# design ideas 

## $\mu$ C visualizes hex code

## Abel Raynus, Armatron International, Melrose, MA

| $\mathrm{N} \mu \mathrm{C}$ systems, information ex- |
| :--- |
| $\begin{array}{l}\text { changes usually use the hexa- } \\ \text { decimal 1-2-4-8 format; out- }\end{array}$ Figure $\mathbf{1}$ | put data also appear in this format. Reading the hex code is not a problem; several LEDs connected to the output lines can display the answer. The problem arises when you wish to observe the output data. Many engineers are unfamiliar with hex code and prefer to observe data in the common decimal format. If the value of the output data is less than 10 , you can use an ordinary BCD-to-seven-segment decoder to visualize the hex code on an LCD or an LED display. But what do you do if the value of the output data is greater than 10 ? Unfortunately, no decoders can transform hex code into two seven-segment codes. Of course, you could configure such a decoder using a number of logic gates, but another simple and inexpensive option is available. The key to this option is using a low-end $\mu \mathrm{C}$ to transform the hex code into two BCD codes. In Figure 1, the data displayed ranges from 0 to 15 . Thus, you need only 4 -bit hex code, using four input and eight output $\mu \mathrm{C}$ lines.

Figure 1 uses the approximately $\$ 1$ Motorola MC68HC705J1A, with 14 I/O pins. The input lines Pin B0 to Pin B3 re-
$\mu C$ visualizes hex code ............................ 133
Simple circuit times
bathroom fan................................................ 134
Termination supply tracks
one-half core voltage............................... 136
Switch debouncer isolates
input and output....................................... 138
Circuit detects reset source....................... 140
Interface LCD with ease ........................... 142
ceive the 4-bit hex code to be displayed. The $\mu \mathrm{C}$-assembly program in Listing 1, converts the hex code into two BCD codes, which appear on lines Pin A0 to Pin A3 (units) and Pin A4 to Pin A7 (tens). These outputs drive the two standard BCD-to-seven-segment decoders, which, in turn, drive the common-cathode LED displays. You can use the same
method for an expanded data range, but you need more I/O lines, decoders, and displays. For example, the 8-bit hex code covers the data range 0 to 255 , but it needs eight input lines, 12 output lines, and three decoders and displays. You can download Listing 1 and the "include" file in line 3 from EDN's Web site, www.ednmag.com. Click on "Search Databases"
and then enter the Software Center to download the file for Design Idea \#2518. (DI \#2518)

To Vote For This Design, Circle No. 301

## Simple circuit times bathroom fan

## Maxwell Strange, Goddard Space Flight Center, Fulton, MD

FORGET TO TURN off the ceiling fan in your bathroom? Install the simple timer in Figure 1. It's located out-ofsight in the fan unit, and you turn it on via the wall switch. The circuit costs virtually nothing, using "junk" parts. When ac power appears, a simple rectifier develops approximately 7 V across filter capacitor C. This voltage powers the LM2905 analog timer and simultaneously triggers it via trigger-input Pin 1; output Pin 7 then goes low, turning on the solid-state relay and fan. Low-leakage capacitor $\mathrm{C}_{\mathrm{T}}$ and resistor $\mathrm{R}_{\mathrm{T}}$ set the time delay; for the values shown, the delay is 1000
sec , or approximately 17 minutes. At time-out, Pin 7 goes high, turning off the relay. For most fans, this relay can be a small, pc-mountable unit rated at as little as 0.5 A ac load current. These relays typically turn on reliably at 3 V . You can use resistor R to drop excess voltage, thereby reducing loading on the power supply.

The p-channel JFET turns on when the power switches off, rapidly discharging $\mathrm{C}_{\mathrm{T}}$ to allow immediate recycling. The $10-$ $\mathrm{k} \Omega$ series resistor makes the circuit inherently safe; in a worst-case failure, line voltage appears across this resistor and
develops a harmless 1.4 W . You can easily adapt this circuit to other applications. You can change the timing or make it linearly adjustable, and you can program the solid-state relay to turn on instead of off at time-out, by connecting Pin 8 of the timer to Pin 4 instead of Pin 2. You can also reverse the action of the solidstate relay by reversing the control inputs. (DI \#2520)

## To Vote For This Design, Circle No. 302

## Figure 1

120V AC


Gain control of your bathroom fan by using this simple time-out circuit.

## ${ }^{\text {design }}$ ideas

# Termination supply tracks one-half core voltage 

Chester Simpson, National Semiconductor, Santa Clara, CA

MODERN $\mu$ Ps TYPICALLY require core voltages of 2 to 3 V . They also require "termination" voltages that, for best performance, should equal half the core voltage. The problem is, core voltages vary among CPUs, and some systems even incorporate variable-corevoltage supplies that allow systems to adjust the voltage on the fly, thereby increasing or reducing CPU operating speed to optimize power consumption. A termination-voltage power supply that maintains an output of one-half $\mathrm{V}_{\text {CORE }}$ over a range of core voltages is highly de-
sirable, as the core voltage can vary without upsetting the termination-voltage set point. The circuit in Figure 1 is a 6A pow-er-supply design that generates a termination voltage regulated to $1 / 2 \mathrm{~V}_{\text {Core. }}$ The circuit targets applications in which the core voltage is approximately 1.8 to 3.6 V .
An LM2636 synchronous-rectifier controller switching at 300 kHz provides an efficient power converter that operates from a 5 V input. Because the LM2636 is designed to operate at a fixed output voltage (as determined by control bits 14 through 18), the circuit in Figure 1 uses
a different control scheme to force the regulated output to track at one-half $\mathrm{V}_{\text {CORE }}$. Resistors $\mathrm{R}_{1}$ and $\mathrm{R}_{2}$ halve the core voltage, and this voltage serves as the reference in error amplifier $\mathrm{IC}_{1 \mathrm{~A}}$. The amplifier compares the one-half $V_{\text {CORE }}$ reference with the termination output voltage obtained through $\mathrm{R}_{3}$ and adjusts its output to lock the termination voltage at one-half $\mathrm{V}_{\text {CORE }}$. In this way, the corevoltage signal sets the termination voltage. $\mathrm{IC}_{1 B}$ is a unity-gain inverter that corrects the phase of the feedback signal that goes to the input of the LM2636's inter-

Figure 1


NOTES:
USE LOW-ESR ALUMINUM ELECTROLYTIC CAPACITOR SUITABLE FOR $300-\mathrm{kHz}$ SWITCHING APPLICATIONS
UNLESS OTHERWISE SHOWN, RESISTOR TOLERANCES ARE 5\%.
mLCC DESIGNATES A CERAMIC CAPACITOR WITH AN X7R OR X5R TEMPERATURE RANGE.

Optimize your CPU's performance by feeding it a termination voltage that's exactly half the core voltage.
nal error amplifier. $\mathrm{R}_{4}$ sets the gain of the internal amplifier to unity. $\mathrm{R}_{5}$ forces a soft start on turn-on and also eliminates overshoot. $\mathrm{IC}_{1 \mathrm{C}}$ amplifies the 1.23 V internal reference to approximately 2.5 V , which sets the operating point for the error amplifier, $\mathrm{IC}_{1 \mathrm{~A}}$.

The 2.5 V also connects to the sense in-
put of the LM2636, which would normally sense the regulated output voltage. Because the termination output voltage must be variable (to track the core voltage), a fixed 2.5 V goes to the sense pin, and the control pins 16 and 18 are grounded. These connections program the internal DAC for a 2.5 V output. This
scheme prevents the LM2636's internal error-detection circuitry from shutting down the part in response to an undervoltage or overvoltage condition. $\mathrm{R}_{3}, \mathrm{R}_{6}$, $\mathrm{C}_{1}$, and $\mathrm{C}_{2}$ provide loop compensation. (DI \#2517)

To Vote For This Design, Circle No. 303

# Switch debouncer isolates input and output 

Phill Leyva, Maxim Integrated Products, Sunnyvale, CA

MODERN PROGRAMMABLE-logic controllers (PLCs) for automated process-control systems have either 16 or 32 inputs and accept ac voltages of 24 to 120 V . A single circuit (a relay for isolation and an RC network with a Schmitt trigger to debounce signals to the processor) can debounce all the PLC signals in sequence. However, this approach slows real-time data processing. Such debounce circuits also produce delay times that change with relay wear and capacitor aging. In the PLC program, you can use a debounce timer for each input,
but this technique increases the pro-gram-scan time and ties up valuable timers. The solid-state, electrically isolated circuit in Figure 1 debounces single inputs without slowing the PLC module. Optoisolators $\mathrm{IC}_{1}$ and $\mathrm{IC}_{2}$ provide electrical isolation for the ac sources at the input and output. $\mathrm{IC}_{3}$ is a CMOS switch debouncer whose output (a 4 V logic high) appears following a fixed $40-\mathrm{msec}$ delay. A $63-k \Omega$ pullup resistor, connected internally between IN and $\mathrm{V}_{\mathrm{CC}}$, forms a voltage divider with $R_{1} . R_{1}$ 's value ensures a logic low of less than 0.8 V at IN when
$\mathrm{IC}_{1}$ 's optotransistor (an emitter follower) is off.

The two LEDs in $\mathrm{IC}_{1}$, which illuminate the phototransistor on alternate half cycles of the ac-input current, rectify this current. Most optoisolator applications set the current-transfer ratio (CTR) to more than 10 to ensure an accurate reproduction of the input signal. The circuit in Figure 1, however, sets the CTR to less than 1, which ensures that the emitter follower does not turn off as the ac current goes to zero twice in each cycle. $R_{2}$ biases the emitter follower such

Figure 1


This debouncer circuit allows an isolated ac voltage to control a separately isolated ac source.

## design: <br> ideas

that $\mathrm{IC}_{3}$ 's IN signal remains greater than the high level, 2.4 V , during these zero crossings. This action eliminates the capacitor normally found in debouncing circuits. IC's OUT pin drives the n-channel MOSFET, and $R_{3}$ 's value is such that the resulting current flow (in the MOSFET and LED) is approximately 5 mA . When the MOSFET turns on, the LED activates $\mathrm{IC}_{2}$ 's zero-crossing triac driver. Thus, when the power triac turns on, an ac source connected to the output drives $\mathrm{R}_{\text {LOAD }}$ with as much as 4 A (Figure 2). Turning on the triac at zero crossings eliminates EMI and reduces the turn-on stress in the triac. $\mathrm{R}_{4}$ limits current into the triac driver $\left(\mathrm{IC}_{2}\right)$ to 1 A . Each source can be either 24 V ac (as shown) or 120 V ac. (DI \#2521)

To Vote For This Design, Circle No. 304

Figure 2


An ac switch (top trace) turns on and then briefly bounces off; the output of the associated debouncer circuit turns on cleanly (bottom trace).

## Circuit detects reset source

Shyam Tiwari, Sensors Technology Pvt Ltd, Gwalior, India

EMBEDDED SINGLE-BOARD Computers do not rely only on power-on resets; they often use multiple sources to reset CPUs to prevent CPUs from being locked into endless loops. However, in
most cases, CPUs start from the starting points of memories to fetch their first code, because they have no way of knowing what generated the reset. The circuit in Figure 1 allows a CPU to know the

Figure 1


This circuit detects the source of a CPU-reset signal.
source of a reset. It stores in an 8-bit latch reset-control input data that the CPU can read. If an input frequently resets the CPU, the CPU can then report the error source to the user, using LEDs or other indicators. In the circuit of Figure 1, an experiment combined eight independent reset-signal sources into a wired-OR single output. The 74 HCT574 stores the 8 bit reset data at the rising edge of the signal. The latch records no other signal if the signal appears after the rising edge of the first signal. If the CPU finds data that resembles a reset signal in the latch that the signal does not reset, then the reset pulse is too narrow to effect a reset. The CPU recognizes this signal after reading the information from the latch. The output of the latch is a tristate structure; the CPU reads the output using active chipenable and read-input signals. (DI \#2516)

## Interface LCD with ease

## Bharat Mehta, Space Applications Center, Ahmedabad, India

ALPhanumeric LCDs find use in various embedded systems. In these systems, $\mu \mathrm{Cs}$ often lack I/O resources, so you must make optimum use of the available resources. LCDs have a
bus-oriented interfacing structure, which consumes 11 I/O lines (eight data lines and three control lines). You cannot always afford to spare this many I/O lines. Most applications need to write the data
to the LCD and then read from it. In these situations, you can omit one control pin (of three) for reading data and save one additional I/O-port pin. The circuit in Figure 1 saves I/O pins. It uses an 8051

## Figure 1



Save $\mu \mathrm{Cl} / \mathbf{0}$ pins by effecting a serial-to-parallel conversion with a shift register.

Figure 2


Extend Figure 1's scheme to long distances by using line-driver and -receiver ICs.
$\mu \mathrm{C}$, and only four I/O pins (P1.0 to P1.3) drive the LCD, instead of the 11 pins other displays require. Data transfers in a serial mode through the P1.0 port of the $\mu \mathrm{C}$. The $\mu \mathrm{C}$ interfaces to Pin 2 of $\mathrm{IC}_{1}$, a 74HCT4094 8-bit shift register. Serial data advances on every clock pulse and transfers to the shift register. The register converts the serial data to parallel data, available on the output pins Q0 to Q7. The P1.1 port of the $\mu \mathrm{C}$ provides the clock.

The data bus, D 0 to D 7 , of the LCD module connects to the shift register's outputs. Software carries out the data
transformation and displays the result on the LCD (Listing 1). The same design can drive various types of alphanumeric LCDs-for example, single-line-to-multiline types, with different character lengths on each line. You can configure the circuit to send data over a long distance for remote LCD readouts (Figure 2). You can transmit serial data through a differential line-driver IC such as the 26LS31 ( $\mathrm{IC}_{1}$ ). You can feed the output of $\mathrm{IC}_{1}$ to either twisted-pair wires or a parallel pair of wires for transmission to a remote location. At the other end of the remote location, you can retrieve the data
through a differential line receiver such as the $26 \mathrm{LS} 32\left(\mathrm{IC}_{2}\right)$. The output of $\mathrm{IC}_{2}$ drives $\mathrm{IC}_{3}$, which drives the LCD as in

## Figure 1.

Listing 1, written in 8051 assembly code, provides the sample text "Hello, EDN Reader" on a single-line, 16-character LCD. You can download Listing 1 from EDN's Web site, www.ednmag.com. Click on "Search Databases" and then enter the Software Center to download the file for Design Idea \#2519. (DI \#2519)

To Vote For This Design, Circle No. 306



## desiogn= @ேQ

## Design Idea Entry Blank

Entry blank must accompany all entries. $\$ 100$ Cash Award for all published Design Ideas. An additional \$100 Cash Award for the winning design of each issue, determined by vote of readers. Additional \$1500 Cash Award for annual Grand Prize Design, selected among biweekly winners by vote of editors.

To: Design Ideas Editor, EDN Magazine 275 Washington St, Newton, MA 02458
I hereby submit my Design Ideas entry.
Name $\qquad$
Title
Phone $\qquad$
E-mail $\qquad$ Fax $\qquad$
Company $\qquad$

Address $\qquad$

Country ZIP

Design Idea Title $\qquad$

Social Security Number
(US authors only)
Entry blank must accompany all entries. (A separate entry blank for each author must accompany every entry.) Design entered must be submitted exclusively to EDN, must not be patented, and must have no patent pending. Design must be original with author(s), must not have been previously published (limited-distribution house organs excepted), and must have been constructed and tested. Fully annotate all circuit diagrams. Please submit text and listings by e-mail to b.travis@cahners.com or send a disk.

Exclusive publishing rights remain with Cahners Publishing Co unless entry is returned to author, or editor gives written permission for publication elsewhere.

In submitting my entry, I agree to abide by the rules of the Design Ideas Program.

Signed $\qquad$

Date $\qquad$

Your vote determines this issue's winner. Vote now, by circling the appropriate number on the reader inquiry card.

