
13 

Using a microprocessor 
2 - Hardware and programming 

by J. Skinner, Leafields Engineering Ltd 

At the.end of the first part of the article, 
the flow chart had been derived. 
Consquently, the designer is now able 
to develop the programme and translate 
his thoughts into hardware. 

Programming 
In the completed programme, each 
instruction is denoted by a mnemonic 
and a binary machine -code word. The 
binary coding is used by the micropro- 
cessor and programmed instructions 
must end up in this form, but the 
procession of ones and zeros is not the 
easiest way to see what is happening. It 
is common, therefore, to use the mne- 
monic form of the instruction for 
juggling about with a programme and 
to convert it into machine code later, 
with the aid of the instruction -set table. 
Assembler programmes will, when run 
on a microprocessor, convert mnemon- 
ic codes into machine codes. The 
abbreviated instruction set for the 8080 
is shown in Table 1. 

Points to bear in mind when tackling 
the programme include the way in 
which each instruction is handled by 
the c.p.u. Two or three bytes are needed 
to carry out each instruction and this 
fact must be taken into account to 
preserve the logical sequence. The 
programme is held in memory in a 
sequence in which the step number is 
the actual memory address, so that the 
order of addressing the memory by the 
c.p.u. is vital. 

I /O. The simplest way of selecting the 
I/O block required for a particular 
function is to use binary code (1, 2, 4, 8, 

16, etc.) which can be produced auto- 
matically by the c.p.u. This binary code 
can be read into the c.p.u. in the 
ordinary way as data and transferred to 
the address lines when needed. In this 
way, each address line calls up a 
separate I/O block, as in Fig. 4 of part 1. 

Jump instructions. Instructions which 
call for the programme to jump consist 
of three bytes, the second and third of 
which are the least significant and most 
significant bits respectively of the 
address to which the programme is to 
jump. 

Wireless World, September 1977 

Table 1. Abbreviated instruction set for the 8080, showing only those instructions used in the 

programme discussed. 

Mnemonic Machine code Machine/code (hex) Function 
MVI, A 001 11110 3E Load accumulator 

OUT 11010011 D3 Output 

E1 11111011 FB Enable interrupt 

HLT 01110110 76 Halt 

MVI, D 00010110 16 Store in register D 

MOVA, D 01111010 7A Move data from register D to accumulator (A) 

IN 11011011 DB Input 

ANI 11100110 E6 AND with data in accumulator immediately 

FO 11110000 FO Bits generated to perform AND function in text of article. Not part 

of instruction set 

ARC 00001111 OF Shift accumulator right 

CMPL 10111101 BD Compare the content of L with content of accumulator 

JM 11111010 FA Jump if result of last operation is minus quantity 

DCRD 00010101 15 Decrement or count down content of register D 

JNC 11010010 D2 If the relevant "flag "' is zero, jump: (Jump on no carry) 

DI 11110011 F3 Disable interrupt 

JMP 11000011 C3 Jump to assigned address unconditionally 

Register code 
000 
001 
010 
011 
100 
101 
110 
111 

Register letter 
B 

c 
D 

E 

H 

Memory 
Accumulator 

Rotation. The data held in the accumu- 
lator can be shifted to the right or left. 
As it moves out of the register, the data 
will be lost unless it is fed back to the 
beginning, in which case eight shifts 
will return an 8 -bit register to its 
ordinary state. This process is termed 
"rotation" for obvious reasons. A bit 
shifted out of the register can be tested 
for a value of 1 or 0 and a condition 
"flag" signal set or reset. For example, 
at address 52 (34 in hexadecimal or 
00110100 in binary) the contents of the 
control valve register E have been 
transferred to the accumulator, rotated 
right and transferred back to E. If the 
flag bit is zero, the programme is to 
jump to the next control line address. 

Initializing. It may be necessary,' as in 
this programme, to see that the output 
ports are in the correct condition, since 
the reset function of the 8080 (wired) is 

only concerned with the programme 
counter; c.p.u. registers must be set to 
their initial conditions. Immediately on 
switching on, therefore, the accumula- 
tor and valve controls are set to zero. 
Since the programme has now started, 

it must be halted and an interrupt start 
signal awaited for the main part of the 
programme to continue. 

Coding. It is common to translate the 
pure binary of the machine code into 
hexadecimal for ease of handling. The 
code is shown in Table 2 for those who 
are unfamiliar with it. For example, 

Table 2. Decimal, binary and hexadecimal 
equivalents. 

decimal binary hexadecimal 
0 0000 0 

1 0001 1 

2 0010 2 

3 0011 3 

4 0100 4 
5 0101 5 

6 0110 6 

7 0111 7 

B 1000 8 

9 1001 9 

10 1010 A 

11 1011 B 

12 1100 c 
13 1101 D 

14 1110 E 

15 1111 F 

www.americanradiohistory.com

www.americanradiohistory.com


Wireless World, September 1977 

using the eight -bit word of the 8080, the 
instruction to read in data is 'IN' 
(mnemonic), 11011011 (binary), DB 
(hexadécimal). 

Programme. The final form of the 
programme is seen in Table 3, in which 
the hex. code is used for the programme 
address and machine -language instruc- 
tions, for which mnemonics are also 
given. Incidentally, the division of the 
eight -bit machine code into two four -bit 
words, each being given a hex. code, 
does not mean that this is how the code 
is made up. In the MOV instructions, for 
example, the first two bits are always 01, 
followed by two, three -bit addresses for 
destination and source of the data to be 
moved. Register B has the code 000 and 
register D is coded 010; as in Table 2, so 
that the instruction "Move the contents 
of register B to register D" would be 
coded 01 010 000, which can be grouped 
0101 0000, translating into hex. code as 
50. 

Use of r.a.m. Where the data storage 
provided in c.p.u. is not sufficient, extra 
capacity in the form of r.a.m. may be 
included, as shown in Fig. 1. The 
memory element is coupled to address 
data -bus lines in exactly the same way 
as the r.o.m. and I/O elements, but an 
additional control function has to be 
provided in order to distinguish 
between the r.o.m. amd r.a.m. elements 
in the read mode. Usually, there are 
spare address lines available and these 
can be used to control the memory 
elements via the chip -select (CS) func- 
tion provided. Thus if A0 -A7 are used 
for normal addressing for 8 -bit, 
256 -word r.o.m. and r.a.m. A8 can be 
used to supply CS for r.a.m. For the 
r.o.m. it is necessary to invert A8 and 
gate with memory read (MR). Instruc- 
tions involving r.a.m. must then include 
an address code starting at 2'. A similar 
technique starting at higher addresses 
may be used where a larger r.o.m. is 
required. If insufficient address lines are 
available for this technique to be used, 
address decoding must be used, follow- 
ing the same general philosophy. 

A technique known as "memory 
mapping" is described in the INTEL 
users manual. This technique treats the 
I/O elements as part of the memory 
array, selection being via the appro- 
priate address code. This has the 
advantage of allowing direct transfer of 
data between I/O and registers of 
memory, without data having to be 
routed through the accumulator. 

Hardware. 
The complete system, used for develop- 
ing and Rroving the programme 
described above, is shown in Fig. 1, with 
a glossary in Table 4. Although r.a.m. 
was not required for this application, it 
has been included so as to be available 
for future use. This configuration will, 
we hope, prove to be universal. There 
are several proprietary m.p.u. systems 
now available in p.c. form, although 

53 

Address 
1Hx.) 

Table 3. Complete programme 

Mach. Code Mnemonic Function 
Hx.) 

0 3E MVI. A Set accum. 
1 00 0 =0 
2 D3 OUT Output '0' to valve controls 
3 08 8 (I/O block address =8) 
4 F8 EI Enable interrupt 
5 76 HLT Halt (and await interrupt start signal) 
6 D3 OUT Output 'O' to card select column and complete flag 
7 10 16 (I /0 block address= 16) 

8 16 MVI, D Store number of card columns to be read in register 'D' 
9 07 7 (0 to 7) 

A 1E MVI. E Store number of valves to be processed in register E 

B 80 80H (0 to 7 in binary) 
C 7A MOVA, D transfer from register D to select 
D D3 OUT next card column 
E 10 16 I/O address 

DB IN Fetch card m.s.b. data from 
10 01 1 I/O address 1 

11 67 MOVH, A Store card m.s.b. data in register 'H' 
12 DB IN Fetch card 1.s. b. data and d.v.m. I.s.b. data 
13 02 2 from I/O address 2 

14 E6 ANI Blank off d.v.m. I.s.b. (This is the AND function 
15 FO FO referred to in part 1 of the article.) 
16 OF RRC 

1 OF RRC 
Shift right 4 times 

18 OF RRC 
19 OF RRC 

1A 6F MOVL, A Store card I.s.b. data in register 'L' 

18 7B MOVA, E Transfer data from register E to 

1C D3 OUT select next valve 
1D 08 8 I /0 address 
1E DB IN Fetch card I.s.b. and d.v.m. I.s.b. data 
1F 02 2 from 1/0 address 2 

20 E6 ANI Blank off card I.s.b. (The AND function.) 
21 OF OF 

22 BD CMPL Subtract card I.s.b. from d.v.m. I.s.b. 

23 FA JM Return to Fetch if result negative 
24 tE I.s.b. jump address 
25 00 m.s.b. jump address 
26 DB IN Fetch d.v.m. m.s.b. data 

27 04 4 I/O address 4 

28 BC CMPH Subtract card m,s b. from d.v.m m.s.b 

29 FA JM Return to fetch if result negative 
2A 26 I.s.b. jump address 
2B 00 m.s.b. jump address 
2C 3E MVI. A Set accum. to 

2D 00 0 

2E D3 OUT Output '0' to control valves 

2F 08 8 1/0 address 
30 15 DCRD Count down card column select register 

31 7B MVA. E 

32 OF RRC Count down control valve select register 

33 5F MOVE, A 

34 D2 JNC If flag is zero. return and select next 

35 7A C control line I.s.b. jump address 
36 00 m.s.b. jump address 
37 3E MVI, A 

38 08 8H Output signal to 'complete' flag 
39 D3 OUT 

3A 10 16 

3B F3 DI Disable interrupt 
3C CB JMP Return to start 

3D 00 I.s.b. lump address 

3E 00 m s.b lump address 

none has yet been seen with the I/O 
structure as described in this article,' 
most of the products being best suited 
to data -transmission applications. It is 
appreciated that most of the interface 
elements, such as the universal, 
asynchronous, receiver -transmitter 
(u.a.r.t.) and programmable peri- 
pheral interface (p.p.i.) could be used in 
the system of Fig. 1; but they are 
unnessarily complicated and more 
expensive that the simple device 
described (actually, little more than an 
8 -bit latch). Most of the system com- 
ponents have already been described 
but some additional comments may be 
helpful. 

System control. This is a single element 
provided by Intel for decoding and 
synchronizing the control bus. A bi- 

directional data bus driver is included, 
as is isolation of memory and I/O 
controls. 
I /O. The Intel 8212 element is used, as 
mentioned above, for sheer simplicity. It 
is basically an 8 -bit latch with 3 -state 
output for bus operation. A mode 
control enables either input or output 
function to be selected. In the system of 
Fig. 1, this is determined by a wired 
link, but could also be programmed by 
the c.p.u. Interrupt and clear facilities 
are provided, these not being required in 
this application. 
R.a.m. 8 bits x 256 words of storage are 
provided in the form of 2, 4 -bit, 256 -word 
elements. The two sets of four data bits 
appear side by side to form the 8 -bit data 
word. Addresses are common to both 
elements. Gating for r.a.m. /r.o.m. 
selection is provided by a single 7400. 

www.americanradiohistory.com

www.americanradiohistory.com


54 Wireless World, September 1977 

+V 

Start 

Reset 

RESIN 

IN1 

HLD 

c.p.u. 

(8080A) 

Ready 

Reset 

CE1 

CE2 

D 

R/W R/W 
CEI 

CÉ2 r.o.m. r.o.m 
(8101) 

Ae 

Ao., 

)D 
(8101) 

A 
Address bus (16 Niles) 

U 

Do 
tData bus(8 lines) 

WR 

lIf 
4', 't 
CLOCK 

(8224) 

DEIN 

HLDA 

Sync 

ST5TB 

Rdy in 

System 
control 

(8228) 

ó 

OStep 

ThRun 

15k 

A O 
1/2 

74121 

B 

+V 

DV 

1/2 
7474 

CK,. á 

Step 

V 

D 
P 

0 
1/2 

7474 

CKC 

Q 

cs p.r.arn 
(8702) 

DS, 

0 

MD 

4 Ó 

I/O 
(8212) 

FS, 

MD 

4 o° 

I/O 
(8212) 

2 

ixr 

0 

MD 

Q d 

I/O 
(8212) 

4 

o 

n 

I/O 
(8212) 

MAD 8 

DS, 

MD 

a o 

-+ INIA 
MÉMR 

MEMW 

In 1/0R -I /0W 

I 0 
(8 12) 

16 

* Protection it need.,d 

I/O data 

P.r.o.m. An 8 x 256 -bit p.r.o.m. is 
shown, whose size can easily be 
increased, since there are spare address 
lines available. A r.a.m. was used for this 
function during development, a plug -in 
version simulating the 8702 p.r.o.m. 
being purchased. This could be con- 
structed very easily and cheaply but, 
since we were more interested in 
developing the m.p.u. technique than 
developing a r.o.m. simulator, we 
decided to buy one. The simulator is 
provided with hex. coded programme 
and address thumbwheels and binary 
display of the data which, apart from its 
usefulness for programming, we found 
useful during programme check out. 

R.a.m. and r.o.m. speed. The 8080 c.p.u. 
is designed to operate with memory 
components having an access time of 
approximately 450- 550ns, although 
times of up Lo 850ns are suggested as 
being suitable. Cost is, of course, related 
to speed and many users will wish to use 
the slower devices - the 8702 for 
example has a maximum access time of 
1.3µs. Provision for slower devices can 
be made by controlling the "ready" 
input to the c.p.u. (the clock controller 
in this example). One or more clock 
periods are used to provide a "wait" 
state suited to the access time of the 
memory system used. The two func- 
tions of 850ns memory access and 
single -step drive are incorporated in the 
complete system of Fig. 1. 

De- bugging. Faults are of two kinds - 
hardware and software. Monitoring the 
data lines enables the programme 
sequence to be verified, and address -line 

Fig. 1. The complete circuit of a universal 
microprocessor. The three modules at the 
lower left form the 850ns memory access 
(right and left i.cs) and a single -step 
function (centre and right i.cs). 

monitoring can also be useful, while 
buffered 1.e.ds plugged into a spare 
socket or even wired in permanently 
will prove invaluable even to the 
experienced. Checking correct opera- 
tion of all components, with the excep- 
tion of the c.p.u. is straightforward. The 
c.p.u. can prove difficult to test because 
of its high operation speed and also 
because of its complexity. Fault finding 
equipment is costly and substitution is 
the usual way out. 
P.r.o.m. protection. Intel mention in 
their Memory Design Handbook the 
need to protect p -type p.r.o.m. data 
inputs from the negative levels pro- 
duced on the data bus by an n -type r.a.m. 
The 8702 p.r.o.m. is a p -type and the 8101 
r.a.m. is an n -type so that protection 
should be provided in order to avoid 
damaging the p.r.o.m. All that is 
required is the inclusion of a series 
limiting resistor of 25051 and shunt 
diode, in each of the p.r.o.m. data input 
lines. 

Conclusion 
This is a system which has been tried 
and proved. The programme may be 
used to prove hardware. It is hoped that 

Table 4. Abbreviations used in system 
diagram. 

E1 Chip enable 

CE2 
R/W Read /write input 
OD Output disable 
tNT Interrupt request 
INTA Interrupt acknowledge 
HLD Hold 
WR Write output 
DBIN Data bus in. Signal to system controller that data bus ,s in 

input mode 
HLDA Hold acknowledge. Signal in response to hold signal 
STSTB Status strobe 
CS Chip select input 
OSI Device select input 
MD Mode 
MEMR Memory read 
MEMW Memory write 
IiOR I/0 read 
I /OW I/O write 
Negated names indicate that the function is active when the 
signal is low. 

the stages in development of both 
hardware and software have been dealt 
with in sufficient detail for constructors 
to proceed with their own designs. 
Neither the hardware nor software is 
considered to be unique but it is hoped 
that it will prove to be applicable to 
many future problems. 

The author gratefully acknowledges 
the assistance of Howard Kornstein of 
Intel and the staff of Rapid Recall Ltd., 
in developing the system. Thanks are 
also due to K. Sharman who construct- 
ed and tested the system and also 
developed the single stepping facility. 

www.americanradiohistory.com

www.americanradiohistory.com



