
There are considerable advantages in
using a compiler. The ability to write a
PIC program using English like com-
mands is easier than programming
directly in assembler language. Time
taken to write and test software is usu-
ally much less with a compiled lan-
guage, and to prove the point the Win-
dows PIC compiler itself was written
using a compiler.
The PIC compiler is not based on any
one high-level language but has ele-

ments of Pascal and Visual BASIC.
Furthermore the compiler is flexible and
allows for different program syntax. The
compiler is written for the Windows envi-
ronment, which should make the soft-
ware easy to use. As all the necessary
PIC codes are defined within the com-
piler program, no external setup or
header files are needed.

The compiler produces assembler
code directly from the high-level
source program, so that the program-

mer need not worry about the intrica-
cies of assembler code programming.
It can be educational for those learn-
ing to program in assembler to see how
easily understood high-level com-
mands are translated into the equiva-
lent PIC assembler code.

Assembler code output files pro-
duced by the compiler contain both
the original high-level program (com-
mented out) and the PIC assembler
code ready to be assembled (or simu-
lated) by the Microchip MPLAB software
version 4.12 or later. Having both the
source and assembler code helps in
debugging the program. Writing in
compiled language does not preclude
modifying or adding assembler code
to the program when using the MPLAB
software. MPLAB software is freely avail-
able from Microchip’s web site at
http://www.microchip.com.

The cost (in programming terms) of
using compiled code can be reduced
speed of execution as the machine
code program may not be as efficient
as a program written directly in assem-
bler.

With this PIC compiler this is not the
case, in most circumstances the
assembler code produced is the fastest
code possible. There is very little com-
piler overhead on the assembler code
in terms of needing extra variables or
increased number of assembler instruc-
tions. The only additional program
code required is support for the
Boolean and arithmetic commands.
Arithmetic is either 8 bit (unsigned) or 16
bit (unsigned). The compiler requires
several bytes for storing arithmetic

2 - 1/2000 Elektor Electronics EXTRA —————————————— PC TOPICS

This article describes how to write PIC 16C84 assem-
bler code programs using a compiler written for the
Windows 95/98 platform.
The PIC compiler allows programs to be written in a
high-level language and it generates the necessary
assembler code. The code can be modified, assem-
bled or simulated using the (free) Microchip MPLAB
software.

By Roger Thomas

compiler for PIC16C84
with code optimisation

Compiler main features
for PIC16C84
➧ Extensive manual (56 pages) on disk

➧ Three worked out examples on disk

➧ Syntax similar to Visual BASIC and Pascal

➧ Windows 95/98 compatible, no DLLs required

➧ Generates assembler code for Microchip MPLAB (freeware)

➧ Variables: Boolean, byte, word

➧ Arithmetic Operations: +, –, /, *, mod

➧ Numeric Formats: decimal, hexadecimal, binary, char

➧ Boolean Functions: =, >, <, >=, <=, <>

➧ Boolean Operators: AND, OR, XOR

➧ Compiler Commands: if...then…else, select/case, while…loop, table, read,

write/read, EEPROM, procedure, directive, ASM directive, input, output, alias,

pin-name, RTTC, prescaler, wait, picfuse,

➧ Equation Handler

➧ Code Optimiser

➧ Error messages

➧ Interrupt handling

results, these are labelled _STACKxx in
the output assembler file.
The compiler makes two passes of the
source program. The first pass creates
a list of procedure declarations as the
compiler may come across a call to a
procedure before finding the proce-
dure declaration. On the second pass
the procedure calls are reconciled with
the procedure declarations.
Compiler syntax is not case sensitive
but the MPLAB software can be, this
option is selected in the project hex file.
For this reason all the procedure names
and variables appear in uppercase in
the assembler output file.

To allow the compiler to be used for
any similar PIC microcontroller the com-
piler does not impose any code restric-
tions. This is left to the MPLAB assembler
which will check program size and can
more easily produce memory usage
maps and cross-reference files.

Using the compiler

Use a text editor (such as Notepad,
WordPad or the MPLAB editor) to create
the high-level source program and
save the text file with a .psf file exten-
sion (PIC Source File). Ensure that the
saved file is text only and does not con-
tain any embedded text formatting
information.
Unlike an assembler program that
requires a strict code column order
(labels, mnemonics, operands, com-
ments), a high-level program freely
uses spaces to indent the program.
These spaces have no relevance to the
program execution and are ignored by
the compiler. Using spaces should
make the reading and de-bugging the
program easier.

User interface

The Windows PIC compiler is very easy
to use, apart from using load and save
file the compiler does everything else!

As shown in Figure 1, the taskbar has
a number of icons.

load - press the load button and a
directory dialog box will appear listing
all the source (filenames.psf) files in the
directory, select and load the relevant
source file. The compiler will default to
the directory that was last used. When
the compiler is run for the first time the
directory will be where the compiler
program is located.

save - after a successful compila-
tion save the assembler source file
(same file name but with filename.asm
file extension) by pressing this button.

This file will be saved in the same direc-
tory as the source file. This assembler
output file will contain all the additional
PIC code required as the compiler will
automatically add any support routines.

error - saves the error file as a text
file to the same directory as the source
file. This file has the same file name but
with an ‘.ser’ (source error) file exten-
sion. It contains all the error messages
(which includes the source line number)
but not any of the source or assembler
code.

font - to change the font or font
size of the text displayed on the screen
press the font button. A font dialogue
box will appear, from which you
choose the required font and font size.

pins - will display the PIC pin
names and colour coded input or out-
put port pins.

display - if there are any compiler error
messages these are inserted into the
assembler output file, optionally the
compiler will stop and display a mes-

PC TOPICS —————————————— Elektor Electronics EXTRA 3 - 1/2000

Figure 1. The Compiler window. Note that PIC pin functions can be seen at a glance.

Figure 2. Another example of the PIC Compiler in action. Here, a traffic lights program is
being written. Note the procedure names in the top right-hand window.

sage dialog box (default is to display
error message). On the first pass any
error messages will be displayed irre-
spective of this setting.

source - selects whether the source
lines should be included in the output
assembler file as comments (default is
to include source code). Source lines
that only contain a comment will
always be included.

abort - stops the compilation
process.

Next to the eight buttons is a list of all
the procedure names used in the pro-
gram. To find and display a particular
procedure, select it from the list (the
name will be briefly highlighted) by
clicking on the left mouse button. The
screen text should scroll and display
the relevant procedure (Figure 2).

The main procedure of the PIC pro-
gram is called ‘main’. Program execu-
tion will start at this procedure, it is
called whenever the PIC is reset. The PIC
application program is generally held
in a continuous loop after any initialisa-
tion is done, waiting for events to hap-
pen. It is extremely rare for a PIC pro-
gram to be required to run only once.

Compiler code optimisation

After the compiler has successfully
compiled a segment of source pro-
gram, the code optimiser checks the
assembler program for redundant
code. Redundant code usually takes
the form of unnecessary setting or

reading the various PIC status flags.
For example, part of a traffic lights

output procedure is shown, the com-
piler will generate the following code:

(Original source code fragment)
green = 0 ; turn green off
yellow = 0 ; turn yellow off
red = 1 ; turn on red

; code not optimised
; green = 0 ; turn green off

MOVLWH’00’
BTFSS_STATUS,_Z
BSF PORTB,GREEN
BTFSC_STATUS,_Z
BCF PORTB,GREEN

; yellow = 0 ; turn yellow off
MOVLWH’00’
BTFSS_STATUS,_Z
BSF PORTB,YELLOW
BTFSC _STATUS,_Z
BCF PORTB,YELLOW

; red = 1 ; turn on red
MOVLWH’01’
BTFSS_STATUS,_Z
BSF PORTB,RED
BTFSC_STATUS,_Z
BCF PORTB,RED

With the code not optimised the com-
piler has calculated the equation after
the equals sign and sets the bit accord-
ing to the equation result: zero or one.
The optimiser looks at the code and
finds it has a constant value as it always
has the same result and deletes the
intermediate calculation.

; code optimised
; green = 0 ; turn green off

BCF PORTB,GREEN

; yellow = 0 ; turn yellow off
BCF PORTB,YELLOW

; red = 1 ; turn on red
BSF PORTB,RED

PIC interrupts

When an interrupt occurs the program
counter is loaded with address loca-
tion 4, this contains code to save the
program status and calls the interrupt
handler procedure. After completion of
the interrupt handler code within pro-
cedure(interrupt), the PIC executes a
retfie instruction (return from interrupt).
It is not necessary for the source pro-
gram to re-enable global interrupts as
the retfie instruction will do it automati-
cally. The routine to handle interrupts
must be called interrupt.
The use of interrupts makes a PIC pro-
gram more efficient as the alternative
is having to continually poll flags to see
if a particular event has taken place.
There are four sources of interrupts that
the PIC 16C84 interrupt handler soft-
ware has to deal with:

1. external interrupt on pin RB0;
2. interrupt on change to pins RB4-RB7;
3. RTCC timer overflow;
4. assigned to EEPROM write complete.

The EEPROM write interrupt is taken care
of by the writeEEPROM function.

To enable the interrupts use the
irq_enable = true command. The indi-
vidual interrupt source must be
selected before this command is
invoked.
To disable all interrupt use the
irq_enable = false command.
This command acts globally using the
Global Interrupt Enable (GIE) flag irre-
spective of the individual interrupt
being used.

The interrupt handler procedure
needs a few bytes for intermediate stor-
age, the interrupt routine has to have its
own variable storage as it cannot share
storage with the rest of the program.
As an interrupt can occur at any time it
is possible that with 16-bit arithmetic this
could happen half way through an
arithmetic procedure. Assigning a 16-
bit variable to another 16-bit variable
requires multiple instructions to move
the value of the lower and then the
higher byte. If an interrupt occurs half
way through the process then the vari-
able may end up with the value of the
old value (lower byte) and the new
value of the higher byte. For this reason
the compiler will not allow 16-bit arith-
metic in the interrupt handler proce-
dure.

4 - 1/2000 Elektor Electronics EXTRA —————————————— PC TOPICS

PIC16C84

OSC2

IC1

OSC1

MCLR

RA4

RA0

RA1

RA2

RA3

RB0

RB1

RB2

RB3

RB4

RB5

RB6

RB7

18

17

13

12

11

10

16 15

14

1

3

9

8

7

6

2

4

5X1

4MHz
C1

33p

C2

33p

R2

680Ω

R1

680Ω

R3

680Ω

D1

D2

D3

green

yellow

red

5V

000012 - 13

Figure 3. Traffic Lights demo hardware.

If only one source of interrupts has
been enabled then it is not necessary
to look at the individual interrupt
enable flags. In general it is best to
make the interrupt handler procedure
as small and execute as fast as possi-
ble using simple equations. Note that
other procedures cannot be called
from within the interrupt handler proce-
dure.

It is better to make a copy of any
variable that the interrupt handler may
use and use the copy. Referencing a
variable that the interrupt handler
directly uses can have unforeseen
results. For example, if x is changed by
the interrupt handler then the following
program might not function as
intended. The value of x may have
been altered after the first but before
the second comparison command, so
no statements are executed.

var x : byte
procedure(main)
if x >=6 and x <= 10 then

; x = 4
begin

statement
end ; interrupt occurs here
if x >= 0 and x <=5 then

; x changes to 6
begin

statement
end

If a byte variable needs to be incre-
mented or decremented or set to zero
within the interrupt handler then use
inc(x) or dec(x) or clr(x) statements as
these compile to a single assembler
instruction.

Program examples

To help demonstrate the advantages of
using the compiler and clarify the lan-
guage syntax, the documentation file
contains some example programs to
help illustrate the various compiler
commands. As these programs are for
didactic purposes, they do not neces-
sarily represent the best software solu-
tion. Note that some of the comment
lines have been deleted and the
assembler file tidied up for publication.

All variable labels that the compiler
generates are preceded by an under-
score to differentiate them from vari-
ables used in the source program.

The easiest method of implementing
a traffic lights sequence would be to
use the wait command after setting the
appropriate LED on or off.

green = 0 ; turn green off
yellow = 0 ; turn yellow off

red = 1 ; turn on red
wait(3000) ; wait for 3 seconds
If you intend to build the circuit shown

in Figure 3 please observe the PIC cur-
rent limits. The maximum total current
output on Port B is 100 mA, any pin has

PC TOPICS —————————————— Elektor Electronics EXTRA 5 - 1/2000

; Traffic Lights 1
; Written by Roger Thomas.

#compiler clock = 4000 ; 4MHz clock
#ASM list p=16C84
#FUSE CP_OFF + PWRTE_ON + WDT_OFF + XT_OSC

var x : word ; create 16 bit variable
var y : byte ; create 8 bit variable

procedure(main)
alias(RB3,red) ; rename port RB3 to red
alias(RB2,yellow) ; rename port RB2 to yellow
alias(RB1,green) ; rename port RB1 to green
output(red) ; make ‘red’ port pin output
output(yellow) ; make ‘yellow’ port pin output
output(green) ; make ‘green’ port pin output
clr(red) ; turn off red = 0
clr(yellow) ; turn off yellow = 0
clr(green) ; turn off green = 0

clr(x) ; initialise = 0
clr(y) ; initialise = 0

while true
inc(x) ; x = x + 1
if x = 1500 then
begin

inc(y) ; y = y + 1
clr(x) ; x = 0

end
else
begin

if (y >= 0) AND (y<= 49) then
begin

red = 1 ; turn on red
yellow = 0 ; turn off yellow
green = 0 ; turn off green

end

if (y >= 50) AND (y<= 75) then
begin

red = 1 ; turn on red
yellow = 1 ; turn on yellow
green = 0 ; turn off green

end

if (y >= 76) AND (y<= 110) then
begin

red = 0 ; turn off red
yellow = 0 ; turn off yellow
green = 1 ; turn on green

end

if (y >= 111) AND (y<= 130) then
begin

red = 0 ; turn off red
yellow = 1 ; turn on yellow
green = 0 ; turn off green

end

if y = 131 then
begin

clr(x)
clr(y)

end
end

loop

Listing 1. Traffic Lights (1) Source program

6 - 1/2000 Elektor Electronics EXTRA —————————————— PC TOPICS

; 16C84
; RA2 1 | i i | 18 RA1
; RA3 2 | i i | 17 RA0
; RA4 3 | i i | 16 osc2
; mclr 4 | i i | 15 osc1
; Vss 5 | p p | 14 Vdd
; RB0 6 | i i | 13 RB7
; GREEN 7 | o i | 12 RB6
; YELLOW 8 | o i | 11 RB5
; RED 9 | o i | 10 RB4

_PCL EQU H’02’
_STATUS EQU H’03’
_C EQU H’00’
_Z EQU H’02’
_RP0 EQU H’05’
PORTB EQU H’06’
_PCLATH EQU H’0A’
_INTCON EQU H’0B’
IRQ_ENABLE EQU H’07’
_STACK0 EQU H’0C’
_STACK1 EQU H’0D’
_STACK2 EQU H’0E’
_STACK3 EQU H’0F’
_STACK4 EQU H’10’
_STACK5 EQU H’11’
_STACK6 EQU H’12’
_STACK7 EQU H’13’
_STACK8 EQU H’14’
_STACK9 EQU H’15’
X EQU H’16’
XH EQU H’17’
Y EQU H’18’
RED EQU H’03’
YELLOW EQU H’02’
GREEN EQU H’01’

ORG 0

goto MAIN

; Traffic Lights 1
; Written by Roger Thomas.

list p=16C84
__config H’3FF9’

; var x : word ; create 16 bit variable
; var y : byte ; create 8 bit variable

MAIN
; alias(RB3,red) ; rename port RB3 to red
; alias(RB2,yellow) ; rename port RB2 to yellow
; alias(RB1,green) ; rename port RB1 to green
; output(red) ; make ‘red’ port pin output

BSF _STATUS,_RP0
BCF PORTB,RED

; output(yellow) ; make ‘yellow’ port pin out-
put

BCF PORTB,YELLOW
; output(green) ; make ‘green’ port pin output

BCF PORTB,GREEN
; clr(red) ; turn off red = 0

BCF _STATUS,_RP0
BCF PORTB,RED

; clr(yellow) ; turn off yellow = 0
BCF PORTB,YELLOW

; clr(green) ; turn off green = 0
BCF PORTB,GREEN

; clr(x) ; initialise = 0
CLRF X
CLRF XH

; clr(y) ; initialise = 0
CLRF Y

; while true
_WHILE0
; inc(x) ; x = x + 1

INCF X,F
BTFSC _STATUS,_Z
INCF XH,F

; if x = 1500 then
_IF1

MOVF X,W
MOVWF _STACK0
MOVF XH,W
MOVWF _STACK1
MOVLW H’FF’
MOVWF _STACK2
MOVLW H’DC’
SUBWF _STACK0,F
BTFSS _STATUS,_Z
CLRF _STACK2
MOVLW H’05’
SUBWF _STACK1,F
BTFSS _STATUS,_Z
CLRF _STACK2
MOVF _STACK2,W
MOVWF _STACK0
MOVWF _STACK1
BTFSC _STATUS,_Z
GOTO _ELSE1

; begin
; inc(y) ; y = y + 1

INCF Y,F
; clr(x) ; x = 0

CLRF X
CLRF XH

; end
; else

GOTO _END1
_ELSE1
; begin
; if (y >= 0) AND (y<= 49) then
_IF2

MOVF Y,W
MOVWF _STACK0
MOVLW H’00’
SUBWF _STACK0,W
CLRW
BTFSC _STATUS,_C
ADDLW H’FF’
MOVWF _STACK4
MOVF Y,W
SUBLW H’31’
CLRW
BTFSC _STATUS,_C
ADDLW H’FF’
ANDWF _STACK4,W
BTFSC _STATUS,_Z
GOTO _ELSE2

; begin
; red = 1 ; turn on red

BSF PORTB,RED
; yellow = 0 ; turn off yellow

BCF PORTB,YELLOW
; green = 0 ; turn off green

BCF PORTB,GREEN
; end

; if (y >= 50) AND (y<= 75) then
_ELSE2
_IF3

MOVF Y,W
MOVWF _STACK0
MOVLW H’32’
SUBWF _STACK0,W
CLRW
BTFSC _STATUS,_C
ADDLW H’FF’

a absolute maximum current output of
20 mA. Incorporate an appropriate
current limiting resistor (R) in series with
the LED (in the range 470 Ω to 1 kΩ
depending on the LED). Here, 680 Ω is
suggested.
The example program will continue to
execute until the supply voltage is
removed from the PIC.
The source code of the program is
shown in Listing 1. The ‘x’ variable is
incremented on each loop of the pro-
gram. After reaching a certain number
it then increments the ‘y’ variable. This
is needed to slow the program down —
if the ‘x’ variable was used directly the
lights would switch too fast. The brack-
ets separating the ‘y’ conditions are not

required by the compiler but help doc-
ument the program. The resulting
assembly-code file is shown in Listing 2.
Other programming examples found in
the documentation file are Traffic Lights
(2) and LCD Display Driver. The source
code and assembly-code listings of
these programs may be found in the
documentation file.

Syntax and
command descriptions

A full description of all available com-
mands and the syntax the Compiler
wants to see may be found in the 56-
page project documentation file. This
file, an MS Word document, may be

found on diskette no. 996033-1 which
may be ordered through our Readers
Services. The disk also contains the
example source code files (.psf) and, of
course, the Compiler itself (Com-
piler84.EXE). The readme.txt file explains
the extremely simple installation.

(000012-1)
Article editing: Jan Buiting

PC TOPICS —————————————— Elektor Electronics EXTRA 7 - 1/2000

MOVWF _STACK4
MOVF Y,W
SUBLW H’4B’
CLRW
BTFSC _STATUS,_C
ADDLW H’FF’
ANDWF _STACK4,W
BTFSC _STATUS,_Z
GOTO _ELSE3

; begin
; red = 1 ; turn on red

BSF PORTB,RED
; yellow = 1 ; turn on yellow

BSF PORTB,YELLOW
; green = 0 ; turn off green

BCF PORTB,GREEN
; end

; if (y >= 76) AND (y<= 110) then
_ELSE3
_IF4

MOVF Y,W
MOVWF _STACK0
MOVLW H’4C’
SUBWF _STACK0,W
CLRW
BTFSC _STATUS,_C
ADDLW H’FF’
MOVWF _STACK4
MOVF Y,W
SUBLW H’6E’
CLRW
BTFSC _STATUS,_C
ADDLW H’FF’
ANDWF _STACK4,W
BTFSC _STATUS,_Z
GOTO _ELSE4

; begin
; red = 0 ; turn off red

BCF PORTB,RED
; yellow = 0 ; turn off yellow

BCF PORTB,YELLOW
; green = 1 ; turn on green

BSF PORTB,GREEN
; end

; if (y >= 111) AND (y<= 130) then
_ELSE4
_IF5

MOVF Y,W
MOVWF _STACK0

MOVLW H’6F’
SUBWF _STACK0,W
CLRW
BTFSC _STATUS,_C
ADDLW H’FF’
MOVWF _STACK4
MOVF Y,W
SUBLW H’82’
CLRW
BTFSC _STATUS,_C
ADDLW H’FF’
ANDWF _STACK4,W
BTFSC _STATUS,_Z
GOTO _ELSE5

; begin
; red = 0 ; turn off red

BCF PORTB,RED
; yellow = 1 ; turn on yellow

BSF PORTB,YELLOW
; green = 0 ; turn off green

BCF PORTB,GREEN
; end

; if y = 131 then
_ELSE5
_IF6

MOVF Y,W
SUBLW H’83’
MOVLW H’00’
BTFSC _STATUS,_Z
ADDLW H’FF’
ANDLW H’FF’
BTFSC _STATUS,_Z
GOTO _ELSE6

; begin
; clr(x)

CLRF X
CLRF XH

; clr(y)
CLRF Y

; end
; end
_ELSE6
_END1
; loop

GOTO _WHILE0

END

Listing 2. Traffic Lights (1) Assembler program

