
f f A l U R f

Dealing with . programming, including flow charts
. ·and ·languages.

he general learning objective for Part
Eight is that readers should under­
stand simple assembly language
programs used to control external
devices connected to the parallel port
of a microprocessor-based system.

The specific objectives for Part
Eight are as follows:

6.1 Languages
6.1.1 Explain the need for program­

ming languages and distinguish between
high level and low level languages.

6.1.2 State the desirable characteris­
tics of programming languages for each of
the following applications:

real-time control systems
data processing
systems and application
software.

6.2. Assembly Language
Programming

6.2.1 Describe the logical procedure
which must be adopted in order to create
a satisfactory prO!,>ram.
42

MIKtTOOlfY

6.2.2 Describe algorithms and draw
flowcharts relating to simple problems.

6.23 Identify and use common flow­
chart symbols.

6.2.4 Explain what is meant by as­
sembly language.

6.2.5 Describe, \vith typical examples,
the usc of mnemonics in assembly lan­
guage programs.

6.2.6 Write, hand-assemble, enter,
test and debug simple programs using a
subset of the instruction set of any com­
mon 8-bit CPU. to:

a) add two eight-bit data values from
RAM and place the result in a third
RAM location

b) operate an external relay or LED
in a pre-defmed on/off sequence.

Programming Languages
In order to simplify the process of

producing working programs, the
software developer may usc one (or
more) of a number of programming lan­
guages to simplify the task of producing a
working program. The choice of language

depends essentially upon several factors
including the application concerned, the
degree of familiarity which the program­
mer has with .the language concerned,
and the availability of the necessary
development software for the
microprocessor system to be used.

Languages which are well suited to
producing software in fields such as data
processing are generally not well suited to
producing software for such applications
as real-time control. Furthermore, a
programmer who is competent in a lan­
guage such as Pascal may be very much
out of his or her depth with Forth.

Happily, a range of languages is
available to most modern microcom­
puters and the final choice of language
will take into account such factors as
compactness (i.e. size of program code
generated), speed of execution, ease of
use, portability (i.e. ability to transfer code
easily from one system to another), and
ease of maintenance.

The desirable characteristics of lan­
guages for three typical applications (real-

E&TT October 1988

Real-time control Data processing Applications
software

Speed of MUST be very fast not generally as fast as
execution? critical possible

Size of MUST be very not gene'rally should be
reasonably code compact critical
compact

not generally should be
MUST be highly Portability

critical reasonably
portable portable

Availablity not generally MUST offer a should offer
1 of data critical range of powerful a range of
! structures data structures data structures

Example Assembly Pascal c
language language

Table 1. Characteristics of programming languages for three typical applications.

time contra~ data processing and applica­
tions software) are listed in Table 8.1

High and Low-Level
Languages

Programming languages are often
classified as "high level" or "low level".
High level languages are generally those
which are "procedure oriented" and are
written in structured English such that
programs are easily readable. Each
program statement in a high level lan­
guage will normally have a recognizable
function and, furthermore, will be
equivalent to several assembly language
instructions.

Low level languages are those which
are "machine oriented" and are thus
close to the binary "machine code" which
is executable by the microprocessor. As­
sembly language is an example of a low
level language which uses mnemonic
operational codes (opcodes) and sym­
bolic addresses (instead of actual memory
locations). The individual program state­
ments in a program written in a low level
language may not in themselves, be par­
ticularly meaningful and therefore com­
ments are generally added to clarify the
action of the statements.

Assembly Language
Programming

In Part Three we ·briefly mentioned
that assembly language was a low-level
language in which the instructions are
presented in nthemonic code for later
translation into the binary code accept-
E&TT October 1988

able to the microprocessor. Readers will
doubtless recall that this process is nor­
mally carried out by means of an as­
sembler program

The asl>embler acts upon a text file
written in mnemonic assembly language
code (known as "source code") and
generates a binary code (known as "ob­
ject code") within the microcomputer's
memory. Thereafter, the object code con­
stitutes a directly executable program i.e.
we simply load the Instruction Pointer or
Program Counter with the entry (start)
address of the code and execution com­
mences.

Some assemblers produce inter­
mediate programs in hexadecimal format
such that the mnemonic source code is
first translated into a hexadecimal file.
This file may be subsequently stored on
disk (as a "hex, file") or loaded into the
microcomputer's memory ready for ex­
ecution.

Alternatively, where programs are
extremely short, it is possible to dispense
completely with the services of an as­
sembler and resort to ''hand assembly''.
This, somewhat tedious process, involves
first writing the program in assembly lan­
guage mnemonics and then translating
each instruction (operation code and
operand) into hexadecimal code which is
then loaded into an appropriate region of
memory prior to execution. Hand as­
sembly requires the services of a machine
code "monitor" or "debugger". Alterna­
tively a rather more specialized
"hexadecimal code loader" may be used

At this point, it is wort4while
reminding readers of the simple example

Address Contents
(hex) (hex) (binary)

1800 3E 00111110
1801 01 00000001
1802 06 00000110
1803 02 00000010
1804 80 10000000

which we used in Part Three. We wished
to add together two bytes of immediate
data (stored in RAM as part of the
program) using our hypothetical
microprocessor (IMP). This task involved
three instructions. The fust loaded the
fust operand (in this case a byte of im­
mediate data) into the accumulator (A).
The second loaded the second byte of
data into the B register. Finally, the third
instruction added together the contents of
the A and B registers and placed the
result back into the accumulator.

Assuming that the data bytes have
hexadecimal values of 01 and 02 respec­
tively the program takes the following
form:

LD A,01
LD 8,02
ADDB

Its hexadecimal representation may
be found by referring to the instruction
set as follows:

LD A,Ol is represented by 3E (the
opcode) followed by the byte of im­
mediate data (in this case 01)

LD B,02 is represented by 06 (the
opcode) followed by the byte of im­
mediate data (in this case 02)

ADD B is represented by 80 (the op­
code) and there is no operand

The hexadecimal representation of
the program is thus:

3E 01
06 02
80

Assuming that the program is to
commence at an address of 1800H, the
contents of IMP's memory would be as
shown in the table below:

After execution of the program the
Instruction Pointer (Program Counter)
will have reached 1805H and the A and B
registers will contain 03 and 02 respec­
tively. Note that, if we wished to test the
program it would be necessary to halt the
microprocessor at address 1805 otherwise

43

it would continue to execute whatever
code it came across. This is a potentially
dangerous situation as the microproces­
sor cannot distinguish between random
data and program code (the former may
cause the system to lockup in an endless
loop or even overwrite the program with
spurious data).

Now let's consider a more complex
example. Suppose that we wish to add
together two eight-bit data values stored
in RAM (not as part of the program) and
place the result into a third RAM loca­
tion. We will assume that, in both cases,
the bytes of data are stored in memory
locations 1900H and 1901H and that the
result is to be deposited at address loca­
tion 1902H. To make life easier, we will
ignore the possibility of an overflow oc­
curring (as would be the case if the sum of
the two bytes were to exceed 255 decimal
orFFH).

The assembly language program, and
corresponding hexadecimal machine
code, will be different for different
microprocessors. Indeed the programmer
may have to adopt slightly different tech­
niques due to the constraints imposed by
the instructions and addressing modes
(i.e. methods of locating the data used by
an instruction) available with the
microprocessor concerned.

The following routines for the Z80
and 6502 illustrate this point:

Z80 Code
LD A, (1900H) ;get first byte
LD B,A ;transfer to B
LD A, (1901 H) ;then get the

second byte
ADD 8 ;fmd their sum
LD (1902H),A ;and store the result

6502CODE
CLC ;first clear carry flag
LDA $1901 ;get second byte
ADC $1900 ;and add to first
STA $1902 ;then store the result

Problem 8.1
Use implied addressing (with

register pair HL acting as a pointer) to
produce an alternative Z80 program
which will have the same effect. (NB: A
subset of the Z80 Instruction Set ap­
peared on Data Card 4.)

Assembly Language
Programming Technique

Regardless of the processor involved,
a number of techniques can be used to
improve the overall efficiency of a

44

SV.M80L MEANJNG

l QIRECTIO.N Of FLOW

-1 ,.-? CONNECTION OR l!Nl<

C) START OR END

D PROCESS

D INPUT /OUTPUT

D SUBROUTINE

<> DECISION

[J DOCUMENT

CJ DISPLAY

cJ MANUAL INPUT

Q_ TAPE STORAGE

B DISK STORAGE

Fig. 8.1. Flowchart symbols.

program and also make it easier to main­
tain. Many of these techniques are easy to
implement and merely require a little
forethought and self- discipline on the
part of the programmer.

Programs will invariably comprise a
number of smaller modules each having
an identifiable function. The overall struc­
ture of the program should be defined at
a very early stage and no attempt should

Fig. 8.2. Flowchart for a simple l/0
program.

be made at coding any of the modules re­
quired by the program until the overall
program structure has been finalized.

An algorithm is a method of describ­
ing the sequence of operations which
should be followed in order to solve a
problem. An algorithm is often expressed
using a diagram to show the sequence of
events. This diagram is known as a flow­
chart and a standard set of symbols (Fig.
8.1). These symbols indicate the type of
process involved and the flowchart is an­
notated with brief explanatory comments
which are inserted within the symbols to
which they refer. ·

The overall structure and flow of a
program should be defined using one, or
more, flowcharts at an early stage. Alter­
natively (or in addition to a flowchart rep­
resentation) the sequence of the program
may be described by a series of state­
ments written in a form of structured
English. In any event, the overall flow of
the program should be sequential, there
should be only one entry and one exit
point, and all transfers of control (i.e.
jumps and calls) should be explicit.

As an example of using flowcharts
and structured English statements, con­
sider the case of a simple routine which
reads a set of switches connected to an
input port, loops until the switch con­
nected to most significant bit (MSB) is
closed and then transfers the byte read
from the switches to an output port.

A flowchart for the process is shown

EftlT October 1988

READ BYTE FROM F'OF:T 1, LOOP UNTIL MSB RESET,
THEN TFANSFEF: BYTE TO PORT2

EXIl: A= IPORTll, BC = PORT2, ZF reset

REGISTERS AFFECTED: A. B, C, F

GETBYTE: LD
IN
BIT
JR
LD
OUT
RET

BC,PORTl
A, CC)
7,A
Z,GETBYTE
BC,PORT2
<C>, A

Fig. 8.3. Simple ZBO I/0 subroutines.

in Fig. 8.2. Alternatively, we could express
the problem in terms of the following
structured English statements:

Begin
Repeat
Get byte from PORT 1
Until MSB of byte is reset

X=O, Y=O

X= X+- 1

Y=YtX

NO

Fig. 8.4. See Problem 8.3.

Output byte to PORT 2
End
Armed with one or other of the

foregoing algorithms, it is a relatively
simple matter to develop the code. A par­
ticular solution based on the Z80

E&TT October 1988

Get byte from
PORTl
Is MSB reset-:­
No, keep trying
Yes, send byte
to PORT2

microprocessor, is shown in Fig. 83.

Problem 8.2
Sketch a flowchart to describe the

steps in fmding the sum of two data values
(taken from memory) and place the result
back into memory.

Problem 8.3
The flowchart in Fig. 8.4 indicates a

process. Determine the values of the vari­
ables X andY upon exit.

Subroutines
The fragment of code shown in Fig.

8.3 constitutes a subroutine. This is a sec­
tion of code which may be called from
various points in the main program (using
the CALL instruction) and returned to
(by means of the corresponding RETurn)
instruction. If desired, both the CALL
and RETurn instructions can be made
conditional on the contents of the flag
register. Furthermore, a subroutine may
have several conditional RETurn state­
ments.

The CALL instruction saves the old
value of the Instruction Pointer (or
Program Counter) in the stack before
replacing it with the value of the sub­
routine start address. On returning from
the subroutine, the Instruction Pointer (or
Program Counter) is loaded with the
value saved on the stack so that the main
program can be resumed at the point at
which it was left.

Parameters can be easily passed to
and from subroutines by simply placing
them in one or more of the CPU
registers. Alternatively, parameters may
be passed using the stack or by reserving
an area of memory in which parameters
can be deposited before making the call

READ FIRST

DATA ITEM

READ SECOND
DATA ITEM

COMPUTE
SUM

STORE
RESULT

Fig. 8.5. Answer to Problem 8.2

and recovered after the call has been
made. This allows the passing of a much
greater number of parameters than would
be possible using just the CPU registers.

Care must be taken to preserve the
contents of any CPU registers that may be
modified as a result of executing a sub­
routine call and that are required in sub­
sequent processing. It is thus essential to
have a knowledge of the effect of a sub­
routine on the CPU registers (in any
event, this should be clearly indicated in
the source code). Furthermore, sub­
routines should be designed so that they
minimize usage of the CPU registers, thus
keeping things simple for the program­
mer and reducing any potential overhead
associated with storing and retrieving
register contents.

The use of subroutines makes
programs easy to maintain and allows
modules to be easily transferred into
other programs without having to rewrite
an entire program. This is an important
point and one which can save the
programmer a great deal of time.

Programming 1/0 Devices
Readers may recall that we con­

cluded last month's instalment by describ­
ing a representative output driver arran-

46

Advertisers'
Index

ATI Technologies Insert
Business Professional Advertising

Association 55
Canadian Laser Insert
dB Associates 15
Digital Research Computers ... 15
Duncan Instruments 54
Electronic Book Club 52
Genicom Canada Insert
Gentian Electronics Ltd 11
Gestener Insert
Hammond Manufacturing
Co. Ltd 11

Holus Systems Insert
Interconnect 16
Jaba Systems Insert
Kaientai Electronic

Merchants 18
KB Electronics 6
Maple Software Insert
McGraw Hill 9
Micro best Insert
Microsoft Insert
Motorola 16
National Technical Schools
.................... .41, Insert

Okidata Insert
On Sat 53
Omnitronix 56
PC Friends Insert
Rectec Insert
Sharp Insert
Toronto Computer Systems . Insert
Toshiba Information Systems
.. 2, Insert

Trillium Insert
Universal Cross-Assemblers 15

For Advertising Information
Call (416) 445-5600
Fax: 416-445-8149

46

gement based on a programmable paral­
lel I/0 device. We also stated that the ex­
ternal devices could be easily operated by
simply writing an appropriate data byte to
the port in question. As an example a bi­
nary value of 11000111 (hex. C7) written
to Port A will illuminate the three LEOs
connected to P AO, P A1 and P A2 and
operate the relays connected to P A6 and
PA7. To tum the LEOs and relays off, a
binary value of 00000000 (hex.OO) should
be sent to Port A.

Readers may recall from Part Six
that a microprocessor employing memory
mapped I/0 (such as the 6502) can simply
write data to an output port using an in­
struction of the form; ST A address (the
accumulator must first be loaded with the
requisite byte of immediate data). In the
case of a microprocessor which uses port
I/0 (such as theZ80), the accumulator is
again first loaded with the requisite byte a
data and then an output instruction of the
form OUT (port), A is used.

In either case, it will usually be neces­
sary to . configure the programmable I/0
device (this will often be a 6502 PIA or
6522 VIA in the case of 6502 CPU or a
Z80-PIO or 8255 PPI in the case of a Z80
CPU) before I/0 can commence. The
configuration routine will be very much
dependant upon the hardware configura­
tion and type of 1/0 device fitted. @SUB­
HEAD = Problem 8.4

A microprocessor based system is
fitted with one input and one output port.
The input port is connected to eight
switches and the output port is connected
to eight LEOs. Devise a simple assembly
language program which will continuously
read the switches and operate the respec­
tive LEDs in each of the following cases:

(a) Using a 6502 CPU memory
mapped with the following port addres­
ses: Input, 8002H Output, 8005H

(b) Using a Z80 CPU employing
port I/0 with the following port addres­
ses: Input, FBH Output, FDH

Answers to Problems
8.1 Either of the following programs

would prove satisfactory:
(a) LD HL, 1900H
LD,B,(HL)
INCHL
LD,A,(HL)
INCHL
ADDB
LD(HL),A
(b) LD HL, 1900H
LDA,(HL)
INCHL

ADD(HL)
INCHL
LD(HL),A
Note that the program in (b) is one

byte shorter than that in (a)
8.2 See Fig. 8.5
8.3. X = 5, Y = 15
8.4. (a) LDA $8002; get byte from

switch bank
STA $8005; and send it to the LED
(b) IN A, (FBH); get byte from

switch bank
OUT (FDH), A; and send it to the

LED

Glossary for Part Eight
Algorithm
The sequence of steps (presented in

a clearly understandable form) which
describe the procedure used to solve a
problem.

Call
An instruction to jump to a sub­

routine. A jump to the specified address
is performed, but the contents of the In­
struction Pointer (or Program Counter) is
saved so that the (calling) program can be
resumed when the subroutine has been
completed.

Flowchart
A graphical representation of ·

program logic. Flowcharts enable the
software developer to visualize the steps
and logical flow within the program.

Hand assemble
The process of translating a program

presented in assembly language
mnemonics into machine code without
the aid of an assembler program.

High level language
A problem oriented programming

language (as distinguished from a
machine oriented language). The syntax
of a high level language is usually similar
to English.

Program
A procedure for solving a problem

coded into a form suitable for execution
by a computer. Often referred to simply
as "software".

Subroutine
A routine or subprogram which is

separated from the main body of the
program and which is executed by means
of a CALL instruction (or its equivalent
in a high level language). At the con­
clusion of the subroutine, control reverts
to the main (calling) program at the point
at which it was left. •

E&TT October 1988

