is a neat piece of software
which, unlike many other PIC assemblers,
has a reasonable user interface, as shown
in PHoto 1. The majority of assemblers
don’t even have this luxury, relying instcad
on the user inputting a complex DOS string.
The first-time user should avoid these at

all costs. The complexity which they add

to the design process is unnecessary.

Writing Code

The MPASM assembler accepts source code
in a stanclard ASCII format and allows the
user to select the required output format
on screen using a mixture of the <TAB>,
<ENTER> and Function keys. It also has a
reasonable level of error reporting for when
things inevitably don't go right first time.

Each line of the source file may contain
up to four types of information: labels,
mnemonics, operands and comments.

The order and position of these are
important. The MPASM assembler separates
a line into a series of ecolumns cach denoted
by a tab space. Labels must start in column
one directly against the left edge of the page.
Mnemonics may start in column two or beyond
and operands always follow the mnemonic.

Comments may be added after either an
operand, mnemonic or label. or can start in
any column if the first character is either an
asterisk or a semi-colon. The maximum column
width is 255 characters. One or more spaces
must separate the label and the mnemonic.
or the mnemonic ancl the operands.
Operands may be separated by a comma.

Labels

All labels, such as subroutine names,

must start in column 1. They may be
followed by a colon, space, tab or the end
of line. Comments may also start in column
1 if one of the valid comment denotations
is used. Labels must begin with an
alphabetical-character and may thereafter
contain alphanumeric characters. Labels
may be up to 32 characters long.

Mnemonics

Assembler instruction mnemonics,
assembler directives and macro calls
must begin in at least column 2. If there
is a label on the same line, they must be
separated from that label by a colon

or by one or more spaces or tabs.

Operands

Operands must be separated from mnemonics
by one or more spaces or tabs. Operand
lists must be separated by commas. If the
operand requires a fixed number of
operands, anything on the line after the
operands is ignored. Comments are allowed
at the end of the line. If the mnemonics
permits a variable number of operands,

the end of the operand list is determined
by the end of the line or the comment.

Comments

Comments which are on a line I»
themselves must start with either of

the comment characters, namely an
asterisk or semi-colon. Comments at

the end of a source line must be separated
from the rest of the line by one or more
spaces or tabs. Anvthing encountered on
the line following the comment character
is ignored hv the assembler.

Developing Code

Before we examine the code for the

LED flip-fiop application in detail,

let's run through some basic rules of
microprocessor software development.
These rules apply as much to development
around the PIC architecture as any

other microprocessor family.

Structure Software

Creating a flowchart of an application

is a good way to start the development
process, since it imposes structure from
the outset. It enables you to remain
focused on what it is you want to achieve.

Layout

Use a logical formar to the structure of your
software. Convention and logic clictates that
initialisation routines come first, followed by
the main program, and then any subroutines
which the main program calls upon.

&) ELECTRONICS AND BEYOND April 1997

Labels

All subroutines should carry a logical name.
This simplifies coding, since it is easier to jump
to a logical name rather than specifying a hex
address when you need to switch to a subroutine.

Variables

The same applies to variables. Wherever possible,
use a logical naming convention for variables,
rather than specifying a number: This makes code
easier to debug and means that the function
of a program is understandable at first glance.

Comment

Always annotate your software with comments.
You will inevitably need to come back to
review your software. Concise annotation
makes that process far easier.

Header

Create a universal hearer for vour programs.
This recluces workload, creates a consistent
format and limits the number of variables
vou have to remember.

If vou find all these rules daunting don't be oo
concerned at this stage. The easiest way to learn
a new software language such as PIC machine
code is to examine plenty of examples. Consult
the books recommended in the reacing list at
the end of this feature, or check out Microchip’s
home page at http://www.microchip. com,

»as shown in Photo 2. It provides numerous
links to Web sites created by PIC development
engineers. Also, flick through vour back copies
of Electronics and Beyoned. Revisit PIC projects
designed by the team of Maplin project engineers
to check their code and target circuit designs.

Flip-Flop Application

The code for the flip-flop is shown in Figure 4.

There are essentially four components to
the programme, as denoted by comments
in the program and the descriptions below.

Set Variables

Here, variables used throughout the
programme, such as PORTB and COUNT,
are defined.

Initialisation Routine

This is used to set the memory location for
the programme, initialise PORTB for output
rather than input and clear PORTB to zero.

Main Programme

This is the heart of the programme. It
alternately switches bits 0 (LED A) and

1 (LED B) of PORTB on and off. A delay of
0-2ms is maintained between each state.

Delay Routine

The programme uses the PIC16C84’s
internal real time clock (RTCC) to
create a delay. Bit 7 of the RTCC register —
which hits 1 after 128 clock pulses —

is used in a nested loop to create a delay.
LONG2 loops until bit 7 of the RTCC
register is set. This is equivalent to a
delay of 32:768ms — 128 clock pulses
multiplied by 256us, assuming 4MHz
clock, which gives a clock pulse width
of 256us. LONG2 is nested with JUMP
which counts from 8 - the value of the
variable COUNT - to zero. This creates
an overall delay of 0-236s.

Stephen Waddington
Building A Complete Solution

; Set variables

; Main programme

MOVWF PORTB

MOVWF PORTB

Listing 1. Flip-flop assembler code.

Flipflop Routine - Filename: flipflop.asm

Developing Applications Around the PIC Architecture - Parté

PORTB EQU 06H ; PORTB is register 6

RTCC EQU 01H ; PIC RTCC timer register

COUNT EQU O0O0OH ; Timer counter

TIME EQU 08H ; Timer period

; Initialisation routine

INIT ORG O0OH ; Store programme at location 00H
TRIS PORTB ; Set PORTB as outputs
CLRF PORTB ; Clear PORTB

MAIN MOVLW B’'00000001° ; Set LEDA on, LEDB off

CALL DELAY ; Hold LEDA on for 0.256ms
MOVLW B‘00000010‘ ; Set LEDB on, LEDA off

CALL DELAY ; Hold LEDB on for 0.256ms
GOTO MAIN ; Loop back to the beginning of MAIN
; Delay routine
DELAY CLRWDT ; Clear Watchdog timer
MOVLW TIME
MOVWF COUNT
CLRF RTCC ; Clear RTCC register
LONG BTFSC RTCC, 7 ; Test RTCC bit 7 (128 X 256uS = 32p768ms)
GOTO JUMP ; If RTCC bit 7 set goto JUMP
GOTO LONG ; If RTCC bit 7 not set loop until set
JUMP CLRF RTCC ; If RTCC bit 7 is set clear RTCC
DECFSZ COUNT,F ; Decrement COUNT by 1 until reach zero
; {32ms X 8 = 0-256s)
GOTO LONG ; Loop LONG if COUNT not equal to zero
RETURN ; Return to call location
RESET GOTO INIT ; On RESET goto INIT
END

Having creating the source code in a text |
editor, it must be save in an ASCII format
with an .asm extension, in this case,
flipflop.asm. It can then be loacled
into the MPASM assembler. After selecting
the appropriate target microprocessor — in
this case, the PIC16C84 — and Hex output —
in this case, INHX8M — the file can be compiled.
The MPASM assembler is able to create four
different Hex output formars, depencling on
the format required by the PIC programmer.
Make sure vou select the correct format.

The assembler returns a series of statistics
relating to the length of the assembled cocle
as well as the number of warning and error
messages, as shown in Photo 3. If the code
contains any bugs, it will not run when
downloaded to the microprocessor. Errors
reported by the assembler can be examined
in either the List or Error files. The
assembler creates three other files in ‘
addition to the List and Error Files. These ‘
are cletailed below and shown in Photo 4.

@ <filename>.asm
Default source code file.

@ <filename>.1st
Default output extension for listing
files generated from the assembler

@ <filename>.err
Default output extension from
MPASM for error details.

@ <filename>.hex
Default output code for porting
O (arget microprocessor.

@ <filename>.cod |
Default output extension for
the symbol and debug file.

Software Debugging
and Simulation

Using the Error and List files, the source
code should be debugged and reassembled
until it is error free. This can be a very
tedious process and is why professional
development engineers use an In Circuit
Emulator (ICE). Microchip has developed
a compromise solution in terms of cost,
in the form of a discrete event software
simulator. The Microchip MPSIM enables
PIC code to be emulated by a PC and
various program variables, interrupts,
and ports to be monitored.

Like the Microchip assembler MPASM,
MPSIM is DOS-based and as such, is not
very user-friendly. It uses a set of proprietary
instructions to both initialise the simulator
environment and run an actual simulation.
It's almost as if you need to learn an
additional software language before you
can run a simulation. For this reason,
the majority of hobbyists tend to test
software by downloading it directly to
the target microprocessor.

Photo 5 shows the flip-flop application
being simulated using MPSIM. The
assembled PIC software has been loaded
in hex format into the simulator and the
different variables used by the programme
set as flags to be monitored in the upper
half of the screen. When the code is run and
simulated by the PC, its effects on registers,
variables, interrupts and the /O ports can
be monitored by observing the flags.

}

April 1997 ELECTRONICS AND BEYOND &Th

& £
ed - (e)1991,9%
AN for sywbols

wodang Fiey Simdshor

By CRRRE

= L~ o — - - —

m:v Arsoniie & i W=8)x
Sevee

Negrbehoud

¥ K

Rotyck 8 [Fow Jona:

rensTer Uonfig PICEBG — T1:32117

3002 U036 2009
1881 2810 288
FE I6FF IFF

§ 9 3F
ﬁ LN (] 1FF FF FFF IFFF 3
o IFFF IFFT
9

Ny Bodtooss Drackhmon 3FEF 3FFF

| L

Potanttonr Leks Moes

[] BN
Proprok Havegeln
B N

I Wk Scaser

< 3FFF IFFF 3FFF 3FTF IFFF 3FFF IFFF

F1 Aele ATUR Bt Fh it FS Pregran

gvhﬂ ;
Photo 6. Porting code to PIC16C84 using PICStart.

| -anrasm

Photo 4. Output files from MPASM.

& 7 515 Al

3 10dows tions ey lee ransfer anfig
066 8166 3
: 202 ankk : RC
185 919 0880 2 ;o
IFFF IFPF 3 < on

Osc
F 3 - P o 0ff
1D = JFIFIFIF
M CkSum: €246
" 3

FY Help ANL-X Exat FA Edit FS Program Fé Uorify F7 Blank F9 Read

Photo 7. Making fuse selecting in PICStart
development environment.

sIFsc mice,?

L BhRTE
| (&) 5cien Thet

ol \s na

Photo 5. Simulating flip-flop application using Microchip MPSIM.

Ligem

e Rl CSTART 1681

e
PICISCKY Low Cort Mis roxontm lles Developmens Systens

s
0149

08 | @sann]
e
Photo 8. Datasheets in Acrobat PDF format can be down-
loaded from the Microchip Web site.

Hardware

Whether or not vou decide to simulate
vour PIC code using MPSIM or a similar
software simularor, vou'll eventually have

to download it directly to a PIC device.
There are a number of programming
devices available on the market. The most
versatile and consequently;, the most popular,
is Microchip’s PICStart. PICStart enables any

device in the PIC microprocessor family
to be programmed. By comparison,
Maplin has developed a programmer

kit project specifically for programming
the PIC16C84. While this machine is
specific to the PIC16C84, at approximately
&20, it is relatively inexpensive

compared with PICStart. The

PIC16C84 was profiled in Issue 105

of Electronics and Bevond.

PICStart consists of two clements — a
software programme and a programming
board. The software programme, as shown
in Photo 6, is used to drive the programmer.
From here, the target programming board
(shown in Figure 4) connects directly to the
serial port of a PC. Power is provided by an
auxiliary 9V mains aclapter. The target PIC
device is inserted on the programming
board in 4 zero insertion force (ZIF) socket.

4TW cicrTRANING AND REYOND April 1997

PC

PIC-Start software
environment

ZIF socket
for target PIC

Figure 4. PICStart
development environment.

Programming board

Vo— | 78L05 * - »—OVce 5V
I 470uF - l l Voltoge
TElect mnFT 10nFT 10nFT regulator
GND © . «—OGND
=
Vec © 0
5V [14
9V Aux 10k Vee 226F
power supply 4 WILCR %0 US) _l'_
6 Crystal
fiso avhz =
Z RB1 Xl L

- GND 22pF
:) £ 5
1 LE| LED
| AV AVA:
H
= 1k 1kQ)

GND O °

=

Figure 5. Target circuit for PIC16C84.

Unlike other elements of the
development process, programming
a PIC device is very straightforward.
Having loaded the PICStart application
and connected the programming board,
the target device is selected. Next, the
assembled code to be ported to the
PIC device is loaded. Like the MPSIM
Simulator, PICStart uses the INHX8M
version of hex code.

Before the device can be programmed,
the software programmable fuses such
as Watchdog Timer, Start on Power up
and clock format must be configured. as
shown in Photo 7. Once this is complete,
the target device is mounted on the
programming board and the code
downloacled. 1t takes approximately
20 to 30 seconds to programme a PIC
device. During this time, the PC transfers
the hex code and fuse selections to the
memory of PIC device, before verifving
the contents of all EEPROM memory.

Target Circuit

So, we've developed the flip-flop
design from an initial concept, created
a flowchart, written a routine in PIC
assembly code, simulated it and finally
downloaded it to a PIC16C84. What we
need to do now is build a target circuit
and test the device. Figure 5 shows a
basic target circuit for the PIC16C84.
There are four key elements to this
design as tollows:

Voltage Regulator

The operating range for the PIC16C84

is 2 1o 6V. Consequently, a 78105 voltage
regulator is used 10 stabilise the voltage
from a 9V battery at a constant 5V. This is
not necessary if you have access to a
stabilised 5V power supply.

Clock

Figure 5 shows a 4MHz crystal with two
22pF capacitors. This option has been
selected for its simplicity. A resistor
capacitor combination with an RC time

constant of 4MHz could be equally used.
Whichever clocking method you adopt.
ensure that vou select the appropriate
fuse option when programming the target
device. A 4MHz crystal falls within the XT
region, as shown in Table 1 anct discussed
in Part 3 (Issue 109) of this series.

For timing insensitive applications
an external RC clock offers cost savings.
Figure 6 shows how the RC combination
is implemented. For R., values below
2k2Q), the oscillator operation may
become unstable, or stop completely.
For very high R.. values above say.
IMQ. the oscillator becomes sensitive
to noise, humidity and leakage. Microchip
recommend that R, is kept between
3k and 100k€.

Although the oscillator will operate
with no external capacitor (C.. = OpF),
a value above 20pF should be used for
noise and stability reasons. For these
reasons, it is recommended that the
novice developer use either a crystal or
ceramic clock, since this avoids added
complication. If vou intend using a RC
combination, select the RC option when
programming the target device.

To achieve a clock speed of 4MHz
using RC components, try around values
of Rext = 20pF and Cext = 10kS.

Output

The PIC16C84 has an output current capability

of 25mA. At 5V, this is sufficient to blow an
LED. Consequently, 1kQ resistors are used
on the leg of each output to reduce the
current to the LED to a moderate SmA.

O Vce
' |Rext

PIC16C84

o O GND
—

Figure 6. Driving PIC16C84 using
a resistor-capacitor combination.

Option | Clock Speed

LP 0 to 200kHz
XT 100kHz to 4MHz
HS 4MHz to 10MHz
RC 0 to 10MHz

Table 1. Clocking rates and options

Reading List

MPSIM for DOS User's Guide
MPASM User's Guide
PICStart-1681 User Guide
PIC16C84 Application Note

The following books discuss many of the issues raised in this article in greater depth.
They also provide examples of the PIC development cycle including many specific projects.
Microchip has produced documentation for all of its development tools. It has also
produced datasheets for each of the PIC microprocessors. These can be downloaded
in Acrobat PDF format, as shown in Photo 8, from the Microchip Web site. An Acrobat

reacler can be downloaded from the Acrobat Web site at http://www.adobe. com.

Description | Reference/Order Code | Cost
A Beginners Guide to the Microchip PIC | AD31J [1£19195
PIC Cookbook l DT76H | £19.95
Embedded Control Handbook AD28F £9.50
Microchip Databook | AD29G | £9.50

http://www.microchip2.com/devtools/devtools. htm|
| http://www.microchip2.com/devtools/devtools.htm |
http://www.microchip2.com/devtools/devtools.htm
! http://www.microchip2.com/devtools/devtools.htm

April 1997 ELECTRONICS AND REVOnn & Th

Reset
The reset pin - pin 4 — is connected
high. This causes the PIC16C84 to
enter a power-up delay phase of
approximarely 72ms in order to
enable the clock to stabilise at power on.
This eliminates the need for external
components usually required for
Power On Reset. ‘1o reset the device
at any stage during operation, pin 4
should be connected low fora
brief period.

Initially, you should experiment
using breadboard. It always takes a
couple of iterarions of both software
and hardware to achieve the required
operation. That said, having built the
target PIC16C84 circuit, the programme
should fire-up immediately on power-up
and LEDs A and B flash alternatelv.

Next Month

Next month, we'll examine more
advanced software techniques including
the use of interrupts, look-up tables,
reset vectors and the watchdog timer.
We'll also look in greater details at how
to debug object code.

and Beyon

Download List

Shareware versions of the majority of the development tools discussed in this feature
can be downloacled from the Microchip Web site at http://www.microchip2.com/
softupdt. htm. Specific references are detailed below: All files have been
compressed using PKZIP PKUNZIP - the decompress utility - can also be

downloaded for the Microchip Web site.
Description
MPASM Assembler

MPSIM Simulator
PICStart (Software only)

| Software Tool
MPASM 1.40.00
MPSIM 5.20.00
PICSTART-16B1 5.00

_Full Length
487k-bytes
286k-bytes

| 125k-bytes

i
|
I
l
|

Catalogue References

Many of the items discussed in this feature can be purchased directly from Maplin,
either by mail order or directly from one of the Maplin shops. Catalogue references

and costs are outlined below.

Pic Resources
Description

PIC16C84 Programmer Kit
PICStart-16B1 Development System
ICEPIC16CXX Real Time Emulator System

Target PIC16C84 Circuit
Component Type No

| Description

Order Code
95128
DM79L
DT77)
Order Code

Semiconductors il 78L05 5V voltage regulator WQ85G
AL PIC16C84 ADS0E
Capacitors 2 22pF mica WXO05F
3 10nF ceramic BXOOA
il 470uF, 35V electrolytic AT62S
Resistors 2 | 1K< resistor U1K
1 10k<2 resistor U10K
Miscellaneous 4 Red LEDs WL27E
1 9V PP3 battery JY60Q
2t PP3 Battery clip HF28F

Cost

1 £19.99

£154.90
£689.00

Cost

£0.49
£10.70
£0.55
£0.11
£0.36
£0.05
£0.05
£0.10
£1.90
£0.19

