
Popular Electronics·
SEPTEMBER 1981

BY RANDY CARLSTROM

DESIGNING
WITH THE

8080 MICROPROCESSOR

I N ADDITION to its obvious appli
cation as the central processing unit

(CPU) of a computer system, the micro
processor has found its way into a vari
ety of products ranging from kitchen
equipment to sophisticated laboratory
data-acquisition systems. The key ,to this
widespread utility is flexibility, which in
turn comes from the microprocessor's
unique ability to alter its internal logic
in response to an external program.
Since· the response to inputs from the
program is extremely rapid--on the or
der of a few microseconds-the proces
sor can change its electrical configura
tion practically instantaneously, usually
fast enough to convince a human corre
spondent that it is performing several
activities simultaneously.

Given the speed and flexibility of mi
croprocessors, and the fact that they are
available at very reasonable prices, it is
often economical to use a single proces
sor rather than a great many simpler
chips to synthesize logic functions, act
as a controller, or the like. To accom
plish this, however, it is necessary to un
derstand the architecture of the proces
sor, its needs in terms of support circuit
ry, how to program it, and how to inter
face it with the "outside world." Devel
opment of the necessary understanding
is the goal of this multipart series.

Microprocessors vary in design, with

SEPTEMBER 1981

Port l: The Basic System

With the widely used 8080 as a

model, the basic features of a central

processing system are explored

each design programmable only via its
own set of instructions. The unit that
will be covered in detail in this series is
the 8080. Since this CPU is the grand

. father of a growing family of processors,
including the Z80, 8048, and 8085, all
with a common internal programming
language, most of the information will
apply to the entire family as well. In
structions not used by the 8080 will not,
however, be covered.

The Basic System. Like many pro
cessors and logic elements, the 8080 re
quires a small number of support ICs in
order to function. An 8080 along with its
support chips is called a CPU module.

The program that determines the in
ternal states taken on by the CPU is
supplied to it in the form of electrical
signals. To generate these signals as re
quired and in the proper order, the pro
gram must be stored in some form of
"memory" device. These devices repre
sent the binary digits (1, 0) by means of
"on-off" switching devices or analogous
circuit elements. The binary code in
which program instructions are ex
pressed is called machine language.
Each microprocessor (or microprocessor
family) has its own machine language.

Binary instructions or data that are
not subject to change can be stored per
manently in ROM (read-only memory).

Elements that are variable must be
stored in RAM (random-access memo
ry), which can be written, erased, and
rewritten by the CPU.

To affect or control devices that inter
act with the outside world, the processor
must deliver signals to them. It does this
by means of an I/0 (input/output) port.
As the name implies, an I/0 port can
also deliver signals to the CPU from de
vices that sense external parameters.

Electrical signals representing data,
instructions, and addresses (the loca
-tions of particular items in memory)
pass between the CPU, memory devices,
and I/0 ports via a set of dedicated lines
known collectively as buses. A typical
bus (Fig. 1) also supplies de operating
power to the elements of the system.

Bus System. There are many ver
sions of the bus system currently used,
with the S-1 00 and SS50 being two of
the most common. Although different
mechanically, they all contain three ma
jor elements: the address bus, the data
bus, and the control bus. (Figure 1 does
not show the power supply lines and
common ground usually carried on the
bus system.)

In most systems, there are 16 lines in
the address bus, thus enabling 2'6 or
65,536 (64K) unique addresses. In an 8-
bit system, there are 8 lines on the data

57

BOBOinicroprocessor __ ___

bus, allowing 28 or 256 data combina
tions. The control bus carries all system
synchronization signals including the
"clock" that keeps all CPU module
events in step.

Memory. A computer memory is
formed from a large array of semicon
ductor elements, each capable of storing
a single binary 1 or 0, organized into
groups of bits (short for "binary digits")
often called words . The number of bits
in each word is determined by the size of
the CPU registers (storage locations in-

SUPPORT
DEVICES

ternal to the microprocessor) and the
number of data lines. A typical RAM
arrangement is shown in Fig. 2. A mem
ory word of eight bits is often referred to
as a byte. Each byte represents one of 28
or 256 unique values (0-255). As the
8080 microprocessor uses this memory
structure, it is considered a byte
oriented device. ·

Each memory location contains one
word of memory bits, and is identified
by a unique number, or address, as
signed to it. The CPU gains access to the
contents of any memory location by

BUS SYSTEM

ADDRESS 81JS) ,-------..., .----'---

-------------~~~~~~ ~> r-- DATA 8US _

I_ID

ADD
BUS

AO

AI

A2

A3

A4

A6

A7

A8

A9

58

RESS

I

I

I

I

I

I

I

I

I

I

ROM/RAM
M£MOR'f

DTO
REAL-WORLD
DEVICE

Fig. 1. A typical bus system contains three major elements:
address bus, data bus, and control bus.

. A. OATA

v IN

t---\ MEMORY ""'~" ROW C£LL
SELECTOR f----1 ARRAY ,,

102<11 X I liT$ --<J.-
,. ,' f---...-\ OATA

~ our,

................. ~
.I

BUS J -DATA

'v-

4 r;-

d ,.._ rs

CONTROL

A BUS

COUJMN CON'Tf* 'M --

" I SELECTOR LOGIC

"-

Fig. 2. Arrangement of a 2102 random-access memory.
Eight of these are needed for 1024 by 8 bits.

means of its address. A memory word
may represent the encoded form of an
instruction, or may be data to be pro
cessed by the CPU.

The CPU has control of memory in
the sense that it can read data and
instructions from memory and write
data back into memory. Only when the
CPU receives a direct memory access
(DMA) signal via the control bus does it
relinquish control of memory. DMA al
lows a high-speed device such as a mag
netic disk to gain access to memory and
control it. As noted earlier, memory that
can be read and written or altered is
termed read/write memory, or random
access memory (RAM) . Memory that
can be read, hut not altered by writing,
is termed read-only memory (ROM).

Input/Output. To the 8080, the out
side world may consist of up to 256
input and 256 output devices. These are
usually referred to as peripherals, and
may include keyboards, printers, dis
plays, etc. Each peripheral communi
cates with the CPU by exchange of data
bytes sent via its associated I/0 port
and the data bus (Fig. 3) . Each periph
eral is assigned an addresss from 0 to
255, much as each memory location is
assigned an address. The portion of the
I/0 system that actually conditions
data for input and output is known as
the interface and generally there is one
interface for each peripheral. The use of
a port for input or output is done under
program control.

Communication between the comput
er and a peripheral is done in one of two
formats-serial or parallel. In parallel
data transfer, all eight bits of the data
byte are handled ,simultaneously. This
permits rapid movement of data. In
serial transfer, data is handled bit-by-bit
instead of a byte at a time. This is slow
er, but has the advantage of using sim
ple hardware (for example, a two-con
ductor cable or a telephone circuit in
stead of a multiconductor bus). When
two computers exchange data via, say,
an intercom line, the parallel data from
buses of both computers is converted to
serial form and transmitted bit-by-bit
down the cable. The IC that performs
the conversion from parallel to bit-serial
form (and vice versa) belongs to a fami
ly of components known as UARTs
(Universal Asynchronous Receiver
Transmitter). If used, the UART is part
of the computer's I/0 interface since it
is used for conditioning data for input
and output.

There are two basic types of serial
communication-RS232 and what is
called the 20-mA current loop. Basical
ly, RS232 is a voltage circuit where a
logic 0 is a positive voltage, and a logic 1
is a negative voltage. The newest version

POPULAR ELECTRONICS

of this voltage interface is RS422-
which uses balanced transmission lines
and differential current sensing to elimi
nate noise. The other commonly used
serial port is the 20-mA current loop in
which a flow of 20 rnA in the series cir
cuit produces a logic f while an absence
of current denotes a logic 0. Both of

. these serial ports are controlled by a
baud rate generator that "clocks" the
operational speed of the port. Most pe
ripherals use either the RS232 or 20-
mA loops for communication.

Program Interrupt 1/0 improves the
efficiency of CPU operation while data
is being transferred to or from a periph
eral that is many times slower than the
CPU itself. Consider a computer pro
cessing large amounts of data, portions
of which are to be output to a printer.
When the peripheral is ready for data, it

ADDRESS
BUS

CONTROL
BUS

DATA ·r-\
BUS L,/

BAUD
RATE •

UART

signals the CPU through a program in
terrupt. When the CPU acknowledges
the interrupt, it completes the current
instruction being executed in the main
program and then automatically
branches to a routine that will output
the next data byte. After the byte is out
put to the printer, the CPU returns to
where it left off in the main program.
The 8080 is capable of handling up to
eight interrupts from eight 1/0 devices
using a special instruction of its instruc
tion set. Data input is similarly handled.

Three·State Logic. There can be
many peripherals connected to, and
communicating along, the same bus
lines. Thus, unless some form of "traffic
control" is used, confusion can reign.
Keeping order is the purpose of the
three-state devices, shown in Fig. 4.

INTERFACE

TO
REAL-WORLD
DEVICES SIGNAL ~!"""1-"'1"'-~

T PARALLEL DATA
..______----;/

11. CONTROL
._ _______________ "'""',.SIGNALS

PERIPHERAL
A

PERIPHERAL
B

PERIPHERAl..
N

PERIPHERAL B
IS ONLY ONE
CONNECTED TO
THE BUS

SEPTEMBER 1981

Fig. 3. Each peripheral communicates with the CPU
through an associated 110 port and data bus.

Fig. 4. A three-state device
is an electronic switch
connected between each
bus line and associated logic.

Simply, a three-state device can be
thought of as an electronic switch con
nected between each bus line and its
associated logic. When the switch is
closed, the associated logic can accept or
deliver signals to the bus. But, when the
switch is open, the bus does not "see"
the logic-in effect, the logic does not
exist for the bus .

Programming. A program for a com
puter or processor consists of a sequence
of operational instructions stored in
memory. Each instruction enables a sin
gle elementary operation such as the
movement of a data byte, an arithmetic
or logical operation on a data byte, or a
change in instruction execution se
quence. The set of all instructions com
mon to a given CPU is referred to as its
instruction set. The size of the instruc
tion set is a measure of the CPU's capa
bilities. Another such measure is the
length of the binary words the CPU can
work with. Generally speaking, the larg
er the instruction set, or word size, the
more powerful the CPU. The 8080 (an
8-bit CPU with 72 instructions) is thus
more powerful than the 4040 (a 4-bit
CPU with 60 instructions). Some micro
processor instruction sets may approach
200 instructions in length.

A program is stored in memory
(RAM or ROM) as a sequence of bytes
that represent the instructions. The
memory address of the next instruction
to be executed is held in an internal reg
ister of the CPU called the Program
Counter. Early in the execution phase of
each instruction, the program counter is
automatically advanced to the address
of the next sequential instruction in
memory. Thus, program execution pro
ceeds sequentially (i.e. memory location
213 is executed after location 212 is exe
cuted, etc.) unless a transfer-of-control,
or BRANCH instruction (8080 JUMP,

C ALL, or RETURN) is executed, which
causes the program counter to be set to a
specified memory address. Program ex
ecution would then continue sequential
ly from this new memory location. The
JUMP instruction specifies the address to
be jumped to, which can be anywhere in
memory. During execution of a JUMP,

the C PU replaces the contents of the
Program Counter with the address con
tained in the J U MP instruction.

Subroutines. A special type of jump
occurs when the stored program CALLS,

or accesses, a subroutine (a program
within a program) . Usually, a subrou
tine is a set of instructions that must be
executed repeatedly in the course of run
ning the main program. Algorithms that
calculate mathematical functions and
routines to input or output data to a
peripheral device are often programmed
as subroutines. The subroutine type of

59

EAST/ n· WEST
~ !JMEGA SALES CO

... - APPLE II PLUS 48K
$1189

$279
$ 769
$ 399

w/3.3 DOS Controller $ 545
APPLE DISK w/o Controller ! 435
BASE II Printer « 599

DIABLO 630 $209
w/Tractor Option $ 245

HAZELTINE 1420 $ - 799
NORTHSTAR HORIZON 32K QD$2975
ATARI 400 16K $
RADIO SHACK 64K Model 2 $
ANADEX DP - 9500 $ 129

NEC MONITOR
TELEVIDEO 912C
TELEVIDEO 920C
TELEVIDEO 950
ATARI 825 Printer
ATARI 850 Interface

Or both together

60

$
$
$
$
$
$
$
$

BOBOlnicroprocessor __________________________ _

jump requires the CPU to store the con
tents of the program counter at the time
the jump occurs (when the CALL instruc
tion is executed). This enables the pro
cessor to resume execution of the main
program after the last instruction of the
subroutine has been executed.

The processor has a special method of
handling subroutines to insure an or
derly return to the main program. When
the CPU receives a CALL instruction
from memory, it advances the Program
Counter to the address of the next se
quential instruction, and saves the
Counter's contents in a special memory
area known as the Stack. The latter
holds the memory address of the instruc
tion to be executed after the subroutine
is completed. The processor then loads
the address specified in the CALL in
struction into its Program Counter.
Consequently, the next instruction that
is to be executed will be the first step of
the subroutine.

Normally the last step of any subrou
tine is a RETURN instruction. When the
processor executes the RETURN instruc
tion, it replaces the current contents of
the Program Counter with the address
contained on the "top" (last entry) of
the Stack. Since this address was the
one originally saved by the CALL instruc
tion, the processor will resume execution
of the calling (main) program at the
point immediately following the original
CALL instruction. Note that this opera
tion is very similar to executing a JUMP

instruction, the difference being that the
JUMP address is contained in the Stack
area rather than in the JUMP instruction
itself.

A subroutine may CALL another sub
routine. This is called "nesting subrou
tines." If the microprocessor being used
has a Stack for storing RETURN ad
dresses, the maximum depth of nesting
subroutines is determined solely by the
depth of the Stack itself. So if the Stack
has space for saving five return ad
dresses, then five levels of subroutines
can be accommodated.

Microprocessors have different meth
ods of maintaining their Stack. Some
store the RETU RN addresses within regis
ters in the processor, but this limits the
levels of subroutine nesting. Others,
such as the 8080, use a reserved area of
RAM for the Stack and maintain a
Stack Pointer (an internal register of
the CPU) which contains the address of
the most recent Stack entry; i .e., the
Stack Pointer always "points" to the top
of the Stack. This type of Stack may be
looked upon as a last-in-first-out
(LIFO) memory, and allows virtually
unlimited subroutine nesting.

Flags. The CPU has a set of flags, or
internal flip-flops that are set or cleared
(i.e., set to a logic I or 0, respectively)

depending upon the results of certain in
structions as they ar« executed. Two
flags of the 8080 are: The "Z~ro Flag,"
which is set if the accumulator is 0 (ac
tually 00000000 binary), and tHe "Car
ry Flag," which may be set)Vhen an
arithmetic instruction causes the accu
mulator to overflow (i.e., tahy or bor
row from an addition or subtraction). In
most microprocessors there are other
flags besides these. The 8080 has a total
of five.

Most processors have instructidils
available that will store the accumulator
and other general-purpose registers and
flags on the Stack temporarily. Like
wise, there are instructions available to
reload the general-purpose registers and
flags with data contained on the top of
the Stack. This allows the contents of
the registers and flags to be saved so
that they may be used in another activi
ty, as for example, a subroutine. Just
before returning to the main program
from a subroutine, the subroutip.e will
restore the registers and flags it used
(assuming, of course, that the same reg
isters and flags were saved on the Stack
prior to using them in the subroutine).

Let's go over one last conq:pt or a
CPU's instruction set, which givl:s the
computer its "decision-making'' power.
This is a special set of transfer-of-coh
trol instructions that transfer program
execution to another portion of memory
if the condition specified in the instruc
tion is met. An example is the 8080
instru<;:tion JUMP-IF-ZERO. ..

If the processor encounters a torldi
tional transfer-of~control (or "condition
al branch") instruction, it checks to see
if the specified condition is met. The
"condition" is always related tt;l ohe of
the flags. In the case of JUMP-tkzE.R.o,
program execution is ttansfttrred io the
JUMP address contained in the instruc
tion in the same mahher as the uncondi
tional iuMP if the Zero Fiag is sbt. If the
Zero Flag is not st:t (cleared), program
execution assumes _it§ seqUential flow
and executes the irlstruction immediate
ly following the JUMP-IF-ZERO. A ptoces
sor usually has a set Of "Compare" in
structions, that set arid(or clear flags
depending upon the result of comparison
of two data words (tl1e 8080 can com
pare two registers, or a register and the
contents of a memory location). A con
ditional branch instruction will often
follow a Coltlpare instruction, so that
the proper execution path may be cho
sen (the decision) based on the results of
the flags from the Compare. It is in this
manner that the CPU makes its "logical
decisions." The 8080 also has various
conditional calls and conditional returns
in addition to the conditional JUMPS in
its instruction set. 0

(To be continued next month)

POPULAR ELECTRONICS

