
Introducing
Microprocessors

Part3
The process of fetching, decoding and executing the sequence of instructions which

constitutes a program.

Learning Objectives
The general learning objectives for

Part 3 are that readers should be able
to:

(a) Understand and use a subset of
the instruction set of any common 8-bit
microprocessor.

(b) Describe, using appropriate
diagrams, the microprocessor instruc­
tion fetch/execute cycle.

(c) Understand the facilities
provided by a monitor program.

The specific objectives for this part
are as follows:

2.2 Instruction Sets
2.2.1 Explain what is meant by the

terms instruction and instruction set.
2.2.2 Explain the form in which in­

structions are stored and presented to
the microprocessor for execution.

2.2.3 Categorize instructions in the
following groups:

data transfer
arithmetic and logical
test, branch and control
2.2.4 Examine the following modes

of addressing:
implied
immediate
absolute.
2.2.5 Examine a subset of the in­

struction set of any common 8-bit
microprocessor and identify the types
of instruction for data movement
(transfer), control, and arithmetic.

2.3 Fetch-Execute Cycle
50

By Mike Tooley

2.3.1 Explain each stage of the
fetch-execute cycle.

2.3.2 Explain the function of the
Program Counter, Instruction Register
and Instruction Decoder during the
fetch-execute cycle.

2.3.3 Draw a timing diagram show­
ing the state of the read, write (or
read/write), and bus lines at each stage
of the fetch-execute cycle for a repre­
sentative 8-bit microprocessor.

2.3.4 Draw a timing diagram to
show the movement of data during
each stage of the fetch-execute cycle.

2.4 Monitor Programs
2.4.1 Use a monitor program.

Instruction and Instruction
Sets
The individual commands contained
within a microprocessor program are
called instructions. Clearly, if a
microprocessor is to be capable of per­
forming a variety of operations, a range
of different instructions must be avail­
able. Some of these will be concerned
with moving data from place to place
and are aptly known as "data-transfer"
instructions. Others are used to perform
"arithmetic and logic" functions. A third
type of instruction is needed to control
the overall flow of the program. Such in­
structions form part of the "test, branch
and control" group.

The microprocessor keeps track of
its progress through a series of instruc-

tions by regularly updating its Instruc­
tion Pointer (or Program Counter).
This sixteen bit register effectively
points to the address of the next in­
struction to be fetched in the sequence
of execution.

A simple IMP program (expressed
in hexadecimal format) might take the
form:

3E
01 First instruction (two bytes)
06
02 Second instruction (two bytes)
02
80 Third instruction (one byte)
The five byte program contains

three instructions. The first two take up
two bytes each whilst the last instruction
only requires a single byte. The
hexadecimal representation is compact
but not very explicit and readers might
be forgiven for wondering what the
program actually does. Furthermore,
writing anything other than the shortest
of programs in hexadecimal format is
clearly going to be a rather tedious
process.

In practice we make use of a
mnemonic shorthand for writing our in­
structions rather than resorting to
hexadecimal code. However, even
programming in hexadecimal is one
step removed from the binary codes
that the microprocessor actually re­
quires (readers may be unaware that
the first generation of computer
programmers actually wrote their code

E & TT May 1988

in binary!).
As far as the microprocessor is

concerned, each instruction comprises
an individual binary code (the opera­
tion code) which may be followed by
one of more further bytes (which con­
stitute and operand). The operand
qualifies the instruction in some way
and typically may be used to form an
address at which data is to be stored or
from which data is to be fetched. Clear­
ly, if we are dealing with an operand
which it used to denote a 16-bit ad­
dress, it will require two bytes. IMP
knows how many bytes to take as an
operand since it is implicit in the
operation code which it will have pre­
viously decoded.

Assembly language
We have already stated that IMP

responds to instructions presented in
binary form and that a form of shor­
thand is used to simplify the task of
writing a program. This shorthand is
known as "assembly language" and it
provides us with a means of expressing
our programs in terms of a set of
mnemomcs.

Assembly language is a low-level
language which is (relatively) easy for
humans to learn and remember and
which can quite easily be translated
into the binary code required by a
microprocessor. The function of trans­
lating mnemonic assembly code into bi­
nary code is performed by a utility
program known as an "assembler".
Some assemblers produce intermediate
programs in hexadecimal format which
are then translated into binary code for
final loading into program memory.

Unfortunately, each microproces­
sor family has its own dialect of as­
sembly language. This makes it difficult
(if not impossible) to transfer programs
written in assembly language from one
microprocessor to another. High level
languages, such as BASIC or PAS­
CAL, are much more "portable" since,
with a few changes, they can usually be
modified to run on a wide variety of
machines.

Happily, IMP's assembly language
is reasonably conventional. The follow­
ing instructions (and their hexadecimal
equivalents) constitute a small subset of
IMP's instruction set. For convenience
we have divided these instructions into
the three major groups associated with
"data transfer", "arithmetic and logic",
and "test, branch, and control"
E & TT May 1988

Notes
(a) Mnemonics are used as follows:

LD =LoaD
ADD= ADD
SUB = SUBtract
INC = INCrement
DEC= DECrement
JP =JumP
Z =Zero
NZ = Non-Zero
(b) n and xx represents an im­

mediate data byte (values ranging from
OOHtoFFH)

(c) nn represents a two byte ad­
dress (values ranging . from OOOOH to
FFFFH)

Function

Data transfer

Immediate data
to accumulator

Immediate data
to B register

Memory to accumulator

Accumulator to memory

Accumulator to
register B

Register B to
accumulator

Immediate data to
HL register pair

Memory (pointed to by
HL regiSter) to
accumulator

Accumulator to memory
(pointed by HL register)

Arithmetic and logic

Add register A to
register B

Subract register B
from register A

Increment register A

Increment register B

Increment register HL

Decrement register A

Decrement register B

Decrement register HL

Test, branch and control

Jump unconditionally to
specified IP address

Jump to specified IP
address if zero flag
is set

Jump to specified IP
address if zero flag is reset

(d) II represents the low byte of an
address (values ranging from OOH to
FFH)

Readers should note that the
general format used for IMP's data
transfer instructions involves a destina­
tion followed by a source and that these
are separated by a comma. As an ex­
ample, the instruction LD A, B
specifies A as the destination and B as
the source. It is also important to note
that the load instructions do NOT in­
volve the destruction of the source
byte; data is effectively copied from
source to destination where it replaces
whatever was there before the instruc-

Instruction
Mnemonic form Hexadecimal form

LDA,n 3E XX

LD B,n 06xx

LD A,(nn) 3AIIhh

LD (nn),A 3211 hh

LD B,A 47

LDA,B 78

LD HL,nn 21

LD A,(HL) 7E

LD (HL),A 77

ADDB 80

SUB B 90

INCA 3C

INCB 04

INC HL 23

DECA 3D

DEC B 05
DEC HL 28

JP nn C311hh

JPZ,nn CAIIhh

JP NZ,nn C211hh

51

Introducing Microprocessors, Part 3

tion was executed.
Finally, the meaning of the brack­

ets shown in instructions such as LD A,
(HL) are taken to mean "address
pointed to by'' or " memory location
given by". Thus LD, A, (HL) means
"load the accumulator with the data
found at the address pointed to by the
HL register pair". This may sound a lit­
tle wordy but, in order to avoid con­
fusion, it is important to be quite
precise.

ly language instruction SUB B. If the A
register contains the 14H before the in­
struction was performed and OAH after
the instruction is executed, determine
the contents of register B.

(c) A single-byte IMP instruction
expressed in binary (MSB first) takes
the form 00101011. What action does
the instruction perform?

(d) It is necessary to load the HL
register pair with 3C02H. What IMP

Addressing
modes

Addresing mode Data located ...

The different ways of
locating the data to
be used by a

Implied

Absolute

microprocessor in- Immediate
struction are
referred to as "ad-
dressing modes". Three commonly used
addressing modes are known as
"implied", "immediate", and
"absolute".

In the "implied" addressing mode
another register pair is used to hold the
address of the location being accessed.
In IMP's case, the instruction LD A,
(HL) is an example of this mode. In the
"immediate" mode of addressing the
data to be used is contained within the
instruction itself (i.e the data in ques­
tion immediately follows the operation
code). The instruction LD A, n is an
example drawn from IMP's set. In the
"absolute" mode of addressing, the ad­
dress at which the data is located forms
part of the instruction. This mode is ex­
emplified by IMP's LD A , (nn) in­
struction.

A number of other (more com­
plex) addressing modes exist. These,
however, are not really appropriate-to
an introductory level module and will
be left for readers to explore in the
event that they continue with studies at
a higher level. For the moment, it is
merely necessary for readers to be able
to recognize and distinguish between
the three modes previously mentioned.
The following table summarizes these
modes of addressing and includes ex­
amples from IMP's instruction set:

Problem 3.1
(a) IMP - encounters the

hexadecimal values 3E and 00 which
appear as successive bytes in a program
instruction. What action do they
produce?

(b) IMP is performing the assemb-
52

. . at an address pointed to
by other CPU registers

. . at an address specified
in the instruction ·

. . in the instruction itself

assembly language instruction is re­
quired?

(e) What hexadecimal code is used
to represent the instruction in (d)?

(f) What addressing mode is used
in-the instruction LD A, FFH?

(g) To which group or class of in­
structions does the instruction LD A,
(HL) belong?

The Fetch-Execute Cycle
The operation of a microprocessor is
based upon a continuous sequence of

:I:
u ...
"' lL

Fig. 3.1. Flowchan for the fetch-execute
cycle.

events each of which is known as a
"fetch-execute" cycle. The fetch-ex­
ecute cycle involves the following
stages:

(a) Fetching the instruction from
memory and placing it in the
microprocessor's Instruction Register.

(b) Decoding the instruction
(using the Instruction Decoder) and
determining what subsequent action is
required.

Example

LD A,(HL)

LDA,(nn)

LDA,n

(c) If neces­
sary, fetching more
data.

(d) Executing
the instruction.

This process is
illustrated by the
flowchart shown in
Fig. 3.1.

Timing diagrams
Timing diagrams show the relationship
between control signals and the data
and addresses which appears on the
microprocessor buses. Fig 3.2 shows a
typical timing diagram which illustrates
the sequences of events when IMP per­
forms the instruction LD A, 3F. This
fetch-execute sequence occupies just
two complete machine cycles. During
the first machine cycle, IMP fetches the
operation code and decodes it. On the
second machine cycle, IMP fetches the
data byte (3FH) and copies it into the
accumulator.

Read and write operations
When performing memory read or
write operations IMP performs dif­
ferent tasks on the first and second
half-cycle of the clock. During the first
half cycle of the clock signal (i.e. when
the clock line is high) IMP Places a
valid memory address on the address
bus and selects either a read or write
operation by taking the R/W line high
or low respectively. Data exchanges
then take place during the second half
of the clock cycle (i.e. when the clock
line goes low), the direction of data
movement (i.e. to or from IMP) being
determined by the previously set condi­
tion on the R/W line.

A read cycle (Fig. 3.3) can be used
to transfer a byte of data from an ad­
dress in ROM, RAM, or 1/0 to one of
the IMP's internal registers. A write
cycle (Fig. 3.3b), on the other hand, is
used to transfer a byte of data from one
of the IMP's internal registers to either

E & TT May 1988

CLOCK, II I \ J \ I
I I I
I I I
I I I

R/W __) I I I
I 1 I
I I I I

...+ o;~·c"' I cJ<<'-•+ ~" ·~' i J
I I I I

A15- All

07 -00 . , ~ATAI8YTE ~N DATA , 8~5
I I I
I I I

zl I I
0 I ol
;::: I

,__
u ~
::> I

0 a: 0 oa:
IIJ

,__
IIJ ~0 ,__ "'a: ,__

"->--
z ~IIJ z o..:
IIJ o>-- IIJ U-'
2: ,__~ 2: "'"' IIJ

"'"'
IIJ ,__2:

a: o"' a: ,_::>
u o"' u mu
~ ~ u u
~

I

~
,__

"- ..
0 0

Fig. 3.2. Simplied timing diagram for a fetch-execute cycle.

CLOCK, 0

R/W __) !
I

A15- A0

07- 00

Fig. 3.3a. Simplified timing diagram for a read cycle.

CLOCK ,II

R/W \'-----...---
A15-A0

07 - 00
q l

--------- - ---
'

Fig. 3.3b. Simplified timing diagram for a write cycle.
E & TT May 1988

IMP SIGNALS A READ
OPERATION BY TAKING R / W
HIGH

IMP PLACES A MEMORY OR 1/0
ADDRESS ON THE ADDRESS
BUS

DATA IS READ FROM MEMORY
OR 1/0 INTO THE DESIGNATED
IMP REGISTER

IMP SIGNALS A WRITE

OPERATION BY TAKING R ! W
.LOW

IMP PLACES A MEM ORY OR 1/0
ADDRESS ON THE ADDRESS
BUS

IMP PLACES DATA ON
TH E DATA BU S FROM
THE DESIGNATED REGISTER .
THIS IS THE N LATCH ED INTO
THE MEMORY OR 1/0 DEVICE.

RAM or I/0. Note that, whilst it is pos­
sible to undertake a write operation to
an address in ROM there is little point
in doing so as this would, by definition,
have no effect on the contents of the
address location in question.

Example 1
Now, let's consider a simple example.
Suppose that we wish to add together
two bytes of data stored in RAM as
part of IMP's program. This task will
involve three instructions. The first will
load the first operand (in this case a
byte of immediate data) into the ac­
cumulator (A). The second will load
the second byte of data into the B
register. Finally, the third instruction
will add the contents of the A and B
registers and deposit the result back
into the accumulator.

We shall assume that the program
starts at a hexadecimal address of 1000.
Written in assembly language
mnemonics, the program looks like
this:

LDA,Ol
LDB,02
ADDA,B
The hexadecimal representation of

the program is as follows:
3E 01 First instruction
06 02 Second instruction
80 Third instruction
Readers will probably have spotted

that this program is identical to that
which we introduced earlier. Note how
each of the two load instructions is fol­
lowed by the respective data to be
loaded. Within IMP's memory, the
program will thus take the form:

At the start of the program, the In­
struction Pointer will be set to lOOOH
whilst, at the end, it will have reached
1005H. Execution of the program in­
volves the following steps:

1. Fetching and decoding the first
instruction (see Fig. 3.4a).

IMP places the contents of its In­
struction Pointer (lOOOH) onto the ad­
dress bus and takes the R/W line high.
The byte returned on the data bus
(3EH) is read during the second half of
the clock cycle and passed into the in­
struction register.

2. Executing the first instruction
(see Fig. 3.4b).

IMP executes the first instruction
which involves copying the next byte
(i.e. that which follows the operation
code, 3EH) into the accumulator, IMP
also updates the Instruction Pointer so

53

Introducing Microprocessors, Part 3

that it points to the address of the next
instruction byte at 1002H.

3. Fetching and decoding the
second instruction (see Fig. 3.4c)

IMP places the contents of its In­
struction Pointer (1002H) onto the ad­
dress bus and takes the R/W line high.
The byte returned on the data bus
(06H) is read during the second half of
the clock cycle and passed into the in­
struction register.

4. Executing the second instruction
(see Fig. 3.4d).

IMP executes the second instruc­
tion which involves copying the next
byte (i.e. that which follows the opera­
tion code, 06H) into the B register.
IMP also updates the Instruction
Pointer so that it points to the address
of the next instruction byte at 1004H.

5. Fetching the third instruction
(see Fig. 3.4e)

IMP places the contents of its In­
struction Pointer (1004H) onto the ad­
dress bus and takes the R!W line high.
The byte returned on the data bus
(80H) is read during the second half of
the clock cycle and passed into the in­
struction register.

6. Executing the third instruction
(see Fig. 3.4f).

IMP executes the third instruction
which involves passing the contents of
the A and B registers into the ALU
and adding the two bytes together. The
result is ·then passed back into the ac­
cumulator (replacing the byte that was
originally present). Also note that the
byte present in the B register has
remained unchanged. IMP also up­
dates the Instruction Pointer so that it
points to the address of the next in­
struction byte at 1005H.

Example2
Now, as a further example, suppose
that we wish to copy a byte of data from
an address in ROM (G04EH) to an ad­
dress in RAM (2ABOH). This task
would obviously inyolve two instruc­
tions; a read operation followed by a
write operation. We shall again assume
that the program again starts at a
hexadecimal address of lOOH. The
program would be written in assembly
language as follows:

LDA, (C04EH)
LD (2ABO),A

32B02A
The program thus comprises six

bytes. Each operation code byte is fol­
lowed by a two byte address (in low­
byte/high-byte order). Within IMP's
memory, the program will thus take the
form:

At the start of the program, the In­
struction Pointer will be set to lOOH
whilst, at the end, it will have reached
1006H. The execution of the program
involves the following four steps:

1. Fetching and decoding th flrst
instruction (see Fig. 3.5a).

IMP places the contents of its In­
struction Pointer onto the address bus
and takes the R/W line high. The byte
returned on the data bus (3AH) is read
during the second half of th clock cycle

IMP

A~
I

B~

IR

X X~ INDETERMINATE

!al

IMP

A DLJ
B~

IR

X X~ INDETERMINATE

(c)

IMP

· A~
,--

aQI:]

IPI 1 s 8 4 I
IR~

(e l

MEMORY

88

82

86

81

3E

MEMORY

I

as
82

86
s 1

3E

MEMORY
I

8 s
8 2

s 6

01
3 E

1004
11lll3
1£102

1£1£11
11lllfl

1004
11lll3
11!112

111111
11lllll

11lll4
11lll3

11lll2
11lll1

11lllll

and passed into the instruction register.
2. Executing the flrst instruction

(see Fig. 3.5b).
IMP executes the flrst instruction

which involves reading the next two
bytes (4EH and COH) and using them
to form an address (C04EH) which is
then placed on the address bus. The
data present at C04H is then copied
into the accumulator during a further
read operation. IMP again updates the
Instruction Pointer so that it ends up
pointing to the address of the next in­
struction byte at 1003H.

3. Fetching the second instruction
(see Fig. 3.5c).

IMP places the contents of its In­
struction Pointer (1003H) onto the ad­
dress bus and takes the R/W line high.

IMP MEMORY

A
I

as 1004

B~ S2 11lll3
86 1002

IP I 1 s 8 2 I:=@ 81 11lll1
3E 11lllll

IR~

X X ~INDETERMINATE

(b)

IMP MEMORY

A~
I I

8' 1llll4

B 82 82 1llll3
86 1llll2

IPI 1 8 8 4 I:=@ s 1 11lll1
3E 11lllll

JR [!I]
I I
I I

(d l

IMP MEMORY

A Cii::J • I
'-~J 8 e 1llll4

s~/ s 2 11lll3
. s 6 11lll2

IP I 1 e e s 1:@ ll1 11lll.1
3 E 11lllll

IR~

(f) The hexadecimal machine code
corresponding to these two instructions
is given below:

3A4ECO Fig. 3.4. Flow of data between IMP and memory in Example 1.

54 E & TT May 1988

Address (hex)

1000
1001
1002
1003
1004
1005

IMP

A~

I P I , 9 9 9

IR~ -

XX :INDETER MINATE

IMP

A

(a l

Byte (hex)

3A
4E
co
32
BO
2A

MEMORY

2e

X X

2A

89
32

ce
.E

3A

MEMORY

I

IC1214E

I
I

12AB121

I
I

1 005

1004

1003

1002

1001

1000

1--t~2!9=:jc1214E
I I
I I

IP I , e e 3

IR~

I X X 12AB121
l __ r:-:;-, 1--~---1
--~I

I

2A

B0

3 2

ce
4E

X X: INDETERMINATE 3A

1

1

1

1

1

1

005

llll4
0113

flll2

001

0011

Function

Operation code for LD A,(nnl
Low byte of address operand
High byte of address operand
Operation code for LD (nni,A
Low byte of address operand
High byte of address operand

·IMP MEMORY

2 9

A~
X X

IP I , 9 0 3

IR~ 2A

L Be

3 2

ce
4E

X X: IN DETER MINATE 3A

(c l

IMP MEMORY

I

lc1214E

I
I

12AB121

I
I

1

1

1

1

1005

1104

003

002

001

1000

l-..:.2..:.e_-llc1214E

IR~ 2A

B 9

3 2

C9

4E

3A

I
I

12AB121

I
I

1

1

1

1

1

1

005

004

01l3

1102

fl01

flllll

(b) (d)

Fig. 3.5. Flow of data between IMP and memory in Example 2.

MACHINE
M1 M2

CYCLE

TYPE OF MEMORY READ MEMORY READ
CYCLE

lOP- CODE FETCH I

ADDRESS IP IP+1
BUS (LOCATION OF OP·COOE !LOCATION OF SECOND

BYTE I INSTRUCTION BYTE I

DATA
BUS

Fig. 3.6. Table for Problem 3.2.
E & TT May 1988

M3

MEMORY READ

IP+2
!LOCATION OF THIRD
INSTRUCTION BYTE I

M4

MEMORY WRITE

!EXECUTE I

ADDRESS ASSEMBLED
FROM DATA READ

DURING M2 & M3

The byte returned on the data bus
(32H) is read during the second half of
the clock cycle and passed into the in­
struction register.

4. Executing the second instruction
(see Fig. 3.5d).

IMP executes the second instruc­
tion which involves reading the next
two bytes (BOH and 2AH) and using
them to form an address (2ABOH)
which is then placed on the address
bus. The data present in the ac­
cumulator is then written to address
2ABOH during a final write operation.
IMP also updates its Instruction
Pointer so that it ends up pointing to
the address of the next instruction byte
at 1006H. Readers should now be get­
ting a feel for the way in which IMP
operates. In particular, the following
should be noted:

(a) instructions may comprise one,
two, three (or more) bytes.

(b) instructions comprise an
operation code which may be followed
by a further byte or bytes which con­
stitutes an operand.

(c) instructions may involve further
read and/or write operations, not just
fetching (i.e. reading) the instruction it­
self.

Problem 3.2
Fig. 3.6 shows the sequence of opera­
tions which occur during the fetch-ex­
ecute cycle associated with the instruc­
tion LD (2EOO), A. Given that the ac­
cumulator contains 7FH immediately
before the instruction is executed, com­
plete the table showing the byte present
on the data bus at each stage of the
fetch-execute cycle.

Problem 3.3.
Write simple assembly language
programs (using only the given subset
of IMP's instruction set) which will:

(a) add 1 to the data stored in
memory location 3EOOH,

(b) exchange the data bytes
present at memory locations 3EOOH
and3E01H.

Monitor Programs
Monitor programs provide us with a
variety of useful facilities which can not
only aid our understanding of the
operation of a microprocessor but also
allow us to enter, test and debug simple
programs. A typical monitor program
comprises about 2K of code and
provides the user with the means to:

55

Introducing Microprocessors, Part 3

(a) display the contents of a given
block of memory in hexadecimal and
ASCII (see note 1) format

(b) modify or edit hexadecimal
bytes in memory

(c) display the contents of the
CPU registers

(d) modify the contents of the
CPU registers

(e) disassemble a given block of
memor~ into assembly language
mnemomcs

(f) insert breakpoints (see note 2)
into a program

(g) execute a program from a given
start address until a breakpoint is en­
countered

(h) trace the execution of a
program with a continuous display of
the CPU registers and memory con­
tents as each instruction is executed.

Notes:
1. ASCII stands for "American

Standard Code for Information
Interchange". The ASCII code is com­
monly used for representing al­
phanumeric characters (i.e. letters,
numbers and punctuation) within a
microprocessor system. Each character
is represented ·by a single byte (i.e. 8
bits). Since the standard ASCII code
uses seven bits, the leading (i.e. most
significant) bits, the leading (i.e. most
significant) bit is either ignored or used
to distinguish special graphic charac­
ters or tokenized keywords.

2. A breakpoint is a code (usually a
single byte) inserted into a program
during testing or debugging which,
when encountered during the course of
a program, suspends execution and
returns control to the monitor
program. This facility allows the user to
examine the state of the system when a
certain point is reached in the program.

Glossary for Part Three
Address modes
The various methods of specifying

an address as part of an instruction.
Assembly program
A program which translates as­

sembly language statements into the bi­
nary code machine code which is
directly executable by the microproces­
sor.

Assembly language
Assembly language is a machine­

oriented low-level programming lan­
guage as distinct from human-oriented
high-level languages. An assembly Ian-

56

guage program is normally written as a
series of statements using mnemonics.
It is then translated into machine code
by an assembler program.

Decrement
Programming instruction which

decreases the contents of a register or
storage location.

Execute (cycle)
The last part of the fetch-execute

cycle during which the operation
specified by the instruction is actually
performed.

Fetch (cycle)
The first part of th fetch-execute

cycle during which the instruction is
fetched from program memory. The
first part of the instruction to be
fetched is the operation code. ·

Increment
Programming instruction which in­

creases the contents of a register or
storage location.

Instruction cycle
The total group of instructions that

can be executed by a given
microprocessor. This information
provides the programmer with the
basic information necessary to produce
a working program.

Machine language
Binary coded language (often rep­

resented in hexadecimal) that is direct­
ly understood by the microprocessor.
All other programming languages must
be translated into binary code before
they can be executed by the
microprocessor.

Mnemonic code
Mnemonic codes are a form of

shorthand which helps the programmer.
remember the function of a particular
microprocessor instruction.

Operation code (op-code)
The first part of a machine-lan­

guage instruction which specifies the
operation to be performed.

MACHINE Ml M2
CYCLE

TYPE OF MEMORY READ MEMORY READ
CYCLE lOP-CODE FETCH}

ADDRESS IP IP+l

Answers to Problems
3.1 (a) load the accumulator with im­
mediate data of OOH

(b)OAH
(c)DECHL
(d) LD HL, 3C02
(e) 2102 3C
(f) immediate
(g) data transfer

3.2 See Fig. 3.7
3.3 (a) Any of the following would be
acceptable:

LDA, (3EOO)
LDB.1
ADDA,B
LD (3EOO),A
or LD A, (3EOO)
INCA
LD (3EOO),A
or LD HL, 3EOO
LDA,(HL)
INCA
LD(HL),A
or LD HL, 3EOO
LDB,1
LDA, (HL)
ADDA,B
LD(HL),A

3.4 One possible solution would be:
LDA, (3EOO)
LDB,A
LDA, (3E01)
LD (3EOO),A
LDA,B
LD (3E01) A

Please Note
We apologise for a couple of errors
which unfortunately appeared in Part
1. Under Addition (page 597) the
second paragraph set an example and
we then added two completely dif­
ferent numbers - please disregard the
second paragraph.

Finally, the answer to Problem
1.14(a) should have been 00000101; the
MSB was wrong.

MJ M4

MEMORY READ MEMORY WRITE

I EXECUTE I

IP+2 ADDRESS ASSEMBLED
FROM DATA READ

BUS I LOCATION OF OP- CODE {LOCATION OF SECOND I LOCATION OF TH IRO
DURING M2& M3

BYTE I INSTRUCT I 0 N BYTE I INSTRUCTION BYTE I

DATA 32 ~0 2E 7F
BUS lOP-CODE I ILOW BYTE OF {HIGH BYTE OF {BYTE FROM

ADDRESS OPERAND I ADDRESS OPERAND I ACCUMULATOR I

Fig. 3. 7. Answer to Problem 3.2. •
E & TT May 1988

