
106 ElEctronics ProjEcts vol. 26

the AVR 8535 microcontroller
and its new version ATme-
ga8535 are versatile, high-

performance but low-cost chips. This
article series covers typical applications
of this processor illustrating its power
and cost-effectiveness in an embedded
system.

The AVR family comprises several
chips, all with almost the same instruc-
tion set. Of them, the 90S8515, 90S8535
and ATmega8535 chips are low-cost and
readily available with the complete set of
port pins. The ATmega8535-16 is more
powerful and available for around Rs
250. Capable of running at 16 MHz and
achieving almost 16 million instructions
per second (MIPS), it is one of the fastest
devices available in the market today.

Using ATmega8535, you can build
a microcontroller-based project with
following features:

1. Four ports, of which one of them
has eight analogue-to-digital converter
(ADC) channels

2. ADC conversion time is as little
as 60 microseconds. Imagine adding
an external ADC to 8051 or any other
microcontroller chip—that would have
taken the cost to over four digits. And
mind you, it is a 10-bit ADC, not just
8-bit.

3. If an 8MHz crystal is connected,
each instruction executes in 1/8th of
a microsecond. The 89C51 at 12MHz
clock had its internal division by
twelve, so it ran at just one microsec-
ond. Thus, ATmega8535 chip is eight
times faster with an 8MHz crystal.
However, you can also use a higher-
frequency crystal. The chip is basically
a RISC processor that executes most
instructions in one clock cycle itself.

4. The chip has RS-232 transmit and

 K. padManabhan,
p. SwaMinathan & S. ananthi

uSing aVr MicrocontrollerS
For projectS

receive terminals much like the 8051
family, but it can support even higher
baud rates.

5. It has quite a few internal regis-
ters, RAM, EEPROM and CODE mem-
ory (flash memory in excess of 4kB).

6. The instruction set is versatile,
complete with several arithmetic, logic
and transfer instructions and related
jump instructions, etc.

7. An analogue comparator pin,

which can compare an external ana-
logue voltage and take control action.

8. Reset is possible through the
software, and a watchdog is provided.
Power-down or sleep modes are avail-
able.

9. An additional serial interface,
known as the SPI bus, with three wires:
data (2) and clock (1). These pins can
be used for programming or loading
the code from a PC through the printer
port or serial port. For programming
the internal flash memory locations,
just 5V supply is enough.

10. Two PWM output pins, which
are useful for power control applica-
tions.

11. Several timers as in other mem-
bers of the 8051 family, but with much

better time resolution.
12. Additional

features like input
capture and output
compare.

Here, we shall
delve into the chip’s
operations with typi-
cal programs and cir-
cuits. All the develop-
ment tools including
‘C’ compiler are avail-
able for free from the
Internet.

The features of
ATmega8535 make it

the right candidate for various embed-
ded control applications. Even a digital
filter can be implemented on the de-
vice, provided you are fully conversant
with its hardware and software fea-
tures. You can download the databook
of ATmega8535 from the ‘ATMEL.com’
Website to understand its features and
work out simple applications.

The sample programs given here
can be used to yield a powerful con-

Fig. 1: Pin configuration of ATmega8535

Fig. 2: A simple LED display circuit using ATmega8535

107ElEctronics ProjEcts vol. 26

delay: clr r19

 ldi r17,$ff

 loop1: inc r17

 brne loop1

 inc r19

 brne r19,loop1

 ret

This program helps you under-
stand:

1. Access to the output port (here
port B, where LEDs are connected)

2. The different parts of a typical
assembler program

3. Different conventions like use
of semicolon, upper-/lower-case let-
ters, etc

Explanatory notes for
LED.ASM
1. In Assembly language, all the text on
a line after a semicolon (;) is treated by
the cross-assembler as comments and
it does not use it for code formation.

2. Including the m8535def.inc
processor-specific file in Assembly pro-
gram means all the I/O register names,
I/O register bit names, etc appearing
in the datasheet can be used. Failure to
include this file may result in a num-
ber of error messages. Ensure that this
file is placed in the same directory as
your source code file (LED.asm in this
case). Else, give complete path for the
m8535def.inc file.

3. Following conventions have been

Fig. 3: Circuit diagram of AVR programmer (Pod)

Parts LIst
Parts list for LED display circuit (Fig. 2)
Semiconductors:
IC1 - ATmega8535
LED1-LED8 - Red LED
Resistors (all ¼-watt, ±5% carbon):
R1 - 4.7-kilo-ohm
R2-R8 - 470-ohm
Capacitors:
C1 - 1µF, 10V electrolytic
C2, C3 - 22pF ceramic disk
Miscellaneous:
XTAL - 8MHz
Parts list for aVr Programmer (Fig. 3)
Semiconductors:
IC1 - 7805 5V regulator
D1-D4 - 1N4007 rectifier diode
Resistors (all ¼-watt, ±5% carbon):
R1, R2 - 1-kilo-ohm
Capacitors:
C1 - 1000µF, 16V electrolytic
C2 - 0.1µF ceramic disk
Miscellaneous:
X1 - 230V AC primary to 6V,

250mA secondary transformer
 - 40-pin ZIF socket
 - 25-pin D-type male connector
Parts list for message display on the LCD (Fig. 6)
Semiconductors:
IC1 - ATmega8535
Resistors (all ¼-watt, ±5% carbon):
R1 - 4.7-kilo-ohm
VR1 - 10-kilo-ohm preset
Capacitors:
C1 - 1µF, 10V electrolytic
C2, C2 - 22pF ceramic disk
Miscellaneous:
XTAL - 8MHz
 - 16x1-character Hitachi make

LCD or 16×2-character LCD

troller for many applications like a
filter or motor controller.

Programming the chip
The AVR source code file with ‘.asm’
extension can be written using either
the EDIT, Wordpad or notebook pro-
grams.

As with all microprocessor or mi-
crocontroller programs, for the source
code, one has to enter the program by
mnemonics and assembler directives
and then convert the same into a code
list for the program. (Directives are
assembler commands used to control
the input, output and data allocation
of the assembler. These are, however,
not translated into op-codes directly.)
This is done using the cross-assembler
software ‘avrasm.exe.’

To describe the modus of writing
of an Assembly language program, a
simple program (LED.ASM) for AVR
processors is given below:

LED.ASM

.NOLIST

.INCLUDE “m8535def.inc”

.LIST

.DEF mp = R16

.org $0000 ; Reset address

rjmp main

main:

ldi R16,low(RAMEND); Load low byte

 address of the end of the RAM

 into register R16

out SPL,R16 ; Initialise stack

 pointer to the end of the

 internal RAM

ldi R16,high(RAMEND) ; Load high byte

 address of the end of the RAM

 into register R16

out SPH, R16 ; Initialise high

 byte of stack pointer ; to the

 end of the internal RAM

ldi mp,0b11111111

 out DDRB,mp

loop: ldi mp,0x00

 out PORTB,mp

 Rcall delay

 ldi mp,0xFF

 out PORTB,mp

 Rcall delay

 ldi mp,0xFF

 out PORTB,mp

 rjmp loop

used in the program:
(a) Words in upper-case letters are

used for command directive words of
the Assembly language or predefined
ports of the processor.

108 ElEctronics ProjEcts vol. 26

Fig. 4: Screenshot of AVR-Programmer

Fig. 5: Screenshot of AVR-Programmer showing
activity window

Fig. 6: Circuit for message display on the LCD

(b) Mnemonic words are written in
lower case.

4. LIST directive turns on the listing
output if it had been previously turned
off. Similarly, NOLIST directive, if

used, will turn off the listing output.
5. DEF directive is used to define

a text-substitution label for a string.
A label/name is easy to remember.
Here, register R16 is replaced with
‘mp’ name. Thus whenever ‘mp’ is
encountered in the source code, it will
be automatically replaced with ‘R16.’

6. ‘.org $0000’ defines the reset
address. When power is switched on,
the program starts from this location.
A restart from the reset address can
be activated by resetting the respec-
tive hardware pin of the chip (pin 9)
or upon watchdog timer reaching its
zero count. A relative jump command
(rjump) at this reset location directs the
program execution to label (main)—as
long as the label is within 2k locations
from the reset address (0000). Inci-
dentally, ‘rjmp main’ is the first code-
generating instruction.

7. It is essential to set up the stack
pointer before being able to call any
subroutine, since stack is required
for saving the return address, where
the next program execution is to start
from. The program lines starting with

‘ldi R16,low(RAMEND)’ and ending
with ‘out SPH, R16’ do just that.

8. The ‘ldi mp, 0b11111111’ and
‘out DDRB, mp’ lines set port-B pins
as the output. The first line, interpreted

as ‘load immediate (ldi) into register
‘mp’’, loads binary value ‘11111111’
into the ‘mp’ register. The second line
transfers the contents of ‘mp’ (11111111)
to the data direction register of port B
(DDRB). DDRB is already defined in
the m8535def.inc file. (If you want to
set port-B pins as input, load binary
‘00000000’ into ‘mp’ and output it to
DDRB.) Incidentally, ‘0b’ precedes a
binary number. Similarly ‘0x’ precedes
a hex number. Numbers without these
prefixes denote decimal numbers
by default. Hence you may replace
‘0b11111111’ with either ‘0xFF’ or sim-
ply ‘255’ to achieve the same results.

9. The rest of the program starting
at label ‘loop:’ and ending with ‘rjmp
loop’ achieves switching on and off
of the LEDs with a delay. The delay
subroutine starting at label ‘delay:’ and
ending with return instruction ‘ret’ is
called from within the loop.

Initially, ‘mp’ is loaded with hex
value ‘00’ and output through port-
B pins, making them low. Since the
cathodes of all the eight LEDs are con-
nected to these port pins via current-
limiting resistors, the LEDs light up.
Thereafter, the delay subroutine (Rcall
delay) is called and ‘mp’ is loaded with
hex value ‘FF’ and transferred to the
port-B output to turn off the LEDs. The
loop is repeated as long as the power is
switched on.

10. The internal R-C clock of AT-
mega8535 is 1 MHz by default. In the
absence of ‘Rcall delay’ instruction,
each of ‘ldi’ and ‘out’ instructions re-
quires 1000 ns, while ‘rjmp’ instruction
requires 2000 ns. Thus loop execution
would take 4000 ns. This amounts to
LED switching rate of 250 kHz.

Introduction of delay between
switching on and off reduces this
frequency to around 0.5 Hz by decre-
menting registers ‘r19’ and ‘r17’ from
‘255’ to ‘0,’ thereby making the elapsed
time slower by 256×256 (which works
out to around 0.5Hz rate).

After assembling the LED.asm
source file, the program will have eight
words. The LED.LST file stores the
result of the assembly process in the
form of a listing.

109ElEctronics ProjEcts vol. 26

Fig. 7: Actual-size, single-side PCB layout for AVR programmer (Pod) Fig. 8: Component layout for the PCB in Fig. 7

Fig. 9: Actual-size, single-side PCB layout for message display on LCD Fig. 10: Component layout for the PCB in Fig. 9

Once a program has been written
using any editor, wordpad or notepad,
it is assembled using the avrasm.exe
AVR assembler, available on the down-
load link given at the end of this article.
Of course, the AVRSTUDIO 4.0 inte-
grated development environment (IDE)
is more versatile and user-friendly soft-
ware for development, but the avrasm.
exe assembler is simpler and direct.

Simply typing ‘avrasm -i LED.
asm LED.lst LED.hex’ under the DOS
prompt makes the cross-assembler
generate code for the LED.hex file and
also provide a text file giving both the
code and the program together in LED.
lst. Thus, you get the LED.lst listing file
and the LED.hex Intel hex code file.

Alternatively, you can prepare a
batch file as follows:

Upon DOS prompt, enter ‘copy
con avr.bat.’ In the following line, type
‘Avrasm -i %1.asm %1.lst %1.hex.’
Pressing ‘F6’ key in the following line
displays ‘Control-Z.’ Now pressing the
‘Enter’ key displays “1 file copied.”

Now the avr.bat file has been pre-
pared. This simple batch file is invoked
to assemble this (or any) program
by typing ‘Avr LED’ upon the DOS
prompt and pressing the ‘Enter’ key.

This assembles the program, and
forms both the list file (that contains
the code-cum-Assembly listing) and
the hex file (the actual Intel-format hex
file for use by the programmer).

Likewise, any other assembly pro-
gram ‘xxx.asm’ can be coded into the hex
file by simply typing ‘avr xxx’ on DOS
prompt. ‘xxx’ denotes the name of the

program. The ‘.asm’ is not to be typed.
In our LED.asm program, we have

included the m8535def.inc file. This
file is required along with the avrasm.
exe cross-assembler. For other AVR
processors like 90S8515, 90S8535 and
at-Tiny 26, the files to be included are
8515def.inc, 8535def.inc and tn26def.
inc, respectively.

The next task is to burn the code
into the chip. Note that a chip previ-
ously programmed or erased is auto-
matically erased when a new program
is burnt into it using the device pro-
grammer as described below.

The AVR device
programmer
The AT-PROG programmer software
is used for programming ATmega8535.

110 ElEctronics ProjEcts vol. 26

This menu-drive programming soft-
ware is simple to use and invoked
from command prompt.

The software uses a simple pod
connected to the printer port of a com-
puter. The circuit of the pod (shown in
Fig. 3) is very simple. It just connects
the IC to be programmed to the pins of
the PC’s printer port.

This circuit is assembled on a small
PCB with a D25 male-female plug
at one end. The IC base is a 40-pin
zero-insertion-force socket (ZIF). This
enables easy insertion and removal of
the IC to be programmed.

The AT_PROG.exe is a simple pro-
gramming software that can be run un-
der DOS prompt by typing AT-PROG.
The files At-prog-hlp.htm, At-prog.exe,
At-prog.cfg and At-prog.ini should be
placed in one directory before running
the AT-PROG. These files have been
included in this month’s EFY-CD as
part of this article.

The menu-driven window of the
AT-PROG programmer has the follow-
ing menu items:

1. File menu. This menu is used
to select or open the LED.hex file, or
whatever, which is to be programmed
into the device.

Pull down the menu by clicking it.
Under ‘Open’ option, enter the file name
as ‘LED.hex’ and press ‘Enter.’ The IC
to be programmed is selected from the
AVR-Programmer window by click-
ing the edge of the small rectangular
window and choosing the IC as shown
in Fig. 4. Now connect the printer-port
connector to the programming pod,
whose circuit is shown in Fig. 3.

2. Write menu. On clicking the ‘Write’
menu, the ‘Activity’ window at the bot-
tom whitens and shows ‘Connecting’
(refer Fig. 5). Then, the data is transferred
to the IC and verified after programming,
showing ‘ok’ in the same window.

3. Check menu. This menu is used to
find out whether the IC is inserted in the
socket and whether the connector con-
nections are okay. It will indicate an error
if the IC is not there or not responding.

In this mode of programming, the
serial-peripheral interface (SPI) of the
AVR chip is used. This interface has

three wire connections:
(i) Master output and slave input

(MOSI)
(ii) Master input and slave output

(MISO)
(iii) Serial clock (SCLK)
Using these wires, the SPI interface

does the serial transfer of data (i.e., our
program codes) into the chip, which
is configured as a slave. The data and
clock are connected via MOSI and SCLK
pins of the chip, respectively. Upon re-
ception of each byte, the chip acknowl-
edges it by sending a byte (53hex).

In ‘Check’ mode, the IC is enquired
about its name by the computer (Mas-
ter), which it replies with its signature
code embedded in the chip memory
by the manufacturer. Each IC has its
specific signature code. Thus, by not-
ing the code itself, what IC is being
programmed will be known to the com-
puter. So the small window under the
device-select rectangular window can
be clicked to show ‘autodetect’ the IC.

4. Options menu. In this menu, the
speed of the clock used for transferring
data from the computer can be selected
as ‘slow,’ ‘normal’ or ‘fast.’ With pres-
ent high-speed PCs, choose ‘normal’
or ‘slow.’ In the same menu, the ‘read
signature bytes’ option is to be enabled
and it is so by default.

5. Port menu. The port menu,
which is next to the file menu, is useful
if a different printer port is available.
The program automatically selects the
available printer port.

When the ‘Activity’ window shows
‘ok’ after clicking the ‘Write’ menu,
remove the programmed chip from
the programmer circuit board and fix it
onto the target circuit for the LED.asm
program (shown in Fig. 2). Now apply
5V and press the switch connected to
Reset pin, if needed. (The circuit resets
at power-on.) The LEDs start blinking
fast and the waveform can be observed
on the CRO for any of the pins at the
output to the LEDs. It will be around
600 Hz.

Message display on the
LCD module
Method I. Given below is the source

code for message display on the LCD
module along with suitable comments
wherever needed.

LCD_CHAR.ASM

;***************************************

; * This program writes a message on to

the LCD *

;***************************************

.NOLIST

.INCLUDE “m8535def.inc”

;device =ATmega8535

.LIST

;

; Constants

;

; Used registers

;

.DEF rmpr = R16

.DEF temp = R14

.DEF result=R12

.DEF mpr =R16

; Code starts here

;

.CSEG

.ORG $0000

;

; Reset-vector

rjmp Start ; Reset-vector

;******** various subroutines for LCD

display********

;cmd is the LCD module’s command entry

subroutine. Command value in R16

 cmd: cbi portc,2

 cbi portc,3

 cbi portc,4

 out portb,r16

 sbi portc,4

 nop

 nop

 nop

 nop

 nop

 cbi portc,4

 rcall delay1

 ret

;lcdwr is the LCD module’s data entry

subroutine.

ASCI code value in R16

 lcdwr: cbi portc,2

 cbi portc,3

 cbi portc,4

 sbi portc,2

 out portb,r16

111ElEctronics ProjEcts vol. 26

 sbi portc,4

 nop

 nop

 nop

 nop

 nop

 cbi portc,4

 rcall delay1

 ret

;init_lcd is the LCD module’s initialise

LCD routine for cursor, etc.

init_lcd:

ldi R16,$38 ;function_set command for

8-bit data

 drive

rcall cmd ;write this in the command

register for LCD

rcall delay1 ; wait since this takes some

 milliseconds for LCD

rcall delay1

ldi R16,$0e ; command for entry mode set

rcall cmd ; cursor active, display on,

 no blink.

rcall delay1

ldi R16,6 ; command for cursor shift

 right after each write

rcall cmd

ldi r16,1 ;command for clear display

rcall cmd

rcall delay1

ret

delay1:clr result

ldi R16,$a0 ; a suitable number for the

 required delay

loop2: inc R16 ; increments from 160

 ($a0) to 256 brne loop2

inc result ; increments result register

 from 0 to 255 brne loop2

ret ;got 256 times 95 for loop

; ********* End of the subroutine section

;

; ********** Main program **********

;

; Main program routine starts here

;

Start: ldi R16,low(RAMEND)

; Load the low byte address of the end

 of the RAM into register R16

 out SPL,R16

; Initialise the stack pointer to the end

of the internal RAM

 ldi R16,high(RAMEND)

; Load the high byte address of the end

 of the RAM into register R16

 out SPH, R16

; Initialise the high byte address of the

 stack pointer to the end of the

 internal RAM

LCD:

 ldi r16,$ff

 out ddrb,r16 ;ff makes all bits as the

 output on port B

 out ddrc,r16 ;PORT C BITS USED FOR

 LCD WIRING

 ldi r16,$55

 out portb,r16;then alternate bits are

 low and high

($01010101)

 ;the above is a test which one

 can find if the program works!

 rcall init_lcd

 ldi R16,$80

 rcall cmd

; simply observe pins 1-8 for alternate

 high and low outputs!

 ldi R16,$45 ;”E”

 rcall lcdwr

 ldi R16,$6c ;”l”

 rcall lcdwr

 ldi R16,$65 ;”e”

 rcall lcdwr

 ldi R16,$63 ;”c”

 rcall lcdwr

 ldi R16,$74 ;”t”

 rcall lcdwr

 ldi R16,$72 ;”r”

 rcall lcdwr

 ldi R16,$6f ;”o”

 rcall lcdwr

 ldi R16,$6e ;”n”

 rcall lcdwr

 ldi R16,$c0 ; this command is to set to

 the next half of the LCD

 rcall cmd ;because 8 characters have

 filled the first half

;omit the above two lines if a two-row

 LCD display or a Hitachi 1-row

; display is used.

 ldi R16,$69 ;’i’

 rcall lcdwr

 ldi R16,$63 ;”c”

 rcall lcdwr

 ldi R16,$73 ;”s”

 rcall lcdwr

 ldi R16,$20 ;” “

 rcall lcdwr

 ldi R16,$46 ;”F”

 rcall lcdwr

 ldi R16,$6f ;”o”

 rcall lcdwr

 ldi R16,$72 ;”r”

 rcall lcdwr

 ldi R16,$55 ;”U”

 rcall lcdwr

here: RJMP HERE; Test of the serial

interface

This program displays ‘Electron-
ics ForU’ on the LCD module (Fig.
6). The message may be displayed
on the LCD in a single or two rows
depending on the LCD module. In
some LCD modules, the first eight
characters are written consecutively,
while for display of the next eight
characters, the program needs to
restart the cursor at address $C0. But
Hitachi-make single-row types do not
need to restart the cursor’s address
after the eighth entry; the characters
can be written consecutively up to
‘16,’ i.e., in a single row.

The program is named as ‘LCD_
CHAR.asm’ and assembled into the
‘.hex’ file by typing ‘avr lcd_char’ and
invoking the cross-assembler AVR.
Now the lcd_char.hex file is generated.
The AT-PROG programmer burns
this code into the flash memory of the
ATmega8535.

Note that while assembling this
program using ‘avr lcd_char’ com-
mand, the definition file for IC AT-
mega8535 (m8535def.inc) should be in
the same directory.

Method II. This message display
program uses look-up table. In the
message display program described
in Method I, ‘Call lcdwr’ instruction
was written for each character. Here,
instead, if we enter all the bytes for
‘Electronics ForU’ in a table, they can
be picked up one by one until the end
and shown on the LCD screen. For the

112 ElEctronics ProjEcts vol. 26

purpose, there is an instruction called
load program memory (LPM).

The table, as also the name, is
stored in the program memory. Here
is the program along with necessary
comments.

LCD TAbLE.ASM

;———————————————————————

;

.INCLUDE “m8535def.inc”

 ;device =ATmega8535

.LIST

;

; Constants

;

; Used registers

;

.DEF rmpr = R16

.DEF temp = R14

.DEF result=R12

.DEF mpr =R16

; Code starts here

;

.CSEG

.ORG $0000

;

; Reset-vector

rjmp Start ; Reset-vector

;********* various subroutines for LCD

display*********

;cmd is the LCD module’s command entry

;subroutine.Command Value in R16

 cmd: cbi portc,2

 cbi portc,3

 cbi portc,4

 out portb,r16

 sbi portc,4

 nop

 nop

 nop

 nop

 nop

 cbi portc,4

 rcall delay1

 ret

;lcdwr is the LCD module’s data entry

subroutine.

Asci codeValue in R16

lcdwr: cbi portc,2

 cbi portc,3

 cbi portc,4

 sbi portc,2

 out portb,r16

 sbi portc,4

 nop

 nop

 nop

 nop

 nop

 cbi portc,4

 rcall delay1

 ret

;init_lcd is the LCD module’s initialize

LCD routine for cursor etc.

init_lcd:

ldi R16,$38 ;function_set command for

8 bit data drive

rcall cmd ;write this in the command

register for LCD

rcall delay1 ; wait since this takes some

 milliseconds for LCD

rcall delay1

ldi R16,$0e ; command for entry mode set

rcall cmd ; cursor active, display on,

no blink.

rcall delay1

ldi R16,6 ; command for cursor shift

 right after each write

 rcall cmd

 ldi r16,1 ;command for clear display

 rcall cmd

 rcall delay1

 ret

 delay1:

 clr result

 ldi R16,$a0 ; a suitable number for the

 required delay

loop2: inc R16 ; increments from 160

 ($a0) to 256

 brne loop2

 inc result ; increments result

 register from 0 to

 255

 brne loop2

 ret ;got 256 times 95 for loop

;************ End of the subroutine

section ***********

;

; ********** Main program ************

;

; Main program routine starts here

;

Start: ldi R16,low(RAMEND)

; Load low byte address of end of RAM

 into register R16

 out SPL,R16

; Initialize stack pointer to end of

 internal RAM

 ldi R16,high(RAMEND)

; Load high byte address of end of RAM

 into register R16

 out SPH, R16

; Initialize high byte of stack pointer

 to end of internal RAM

 LDI R16,$FF

 OUT DDRB,R16

 OUT DDRC,R16 ; MAKE PORTS B AND C AS

OUTPUT PORTS (WIRED TO lcd)

 rcall init_lcd

 clr r17

 clr r18 ; required in the table fetch

 routine LCD:

 ldi ZH, high(table*2) ; Set up Z to

 point to the beginning of table

 ldi ZL, low(table*2)

 add ZL, r17

 ; Offset Z by r18:r17

 adc ZH, r18

 lpm

 ; Load

 mov r16,r0 ;get loaded value into r16

 cpi r16,$ff ;table end?

 breq idle

 rcall lcdwr ;write on lcd display

 inc r17

 rjmp LCD

; use Hitachi LCD display module if 1

row type is used; or else use ; ;any

two-row type LCD.

Otherwise, this above program sequence

will ;work only for 8 characters. The

rest will not be seen:

“Electron “ ;only will be visible.

idle:

 ldi r16, (1<<SE) ; Enable sleep

 out MCUCR, r16

 sleep

 rjmp idle

table:

.db $45,$6c,$65,$63,$74,$72,$6F,

$6e,$69,$63,$73,$72,$6f,$72,$55,$

The actual-size PCB for program-
ming and LCD message display are
given in Figs 7 and 9, while their com-
ponent layouts are shown in Figs 8 and
10, respectively.

113ElEctronics ProjEcts vol. 26

In the first part of this article, we
had described the main features of
the AVR microcontroller and the
hardware/software required for an
AT-PROG programmer board inter-
faced to the printer port of a PC. Fur-
ther, we explained the methods for
message display on a liquid crystal
display (LCD).

This part dwells on the architecture
of ATmega8535 along with application
programs exploiting its important fea-
tures for embedded control.

Architecture of
ATmega8535
Pin configuration of ATmega8535 was
shown in Fig. 1 of Part 1. The device
has ports for input/output, interrupts,
serial communication and various oth-
ers functions. There are a total of 32
pins, which are arranged as ‘A,’ ‘B,’ ‘C’
and ‘D’ ports for various functions as
shown in Table I.

A crystal of maximum 16MHz
or 8MHz frequency can be con-
nected across pins 12 and 13 of AT-
mega8535 or its low-voltage version
ATmega8535(L), respectively. Pin 9
serves as the active-low reset pin.

The non-volatile program and data
memories built into ATmega8535 are:

1. 8 kB of self-programmable flash
for storing the software code of the ap-
plication program.

2. 512 bytes of SRAM, which is a
read/write memory.

3. 512 bytes of EEPROM for storing
the data. Unlike the flash memory, it
can be accessed in a program for writ-
ing and reading.

Programming the on-chip
code/program memory
The on-chip flash memory is
programmed by pulling up the reset
pin and sending data through pins
6 (MOSI) and 7 (MISO), and pin 8
(SCK), which is used for clocking the
the code data into the flash memory.
This is accomplished by the host
computer by sending appropriate
instructions and the code bytes; data
verification is done by reading the
flash memory and comparing it with
the original code data. Writing the lock
bits to prevent reading of the code in
the chip is accomplished through the
instructions and the relevant data.

For using the AVR device, these in-

structions are built into the AT-PROG
program (explained in Part I), which is
run on the host PC.

Selection of clock. There are some
additional fuse bits, which can be
programmed for some extra op-
erational functions. Note that the
AVR device, as shipped, is preset to
work at 1 MHz with its internal oscil-
lator. If you want to use an external
crystal, say, of 8MHz frequency, you
have to exercise this option by pro-
gramming the fuse bits accordingly. A
fuse bit is just like a flash code memo-
ry location.

The CKSEL fuse bits can be pro-
grammed to select the desired crystal.
The device clocking options are select-
able by Flash Fuse bits as shown in
Table II. The clock from the selected
source is input to the AVR clock gen-
erator and routed to the appropriate
modules.

Since the default oscillator is
1MHz, unless we set the CKSEL bits
to an appropriate value, the external
crystal on pins 12 and 13 will not func-
tion for ATmega8535.

Programming the fuse bits. The
fuse bit programming option is avail-
able on the screen when the AT-PROG
is run on the PC. When this option is

TaBLe I
Port Description

Port description Pin Nos. Usage

Port A (PA0-PA7) 40 to 33 Bidirectional I/O pins with 20mA sink capability and active
 internal pull-ups; alternately used as ADC input as well as data
 lines to external RAM
Port B (PB0-PB7) 1 to 8 Input or output port, also used for additional functions as T0,
 T1, AIN0, AIN1, SS, MOSI, MISO and SCK pins
Port C (PC0-PC7) 22 to 29 Used for address output if external RAM is attached; four pins
 are alternately used as SCL, SDA for I2C, TOSC1 and TOSC2,
 respectively
Port D (PD0-PD7) 14 to 21 Bidirectional, as for port A. Also serve as pins for serial
 communication, interrupts 0 and 1, and PWM 1 and 2 output
 comparison, etc.

Fig. 11: Circuit diagarm of real-time clock

114 ElEctronics ProjEcts vol. 26

TaBLe II
Device Clocking Options Select*

Device clocking option CKSeL3.0

External crystal/ceramic resonator 1111-1010
External low-frequency crystal 1001
External RC oscillator 1000-0101
Calibrated internal RC oscillator 0100-001
External clock 0000
*For all fuses, ‘1’ means unprogrammed, while ‘0’ means programmed

TaBLe III
Some Registers in the I/O Space of aTmega8535

DDRB data direction reg. of port B $37 DDRA $3A DDRC $34 DDRD $31 UDR UART data reg. $2C
PINB input reg. of port B $36 PINA $39 PINC $33 PIND $30 UCSR UART control reg. A=$2B B=$2A
PORTB output reg. port B $38 PORTA#3B PORTC $35 PORTD$32 UBRR UART baud rate reg.
ADMUX ADC channel sel. $27 ADCSRA ADC control/ ADCH ADC value ADCL: ADC value low- ACSR analogue comparator control/
 status register* $26 high reg. $25 byte reg. $24 status reg. ($28)
*ADC in ATmega8535 is named ‘ADCSRA’

Fig. 12: Bit description for status register; I-global interrupt-enable bit, T-T bit copy storage, H-half carry flag,
S-sign bit, V-overflow in 2’s complement arithmetic, N-negative number flag (2’s complement arith.), Z-zero
flag, C-carry flag

Parts LIst
Parts list for real-time clock (Fig. 11)
Semiconductors:
IC1 - ATmega8535
Resistors (all ¼-watt, ±5% carbon):
R1 - 4.7-kilo-ohm
R2, R3 - 5-kilo-ohm
VR1 - 10-kilo-ohm preset
Capacitors:
C1 - 1µF, 10V electrolytic
C2, C3 - 22pF ceramic disk
Miscellaneous:
XTAL - 8MHz
S1, S2 - Push-to-on switch
 - 16x1-character Hitachi make

LCD or 16×2-character LCD

selected, it pops up a menu of its own.
On this menu, you can write the neces-
sary code for CKSEL programming.

Internal registers. Six of the 32
registers can be used as three 16-bit
indirect address register pointers for
data space addressing, enabling ef-
ficient calculations. One of three ad-
dress pointers (X, Y and Z registers,
described under ‘register operations’
section) is also used for table look-up.

The I/O memory space contains 64
addresses for CPU peripheral functions
like control registers, timers/counters
and analogue-to-digital converter
(ADC). It can be accessed directly or
as the data space locations following
those of the register files, i.e., after
‘20H’ and up to ‘5FH.’

The memory space contains im-
portant registers for use in interrupt
selection, timer control, UART, SPI
interface, watchdog and reset selection
modes, etc. Table III shows the exact
addresses of these I/O registers.

The bit description for the status
register (SREG) is shown in Fig. 12.

Instruction set
for ATmega8535

The instruction set com-
prises several arithme-
tic, logical, branch and
bit-test type instruc-
tions. You can down-
load a 150-page user
manual for the AVR

instruction set from Atmel’s site ‘www.
atmel.com/dyn/resources/prod_doc-
uments/doc0856.pdf.’ A summary of
the instruction set is given on pages
299 through 301 of the Atmega8535(L)
datasheet.

Some of the important instructions
are given in Table IV.

Points to be noted
1. When the relative call or jump in-
struction is executed, the entire memo-
ry address space can be accessed.

2. During interrupts and subrou-

tine calls, the return address value is
stored in the stack space, which is to be
defined by the user at the beginning of
every program in SRAM space.

3. The 16-bit stack pointer is read-/
write-accessible in the I/O space.

4. The 512-byte data RAM is eas-
ily accessed through five different ad-
dressing modes supported.

5. A flexible interrupt mod-

ule has its control registers in
the I/O space with an addi-
tional global interrupt en-
able bit in the status register.
Every interrupt has a sepa-
rate address for vectoring,
where the instruction caus-
ing it to jump to the memory

area of that particular interrupt
has to be kept stored by the program-
mer.

There are many interrupts available
in ATmega8535. In order to use any
interrupt, you need to place the ad-
dress of the program of the respective
interrupt service routine at the vector
address.

From location ‘001H’ to ‘014H,’
there are 20 such interrupt vector
locations in the order of their prior-
ity. Address ‘000H’ is used for the
reset vector. A reset may be caused by
power-on reset, brownout reset and
watchdog reset, or externally by mak-
ing pin 9 low. Table 19 on page 45 of
the datasheet lists the details of reset
and interrupt vectors.

Note that here we are dealing with
word addresses, so each location is ac-
tually two bytes long. In this two-byte
location, if you place a RETI (return
from interrupt) instruction, nothing
will be done upon that interrupt. For
example, if you place a jump instruc-
tion to the required routine, you can

115ElEctronics ProjEcts vol. 26

5. additional multiply instructions

MUL Rd, Rr Multiply unsigned R1:R0←Rd×Rr
MULS Rd, Rr Multiply signed R1:R0←Rd×Rr
MULSU Rd, Rr Multiply signed with unsigned R1:R0←Rd×Rr
FMUL Rd, Rr Fractional multiply unsigned R1:R0←(Rd×Rr)<<1
FMULS Rd, Rr Fractional multiply signed R1:R0←(Rd×Rr)<<1
FMULSU Rd, Rr Fractional multiply signed with unsigned R1:R0←(Rd×Rr)<<1

3. Boolean logic BIT based instructions
SBI P, b CBI P, b LSL rd ROL rd SEC
Sets bit P=addr, bit no. Clear bit in I/O register Logical left shift Rotate left through carry Sets carry flag
 LSR rd ROR rd CLC
 Logical right shift Rotate right through carry Clears carry
 CLI ASR SWAP rd SEZ, CLZ
 Interrupts disabled. Arithmetic shift right Swaps nibbles in Rd Set/clear zero flag
 SEI Bst/BLd reg, b NOP
 Global interrupt enable Stores loads a bit in No operation
 SREG(b) (status register)
Note. Bits can be in any I/O register or bits of any register Rd. P means an I/O address register.

4. Frequently used test and skip as well as jump and call instructions

RJMP k RCALL k CP Rd, Rs BREQ K
Jumps k (-2047 to +2048) Calls relative Compares Rd-Rs Branches to K relative
 if zero flag is set
LJMP ICALL CPSE Rd, Rs BRNE K
PC ← Z Calls to [Z] indirectly Compares, skips the Does the opposite of
 next instruction if equal the above
RET CPI Rd, K BRCS k
Subroutine return Immediate data compared Branch if carry is set
RETI BRCC k
Interrupt service return Branch if carry not set

Note. Most of these instructions are relative branching, except some, which need a full address of destination for jumping.

TaBLe IV
Instruction Set for aTmega8535

1. arithmetic and logical instructions

aDD rd, rs SUB (rd-rs) aND rd, rs OR rd, rs eOR rd, rs

ADC SBC ANDI ORI rd, K COM rd
Add with carry Subtract with carry AND with immediate data One’s complement
ADIW (Word) SBCI rd=rd-Carry-K INC rd CLR rd NEG rd
Add immediate to word Increment reg. Clear register ; 2’s complement
 SBIW DEC rd SER rd SBR rd,n
 Subtract immediate from word decrement reg. Sets register ; sets nth bit in rd
Note: K-immediate data, rd-destination register, rs-source register

2. Data movement instructions

MOV rd,rs LDI rd, K ST X, rs LPM R0 ← [Z] PUSH rs
 Immediate load Stores rs into [X] Load from prog. mem. Pushes to stack the value of
 register Rs
 LD rd, X* ST X+, rs IN rd, port# POP rs
 Load indirectly ; store indirectly and incr. X As PORTB for reg. Pops into Rs from stack
 LD rd, X+ ST –X, rs Out Port, rd
 Indirect, post incr. address Decr. after storing
 LD rd, -X STD Z+disp, rs STS k, rs
 Dec. X by 1 and then Stores indirect with added Stores direct to SRAM
 read indirectly displacement addr. k
*X denotes register pair R26-R27. Likewise, Y and Z are also usable for these instructions. # Port B should be entered as ‘PINB’ for inputs for the assembler;
The notation PORTB used for output.

write:
 rjmp timer_routine

Then you can use that interrupt to
jump to the timer_routine.

As mentioned above, the inter-
rupt vectors follow the reset address
at ‘000H,’ wherein a jump instruction
to the corresponding actual memory

addresses, defined by the labels, is
placed. For example, the instruction:
RJMP Int0

It means that the external interrupt

116 ElEctronics ProjEcts vol. 26

TaBLe V
Clock-Select Bit Description

CS02 CS01 CS00 Description

0 0 0 No clock source (timer/counter stopped)
0 0 1 clkI/O/(no prescalling)
0 1 0 clkI/O/8 (from prescaler)
0 1 1 clkI/O/64 (from prescaler)
1 0 0 clkI/O/256 (from prescaler)
1 0 1 clkI/O/1024 (from prescaler)
1 1 0 External clock source on T0 pin. Clock on falling edge
1 1 1 External clock source on T0 pin. Clock on rising edge

Fig. 13: Bit details for TCCR0 register; bits 0, 1 and 2 are defined in Table IV reproduced from the original
datasheet

Fig. 14: Bit details for TIMSK register

routine has the label ‘Int0,’ to which
the processor jumps upon pin 17 get-
ting a high logic signal. Also, at the
label ‘Int0,’ if a simple return instruc-
tion is entered as:
Int0: reti

This instruction simply ignores
such an interrupt and returns to the
main program. In case you need to
process the interrupt, enter the neces-
sary code starting at label ‘Int0.’

After the interrupt processing
instructions, the various subroutines
are entered. Then comes the main pro-
gram. In the main program, the first
thing to write is the stack initialisation
instructions. Here, the stack pointer is
set to the highest end of the internal
RAM, for which a temporary register
is used, and the high and low ad-
dresses are written to the stack pointer
using an instruction at the Ext_Int0
vector address (0x001) such as:
ldi temp,low(RAMEND)

out spl,temp

ldi temp,high(RAMEND)

out sph,temp

Register operations. Each register
is assigned a data memory address,
mapping it directly into the first 32
locations of the data space. Register

pairs R26-R27, R28-R29 and R30-R31
serve as 16-bit registers, which are
used for indirect addressing of the data
memory space. These three 16-bit reg-
isters are known as ‘X’ (R27:R26), ‘Y’
(R29:R28) and ‘Z’ (R31:R30) registers,
respectively. The last 16 registers in the
register file (R16 through R31) cannot
be used with the first 16 registers (R0
through R15).

The operating instructions for
registers have direct and single-cycle
access to the registers. The following
instructions—constant arithmetic in-
structions—use the second half of the
registers in the register file and cannot
be used with the first half:
sbci, subi, cpi, andi, ori and ldi

The following general instruc-
tions that use two registers or only a
single register can use the entire reg-
ister file:
Sbc, sub, cp and & or

Embedded control
functions and their
applications
Here we’ll use the following four
functions of ATMega8535 for typical
control applications:

1. Timers; two 8-bit and one 16-bit

with add-on features
2. Pulse-width modulated out-

put
3. Analogue-to-digital converter
4. Serial RS-232 interface
Timers and their applications.

Both timer 0 and timer 1 are
8-bit timers, while timer 1 is a
16-bit timer. The clock inputs to
the timers can have a variety of
selections. The CPU clock itself,

divided by a prescaling divider with
divisors of 8, 64, 256 and 1024, can be
chosen. Further, it can also count an
externally applied clock at T1 pin (for
timer 1).

We shall use these timers for de-
veloping a real-time clock with time
display on the LCD (see Fig. 1). For
the purpose, the registers to be used in
timer 0 are:

1. TCCR0: Timer counter control
register 0

2. TIMSK: Timer interrupt mask
register

TCCR0 register bits. Fig. 13 shows
the bit details for TCCR0 register. Bits
WGM01, COM00, COM01, WGM00
and FOC0 (bits 3 through 7) of TC-
CRO register are used with the timer-
based comparators for waveform and
pulsewidth-modulated output genera-
tion. Since these bits are not required
for the normal timing operation of the
timer, they have not been used here.

The timer clock is selected by using
the remaining three bits (CS00, CS01
and CS02). We will set these bits to
‘0,’ ‘1’ and ‘1,’ respectively, for divid-
ing the 1MHz default internal clock
of ATmega8535 k (with no external
crystal) by ‘64.’ This division gives
65 microseconds per clock. Then we
accumulate the counts for getting one
second and divide it by ‘60’ to get
minutes and again by ‘60’ to get hours,
which are counted up to ‘12’ and the
process is repeated.

TIMSK register bits. Fig. 14 shows
the bit details for TIMSK register. Bit
0 refers to ‘timer-overflow interrupt
enable.’ It must be set to enable the
interrupt action on overflow. The
TIMO_OVF interrupt ($0009 address)
is used to direct a vector at this ad-

117ElEctronics ProjEcts vol. 26

8535clk.asM
; Things to learn here:
; - Timer in interrupt mode
; - Interrupts, Interrupt-vector
; - BCD-arithmetic
.LIST
.NOLIST
.INCLUDE “m8535def.inc”
;device =ATMEga8535
.LIST
; Universal register definition
.DEF mp = R16
.DEF result=R18
; Counter for timer timeouts, MSB timer driven

by software
.DEF z1 = R0
; Working register for the Interrupt-Service-

Routine
; Note that any registers used during an inter-

rupt, including the status-register with all the
flags must either be reserved for that purpose
; or they have to be reset to their initial
; value at the end of the service routine! Oth-

erwise
; nearly unpredictable results will occur.
.DEF ri = R1
; Register for counting the seconds as packed

BCD
.DEF sec = R2
.DEF min = R3
.DEF hour=R4
.DEF count=R5
.DEF count1= R6
.CSEG
.ORG $0000
; Reset- and Interrupt-vectors
 rjmp Start ; Reset-vector
.org ovf0Addr
 rjmp tc0i
; Reset-vector to address 0000
.org $30
start: rjmp main
; Be sure that the jump
; to the interrupt service routine tc0i is exactly

at the adress “ovf0”,otherwise the interrupt fails.
; The following sequence takes place : If the

timer overflows
; (transition from 255 to 0) the program run is

interrupted, the current address in the program
counter
; is pushed to the stack, the instruction at ad-

dress ovf0
; is executed (the jump instruction). After fin-

ishing execution of the interrupt service routine
; the program counter value is restored from the
; stack and program execution proceeds from

that point.
tc0i:
 in ri,SREG ; save the content of the flag

register
 inc z1 ; increment the software counter
 out SREG,ri ; restore the initial value of

the flag register
 reti ; Return from interrupt
.org $50
; The main program starts here
main:
 ldi mp,LOW(RAMEND) ;Initiate Stackpointer
 out SPL,mp ; for the use by interrupts and
 subroutines
 ldi mp,HIGH(RAMEND)
 out SPH,mp ; Port b (pin 1-8) output-port,

 port c all output except bit 0,1
 ldi mp,0xFF ; all bits are output
 out DDRb,mp ; to data direction register
 ldi mp,0xFc ;bits 0,1 input; pin22 for minutes

 set; pin23 hour set;
 out DDRC,mp
 LDI MP,03
 OUT PORTC,MP ;pull up port C bits 0- 1

 internally itself
 rcall init_lcd ;initialise LCD module
 ldi R16,$80
 rcall cmd
; Software-Counter-Register reset to zero
 ldi mp,0 ; z1 cannot be set to a constant
 value, so we set mp
 mov z1,mp ; to zero and copy that to R0=z1
 mov sec,mp ; and set the seconds to zero
 mov min,mp ;and minutes also
 ldi mp,$12
 mov hour,mp
; Prescaler of the counter/timer = 64, that is 1

MHz/64 = 15625 Hz = $3D09
 ldi mp,0x03 ;Initiate Timer/Counter 0 Prescaler
 as /64
 out TCCR0,mp ; to Timer 0 Control Register
; enable interrupts for timer 0
 ldi mp,$01 ; set Bit 0 but for 8515 this was bit 1!
 out TIMSK,mp ; in the Timer Interupt Mask
 Register
 ; enable all interrupts generally
 sei ; enable all interrupts by setting the flag in

the status-register
; The 8-bit counter overflows from time to time

and the interrupt service
; routine increments a counter in a register. The

main program loop reads this
; counter register and waits until it reaches 3D

hex. Then the timer is read until
; it reaches 09 (one second = 15625 (dec)=

3D09(hex) timer pulses). The timer
; and the register are then set to zero and one

second is incremented. The seconds
; are handled as packed BCD-digits (one digit =

four bits, one byte represents
; two digits). The seconds are refreshed. The

seconds
; are displayed on the LCD module, as well.
ldi mp,0x31 ;just show a “1” to begin with
 rcall lcdwr
loop:
 ldi mp,$3D ; compare value for register counter
loop1: rcall lookupdate ; check if user adjusts

time-
 minutes
 rcall lookupdatehr ; check if user adjusts time-
 hours
 cp z1,mp ; compare with the register
brlt loop1 ; z1 < mp, wait
loop2:
 in mp,TCNT0 ; read LSB in the hardware

counter
 cpi mp,$09 ; compare with the target value
 brlt loop2 ; TCNT0 < 09, wait
 ldi mp,0 ; set register zero and ...
 out TCNT0,mp ; reset hardware-counter LSB
 mov z1,mp ; and software-counter MSB
 rcall IncSec ; call the subroutine to increment
 the seconds
 rcall Display ; call subroutine to display the
 seconds
 rjmp loop ; once again the same
; subroutine increment second counter
; in BCD-arithmetic! Lower nibble = Bit 0..3, up-

per nibble = 4..7
IncSec:
 sec ; Set Carry-Flag for adding an additional one

to the seconds
 ldi mp,6 ; povoke overflow of the lower nibble

by adding 6
 adc sec,mp ; add 6 + 1 (Carry)
 brhs Chk60 ; if overflow of the lower nibble
 occurred go to 60 check
 sub sec,mp ; subtract the additional 6 as no
 overflow occurred
Chk60:
 ldi mp,$60 ; 60 seconds already reached?
 cp sec,mp

 brlt SecRet ; jump if less than 60
 ldi mp,256-$60 ; Load mp to add sec to zero
 add sec,mp ; Add mp to reset sec to zero
 rcall incmin
SecRet:
 ret ; return to the main program loop
incmin: ;subroutine for minutes incrementing
 sec ; Setze Carry-Flag for adding an additional
 one to the seconds
 ldi mp,6 ; provoke overflow of the lower nibble

by adding 6
 adc min,mp ; add 6 + 1 (Carry)
 brhs Chk60_m ; if overflow of the lower nibble
 occurred go to 60 check
 sub min,mp ; subtract the additional 6 as no
 overflow occurred
Chk60_m:
 ldi mp,$60 ; 60 minutes already reached?
 cp min,mp
 brlt minRet ; jump if less than 60
 ldi mp,256-$60 ; Load mp to add min to zero
 add min,mp ; Add mp to reset min to zero
 RCALL INCHOUR
minRet:
 ret ; return to the main program loop
INCHOUR:
 sec
 ldi mp,6
 adc hour,mp
 brhs chk12hour
 sub hour,mp
 chk12hour:
 ldi mp,$13
 cp hour,mp
 brlt houret
 ldi mp,256-$12
 add hour,mp
 houret: ret
 lookupdate:
 k2: sbic pinc,0
 ret ;if key is not closed, return
 ;if closed, wait for key-debounce and

check again
 rcall delay1
 Inc count1
 ldi mp,80
 cp count1,mp
 brlt dd
 RCALL incmin
 Ldi mp,0
 Mov count1,mp
dd: rcall display
 ret
 lookupdatehr:
 k3: sbic pinc,1
ret ;if key is not closed, return
 ;if closed, wait for key-debounce and check

again
 rcall delay1
 inc count
 ldi mp,80
 cp count, mp
 brlt dd
 RCALL inchour
 Ldi mp,0
 mov count, mp
 rjmp dd
; subroutine for displaying the time on the LCD
Display: push r16
 ldi r16,$80
 rcall cmd
 pop r16
 mov r16,hour
 andi r16,0xf0
 ror r16
 ror r16
 ror r16
 ror r16
 ori r16,0x30

dress to the respective interrupt service
routine, where we will perform the
relevant action that is needed upon
timer-0 overflowing, i.e., when the
number in its TCNT0 register (timer

counter 0) crosses ‘255’ (decimal). So
in the software program for real-time
clock, we initialise TIMSK to ‘01.’

Software program for real-time
clock (8535clk.asm). The 8535clk.asm

program with suitable explanations
and comments is given at the end of
this article. The programmed IC can be
fixed to the RTC circuit board to show
real-time clock on the LCD.

118 ElEctronics ProjEcts vol. 26

 rcall lcdwr
 mov r16,hour
 andi r16,0b00001111
 ori r16,0x30
 rcall lcdwr
 ldi r16,$3A
 rcall lcdwr
 mov r16,min
 andi r16,0xf0
 ror r16
 ror r16
 ror r16
 ror r16
 ori r16,0x30
 rcall lcdwr
 mov r16,min
 andi r16,0b00001111
 ori r16,0x30
 rcall lcdwr
 ldi r16,$3A ; For : display
 rcall lcdwr
 mov r16,sec
 andi r16,0xf0
 ror r16
 ror r16
 ror r16
 ror r16
 ori r16,0x30
 rcall lcdwr

 mov r16,sec
 andi r16,0b00001111
 ori r16,0x30
 rcall lcdwr
 ldi r16,32
 rcall lcdwr
 ret
 cmd: cbi portc,2 ; command entry to LCD

subroutine
 cbi portc,3
 cbi portc,4
 out portb,R16
 sbi portc,4
 nop
 nop
 nop
 nop
 nop
 cbi portc,4
 rcall delay1
 ret
 lcdwr: cbi portc,2 ; write to LCD routine
 cbi portc,3
 cbi portc,4
 sbi portc,2
 out portb,R16
 sbi portc,4
 nop
 nop
 nop

 nop
 nop
 cbi portc,4
 rcall delay1
 ret
 init_lcd: ; initialise LCD module
 ldi R16,$38
 rcall cmd
 rcall delay1
 rcall delay1
 ldi R16,$0e
 rcall cmd
 rcall delay1
 ldi R16,6
 rcall cmd
 ldi r16,1
 rcall cmd
 rcall delay1
 ret
 delay10:
 ldi R16,$f0
 del_lp: inc R16
 brne del_lp
 ret
 delay1:
 clr result
 loop22: inc result
 brne loop22
 ret

Let’s now examine the use of inbuilt
functions of AVR ATmega8535 (such as
output compare, ADC and UART) for
various applications.

PWM operation of
ATmega8535
When the AVR is configured for pulse-
width modulated (PWM) operation,
the PWM outputs become available at
output-compare pins 18 (OC1A) and
19 (OC1B) of ATmega8535. PWM, in
conjunction with an analogue filter,
can be used to generate analogue
output signals and thus it serves as a
digital-to-analogue converter.

Principle of pulse-width modula-
tion. To generate different analogue
levels, the duty cycle and thereby the
pulse-width of the digital signal (base
frequency) is changed. If a high ana-
logue level is needed, the pulse width
is increased and vice versa (see Figs 15
and 16).

A digital pulse train with a constant
period (fixed base frequency) is used
as the basis. The base frequency, which
can be programmed suitably, should
be much higher than the frequency of
the output analogue signal obtained
after filtering out the base frequency
component. For example, to generate

a sinewave signal of low fre-
quency (say, 10 Hz, as used
for drives or controls), the
base frequency of rectangular
pulses (with varying duty
cycle) may be of the order of 1
kHz or more.

Pulse generation method.
The scheme for pulse gen-
eration is as follows: Timer/
counter 1 is used to count
clock ticks. If 8-bit PWM
is selected, after the timer
counts up to ‘255,’ its count
is decremented with each
clock tick. Thus, the number
increases up to ‘255’ and then
decreases, resembling a trian-
gular pattern.

When the number stored in the
output-compare register (OCR) match-
es the loaded count value, pin 19 (out-
put-compare action pin) becomes high
or low, as programmed. For example,
if the OCR is loaded with a value of
‘l00,’ the logic state of OCR pin will be:

Count value OCr pin
0 to 100 Low logic
100 to 255 High logic
255 to 100 High logic
100 to 0 Low logic

Thus, for the total time taken to
count 255×2=510 clock ticks, the output
pin (pin 19) will be high for (2×155)/
(2×256) or 60.5 per cent of the total tri-
angular wave time of one PWM pulse
(or the PWM pulse will have a duty
cycle of 60.5 per cent). Thus, effectively
the voltage transmitted in this period is
60.5 per cent of the maximum, because
the pulse is high only for this period
of time.

The following program (AVRSINE.
ASM) will generate a 1Hz sine wave
(after filtering) on pin 19 using PWM:

AVRSINE.ASM
;———————————————————————
; File: avrsine.asm
; Description: Example of how to use the fast PWM
; of the Avr to generate “sine-wave” signal. The PWM
; output requires filtering to shape the sine wave
; form.
;———————————————————————
.include “m8535def.inc”

Fig. 15: Variation of pulse width (constant period) with time of a
typical PWM wave

Fig. 16: View of filtered low-frequency sine wave and unfiltered
PWM output on an oscilloscope

119ElEctronics ProjEcts vol. 26

rjmp init

;Interrupt vector table

.org OVF1Addr ;OC1Aaddr
; Interrupt vector for timer1 output compare match A
rjmp TOF_isr

;Main code
init:
 ldi R16,low(RAMEND)
; Load low byte address of end
of RAM into register R16
 out SPL,R16
; Initialize stack pointer to end of internal RAM
 ldi R16,high(RAMEND)
; Load high byte address of end of RAM into
register R16
 out SPH, R16
; Initialize high byte of stack pointer to end of
internal RAM
 ldi r16,$ff
 out ddrb,r16
 ldi r16,$55
 out portb,r16

 ldi r16, (1<<PD5) ; Set Pd5 as output
 out DDRd, r16 ;since that is the PWM
 output pin 19

;SELECT CLOCK SOURCE VIA TCCR1B
 LDI R16,$81

 ;8 BIT PWM NON-INV.
; Set PWM mode: toggle OC1A on compare
 out TCCR1A, r16
; Enable PWM

 ldi r16, 0xFF

; Set PWM top value: OCR1C = 0xFF
 out OCR1AL, r16
 LDI R16,0
 OUT OCR1AH, R16

 ; Enable Timer/Set PWM clock prescaler
 LDI R16,02
 OUT TCCR1B,R16 ;ck/8 as pwm clock
 (1MHz/8 = 125 kHz)

 ldi r16, (1<<TOIE1) ; Enable Timer1
Ovrflow interrupt
 out TIMSK, r16
 clr r17
 clr r18
 sei
; Enable global interrupts
idle:
 ldi r16, (1<<SE) ; Enable sleep
 out MCUCR, r16
 sleep
 rjmp idle

TOF_isr:
 ldi ZH, high(sine_table*2)
; Set up Z to point to the beginning of
sine_table
 ldi ZL, low(sine_table*2)
 add ZL, r17
; Offset Z by r18:r17
 adc ZH, r18
 lpm
 ; Load sine_table[Z] into OCR1A
 out OCR1AL, r0
 inc r17

 reti

sine_table: ; 256 values
.db 128,131,134,137,140,144,147,150,153,156,159,162,
165,168,171,174
.db 177,179,182,185,188,191,193,196,199,201,204,206,
209,211,213,216
.db 218,220,222,224,226,228,230,232,234,235,237,239,
240,241,243,244
.db 245,246,248,249,250,250,251,252,253,253,254,254,
254,254,254,254
.db 254,254,254,254,254,254,254,253,253,252,251,250,
250,249,248,246
.db 245,244,243,241,240,239,237,235,234,232,230,228,
226,224,222,220
.db 218,216,213,211,209,206,204,201,199,196,193,191,
188,185,182,179
.db 177,174,171,168,165,162,159,156,153,150,147,144,
140,137,134,131
.db 128,125,122,119,116,112,109,106,103,100,97,94,91,
88,85,82

.db 79,77,74,71,68,65,63,60,57,55,52,50,47,45,43,40

.db 38,36,34,32,30,28,26,24,22,21,19,17,16,15,13,12

.db 11,10,8,7,6,6,5,4,3,3,2,2,2,1,1,1

.db 1,1,1,1,2,2,2,3,3,4,5,6,6,7,8,10

.db 11,12,13,15,16,17,19,21,22,24,26,28,30,32,34,36

.db 38,40,43,45,47,50,52,55,57,60,63,65,68,71,74,77

.db 79,82,85,88,91,94,97,100,103,106,109,112,116,119,
122,125

For observation of the sine wave
on an oscilloscope, use a low-pass
filter comprising a 1-kilo-ohm resistor
(series element) and a 1µF capacitor
(shunt element). However, with an
analogue multimeter, the sine wave

can be directly observed at pin 19.
In the AVRSINE.ASM program,

for each of the triangle wave periods,
we read a table of sine values (multi-
plied by ‘256’) and load these values
one by one into the OCR. Since the
values vary in a sinusoidal pattern,
the pulses that come out are also
pulse-width modulated as per these
values (see the oscilloscope pattern
shown in Fig. 16).

To do the table look-up (as given
in the example program ‘LCD Table.
ASM’ of Part 1), the LPM instruction
is used. The Z register is used as an
indirect indexed register. As stated

earlier, the LPM
instruction fetches
from the table one
byte into r0. The
actual loading of
the OCR value is

done by the instruction:

out OCR1AL, r0

where OCR1AL refers to pin 19.
(OCR1BL refers to pin 18, which is not
used here.)

The program contains suitable
comments for easy understanding. The
table in the program has 256 elements
(corresponding to the samples in one
complete sinewave period), while each
sample period = pulse period (high and
low parts) = 510 clock ticks. Thus 256
(samples) × 510 (clock ticks) = 130,560
clock ticks will produce one sinewave
cycle. Thus for producing exactly 1Hz
frequency, the base frequency should
be 130.56 kHz (the nearest value of 125
kHz has been used here).

The circuit for realising the PWM-
based sinewave generator is shown in
Fig. 17.

The AVRSINE.ASM file and the
assembled .HEX file are given in the
CD. Using the AT-PROG programmer,
load the program into an ATmega8535.
Then fix it in a breadboard and make
connections as per Fig. 17. Connect the
circuit to 5V power supply and observe
approximately 1Hz sine wave at pin
19 using an analogue multimeter. The
needle on the multimeter will move
with the sine wave as a pendulum.

Fig. 17: Circuit for PWM-based sinewave
generation

Fig. 18: ADCH and ADCL registers

Parts LIst
Parts list for Figs 17 and 21
Semiconductors:
IC1 - ATmega8535 microcontroller
IC2 - LM35 temperature sensor
IC3 - Max 232, RS-232 level converter
Resistors (all ¼-watt, ±5% carbon):
R1 - 4.7-kilo-ohm
R2 - 100-ohm
R3 - 1-kilo-ohm
VR1, VR3 - 10-kilo-ohm preset
VR2 - 10-kilo-ohm trim potentiometer
Capacitors:
C1, C6 - 1µF, 10V electrolytic
C2, C3 - 22pF ceramic disk
C4, C5, C7-C10 - 10µF, 16V electrolytic
C11 - 22µF, 16V electrolytic
Miscellaneous:
XTAL - 8MHz crystal
L1 - 100µH inductors
 - 16x1-character Hitachi make

LCD or 16×2-character LCD
 - 9-pin female D-connector
Parts list for power supply
Semiconductors:
IC4 - 7805 regulator
D1-D4 - 1N4007 rectifier diode
Capacitors:
C12 - 4700µF, 16V electrolytic
C13 - 0.1µF ceramic disk

120 ElEctronics ProjEcts vol. 26

Using the ADC

The inbuilt analogue-to-digital converter
(ADC) of ATmega8535 is an 8-channel
device with 10-bit resolution and maxi-
mum conversion time of 65 µs. The ref-
erence voltage for the ADC is connected
across pins 32 (positive) and 31 (ground).
The 5V Vcc supply (either directly or
through a potmeter) can be used as refer-
ence voltage, but a capacitor at pin 32 is
to be used for decoupling.

To access the ADC, you need to
select the ADC channel; while the use of
ADC interrupt is left to the discretion of
the programmer. The ADC is read after
conversion of a sample via the ADCH
and ADCL registers (8 bits from the
ADCL register and only two bits from
the ADCH register) as shown in Fig. 18.

ADMUX and ADCSRA are the oth-
er registers used in conjunction with
the ADC. Functions of various bits of
these registers are explained below.

ADMUX register. The ADMUX
register bits are shown in Fig. 19.

Bits 4 through 0 of ADMUX select
the ADC channels for single-ended
or differential operation including
channels with gain. (For full selec-
tion details, see Table 85 of the
ATmega8535(L) datasheet.)

Bit 5 (ADLAR, or AD left adjust
result) affects selection of results in
ADCH and ADCL registers. If this bit
is made ‘0,’ the ADCL contains the
least eight bits and the ADCH con-
tains the remaining two high-order
bits in its D1:D0 bit positions. When
the ADLAR bit is set to ‘1,’ the ADCH
contains the most significant eight
bits, while the ADCL contains the least
two significant bits in bit positions
7 and 6.

Bits 6 and 7 (REFS0 and REFS1) are
reference-selection bits. With bit 7 as ‘0’
and bit 6 as ‘1,’ the external reference
voltage is applied to pin Aref (32).

We write E0 (1110 0000b) to ADMUX
register in the ADC_LCD.ASM program.
That means we choose channel-0 (pin 40)
for the signal input, ADCH to give us the
most significant eight bits and external
5V reference at pin 32 for analogue-to-
digital conversion.

ADCSRA register. This is the con-
trol-and-status register for the ADC.
Its bit positions are shown in Fig. 20.

The bits of the ADCSRA stand for
the following signals: ADC enable
(bit 7), ADC start (bit 6), ADC auto-
trigger enable for free-running (bit
5), ADC interrupt flag set on comple-
tion of conversion (bit 4), ADC in-
terrupt enable when set (bit 3) and
ADC prescaler for speed (bits 0, 1
and 2). Bits 0, 1 and 2 determine the
division factor between the clock
frequency and the input clock to
the ADC. The division factor can be
selected from ‘2’ to ‘128’ as per
Table 86 of the datasheet.

Program for displaying the
ADC output on the LCD
The following program (ADC_LCD.
ASM) takes the ADC data, converts
the 10-bit data into five decimal digits
and then shows it continuously on the
LCD screen:

ADC_LCD.ASM
; ***
; *This program uses channel -0 ADC of ATmega8535
; It reads the ADC and outputs the five-digit
; number on LCD.
; Program authored by Prof. K. Padmanabhan
; ***
.NOLIST
.INCLUDE “m8535def.inc”
 ;device =ATMega8535
.LIST

.EQU xyz = 12345

.EQU fq=1000000; clock freq. of
internal oscillator
.EQU baud=9600; Baudrate of SIO comm.
.EQU bddiv=(fq/(16*baud))-1; Baudrate
divider
.DEF rmpr = R16
.DEF temp = R14
.DEF result=R12
.DEF mpr =R16
.CSEG
.ORG $0000
; Reset- and Interrupt-vectors
rjmp Start ; Reset-vector
.org OVF0Addr ; timer-0 overflow
interrupt vector
address
rjmp timer0prg
timer0prg: ;here take ADC sample
at every 64 µs
ldi r16,$cc

 out portc,r16
 push r16
 in r16,SREG
 PUSH R16
here2:in r16,adcsra
 andi r16,0b01000000
 brne here2 ;value got
in r16,adcl
 in r17,adch
 rcall lcddisp
 POP R16
 out SREG,R16
 POP R16 ;restart adc
 ldi r16,0b11000101 ;prescale /32
(1x32=32 µs)
;adc enable,adc start,adc
freerun,adcflag,adcno int,
adcprescale/32
 out adcsra,r16
 RETI ;End of ISR
 cmd: cbi portc,2 ;command entry to
LCD routine
 cbi portc,3
 cbi portc,4
 out portb,r16
 sbi portc,4
 nop
 nop
 nop
 nop
 nop
 cbi portc,4
 rcall delay1
 ret
lcdwr:cbi portc,2; wrtite to LCD
routine
 cbi portc,3
 cbi portc,4
 sbi portc,2
 out portb,r16
 sbi portc,4
 nop
 nop
 nop
 nop
 nop
 cbi portc,4
 rcall delay1
 ret
busy: cbi portc,2
 sbi portc,3 ;read/write high?
 cbi portc,4 ;chip select low
 nop
 nop
 sbi portc,4 ;chip select high
busy1:lds R16,pinb
 rol R16
 brcs busy1
 cbi portc,4
 ret
init_lcd: ;initialise LCD
 ldi R16,$38
 rcall cmd
 rcall delay1
 rcall delay1
 ldi R16,$0e
 rcall cmd
 rcall delay1
 ldi R16,6
 rcall cmd
 ldi r16,1
 rcall cmd
 rcall delay1
 ret
delay1:clr result
loop22:ldi R16,$f0
loop2:inc R16

Fig. 19: ADMUX register bits

Fig. 20: ADCSRA register bits

121ElEctronics ProjEcts vol. 26

 brne loop2
 inc result
 brne loop22
 ret
lcddisp: push r16
 ldi r16,128 ;cursor to left end
 rcall cmd
 pop r16
 rcall binbcd
 mov r16,r15
 andi r16,0x0f
 ori r16,0x30
 rcall lcdwr ; 1
 mov r16,r14
 andi r16,0b11110000
 ror r16
 ror r16
 ror r16
 ror r16
 ori r16,0x30
 rcall lcdwr ;2
 mov r16,r14
 andi r16,0x0f
 ori r16,0x30
 rcall lcdwr ;3
 mov r16,r13
 andi r16,0b11110000
 ror r16
 ror r16
 ror r16
 ror r16
 ori r16,0x30
 rcall lcdwr ;4
 mov r16,r13
 andi r16,0x0f
 ori r16,0x30
 rcall lcdwr ;5
 ret
binbcd:
;* “bin2BCD16” - 16-bit Binary to BCD conversion
;* converts 16-bit number (fbinH:fbinL) to a 5-digit
;* packed BCD number represented by 3 bytes
(tBCD2:tBCD1:tBCD0).
;* MSD of 5-digit number is placed in lowermost
nibble of tBCD2.
;* Number of words :25
;* Number of cycles :751/768 (Min/Max)
;* Low registers used :3 (tBCD0,tBCD1,tBCD2)
;* High registers used :4(fbinL,fbinH,cnt16a,tmp16a)
;* Pointers used :Z
Subroutine register variables
.equ AtBCD0 =13
;address of tBCD0
.equ AtBCD2 =15
;address of tBCD1
.def tBCD0 =r13
;BCD value digits 1 and 0

.def tBCD1 =r14
;BCD value digits 3 and 2
.def tBCD2 =r15
;BCD value digit 4
.def fbinL =r16
;binary value Low byte
.def fbinH =r17
;binary value High byte
.def cnt16a =r18
;loop counter
.def tmp16a =r19
;temporary value
bin2BCD16:
ldi cnt16a,16 ;Init loop counter
 clr tBCD2
;clear result (3 bytes)
 clr tBCD1
 clr tBCD0
 clr ZH
;clear ZH (not needed for AT90Sxx0x)
bBCDx_1:lsl fbinL ;shift input value
 rol fbinH
;through all bytes
 rol tBCD0 ;
 rol tBCD1
 rol tBCD2
 dec cnt16a
;decrement loop counter
 brne bBCDx_2 ;if counter not zero
 ret ; return

bBCDx_2:ldi r30,AtBCD2+1
;Z points to result MSB + 1
bBCDx_3: ld tmp16a,-Z ;get (Z) with
 pre-decrement
 subi tmp16a,-$03 ;add 0x03
 sbrc tmp16a,3 ;if bit 3 not
 clear
 st Z,tmp16a ;store back
 ld tmp16a,Z ;get (Z)
 subi tmp16a,-$30 ;add 0x30
 sbrc tmp16a,7 ;if bit 7 not
 clear
 st Z,tmp16a ;store back
 cpi ZL,AtBCD0 ;done all three?
 brne bBCDx_3 ;loop again if
 not
 rjmp bBCDx_1

; Main program routine starts here
Start:ldi R16,low(RAMEND);Load low byte address
of end of RAM into register R16
 out SPL,R16; Initialize stack
pointer to end of internal RAM
 ldi R16,high(RAMEND);Load
high byte address of end of
 RAM into register R16

out SPH, R16; Initialize high byte of stack
pointer to end of internal RAM
ldi rmpr,0b00000001;TIMER 0 INTERRUPT ENABLE
out TIMSK,rmpr
 ldi rmpr,05 ; So, we get once 1x10^6/1024=1000 Hz
out TCCR0,rmpr ;prescalar 1024 so that timer
interrupt occurs at 1KHz rate
ldi r16,$c0 ;c0 for int. ref, e0 with adch
 alone used.
 out admux,r16 ;channel 0 is selected
 ldi r16,0b11000101 ;prescale /32 (1x32=33 usec)
;adc enable,adc start,adc freerun,adcflag,adcno int,
adcprescale/32
 out adcsra,r16
 ldi r16,0
 out sfior,r16 ;write 0-0-0 to bits d7-d5 for
 free run
adc
here1:in r16,adcsra
 andi r16,0b01000000
 breq here1 ;value got
 ldi R16,255
 out ddrb,R16 ; port b is all bits output
 out ddrc,R16 ; so is port c
 ldi r16,0
 out ddra,r16 ;port a input
init: sei ;enable global interrupt
LCD: rcall init_lcd
 ldi R16,$80
 rcall cmd
here3:in r16,adcsra
 andi r16,0b01000000
 brne here3 ;value got
 in r16,adcl
 in r17,adch
 rcall lcddisp
idle: ldi r16,(1<<SE)
 out mcucr,r16
 sleep
 rjmp idle
restrt:ldi r16,$80 ;point to first cursor
 rcall cmd ; command to lcd to position cursor
 rcall delay1
 ldi r16,0b11000101 ;prescale /32 (4.43/32=138
usec)=7.2Khz
;adc enable,adc start,adc freerun,adcflag,adcno int,
adcprescale/32
 out adcsra,r16
here4: in r16,adcsra
 andi r16,0b01000000
 brne here4 ;value got
 in r16,adcl
 in r17,adch
 sbi adcsra,6 ;restart adc
hh: rcall lcddisp
 RJMP restrt ; Test of the serial interface

Fig. 21: Circuit for temperature display on either the LCD or the PC

122 ElEctronics ProjEcts vol. 26

Note. The ADC_LCD.ASM pro-
gram together with the .hex file, for
directly programming into the chip, is
provided in the EFY-CD.

Fig. 21 shows the circuit for view-
ing the analogue temperature (°C)
output of an LM35 temperature sensor
IC connected to ADC Ch.0 (pin 40) of
the AVR on the LCD screen in 5-digit
decimal format after analogue-to-digi-
tal conversion using the ATmega8535
chip with the ADC_LCD program. The
same circuit with addition of MAX232
chip and ATmega8535 can be used
for interfacing to a PC for viewing the
temperature data on the PC screen.
However, for that you have to program
the AVR with the firmware as de-
scribed in the succeeding paragraphs.

Using the UART in the
ATmega8535
Serial communication between the mi-
crocontroller and a PC is essential for
data transfer to the microcontroller and
reading of its ADC output by the PC.
The universal asynchronous receiver
transmitter (UART) built into the mi-
crocontroller can be programmed to
operate at certain baud rates.

The ADC_CH.ASM sample pro-
gram given below is useful for UART
applications:

ADC_CH.ASM
; ***
; This program read one of ADC channels (0 to 7).
The Channel can be selected by sending Channel
number.
; ATmega8535 receives the Channel no. and outputs
the five digit ADC value
; on RS232 port for reading by a PC’s XTALK
program or a VB project.
; Software features: It is possible to read the ADC
value and also
; transmit to the PC for data logging.
; ***
.NOLIST
.INCLUDE “m8535def.inc”
;device =ATMega8535
.LIST
.EQU xyz = 12345
; Constants for Sio properties
.EQU fq=1000000; clock frequency of m8535 with
internal oscillator
.EQU baud=4800; Baudrate for SIO communication
.EQU bddiv=(fq/(16*baud))-1; Baudrate divider
.DEF rmpr = R16
.DEF temp = R14
.DEF result=R12
.DEF mpr =R16
.CSEG
.ORG $0000
rjmp Start ; Reset-vector
.org $000b
 rjmp USART_RXC
.org $0100
InitSio:
 LDI rmpr,bddiv ; Init baud generator
 OUT UBRRL,rmpr ; set divider in UART

baud rate register
 ldi rmpr, 0
 out ubrrh,rmpr
 LDI rmpr,(1<<Rxen)|(1<<Txen)|
(1<<RXCIE)
 out UCsRB,rmpr
 LDI ZL,0 ; Wait some time
 LDI ZH,0
InitSio1:
 SBIW ZL,1
 BRNE InitSio1
 ldi r16,(1<<Ursel)|(1<<USBS)|
(3<<UCSZ0)
 out ucsrc,r16
 RET
USART_RXC:
push r16
 in R16,udr
 andi R16,07
 mov r1,r16
 ori r16,$c0
 out admux,r16
 ldi r16,$43
 rcall tout ; intimate new channel to host
 ldi r16,$48
 rcall tout
 mov r16,r1
 ori r16,$30
 rcall tout
 pop r16
 reti
 cmd: cbi portc,2
 cbi portc,3
 cbi portc,4
 out portb,r16
 sbi portc,4
 nop
 nop
 nop
 nop
 nop
 nop
 nop
 nop
 nop
 cbi portc,4
 rcall delay1
 rcall delay1
 rcall delay1
 ret
lcdwr:cbi portc,2
 cbi portc,3
 cbi portc,4
 sbi portc,2
 out portb,r16
 sbi portc,4
 nop
 nop
 nop
 nop
 nop
 nop
 nop
 nop
 nop
 cbi portc,4
 rcall delay1
 ret
init_lcd:
 ldi R16,$38
 rcall cmd
 rcall delay1
 rcall delay1
 ldi R16,$0e
 rcall cmd
 rcall delay1
 ldi R16,6
 rcall cmd
 ldi r16,1
 rcall cmd
 rcall delay2
ret
tout: sbis UcSRa,UDRE ;TX COMPLETE check
 RJMP tout
 OUT UDR,R16
 Ret
delay1:push r16
 clr result
loop22:ldi R16,$f0
loop2:inc R16
 brne loop2
 inc result
 brne loop22
 pop r16
 ret
delay2:push r16
 clr result
loop221:ldi R16,$f0

loop21:inc R16
 brne loop21
 inc result
 brne loop221
 pop r16
 ret
delay: clr result
ld: inc result
 brne ld
 ret
lcddisp:push r16
 ldi r16,128 ;cursor to left end
 rcall cmd
 pop r16
 rcall delay1
 rcall delay1
 rcall binbcd
 mov r16,r15
 andi r16,0x0f
 ori r16,0x30
 rcall tout
 rcall lcdwr ; 1
 mov r16,r14
 andi r16,0b11110000
 ror r16
 ror r16
 ror r16
 ror r16
 ori r16,0x30
 rcall tout
 rcall lcdwr ;2
 mov r16,r14
 andi r16,0x0f
 ori r16,0x30
 rcall tout
 rcall lcdwr ;3
 mov r16,r13
 andi r16,0b11110000
 ror r16
 ror r16
 ror r16
 ror r16
 ori r16,0x30
 rcall tout
 rcall lcdwr ;4
 mov r16,r13
 andi r16,0x0f
 ori r16,0x30
 rcall tout
 rcall lcdwr ;5
 ldi r16,$0a
 rcall tout
 ldi r16,$0d
 rcall tout
 ret
binbcd:
;* “bin2BCD16” - 16-bit Binary to BCD conversion
;* convert 16-bit number (fbinH:fbinL) to a 5-digit
;* packed BCD number represented by 3 bytes
(tBCD2:tBCD1:tBCD0).
;* MSD of 5-digit number is placed in the lowermost
nibble of tBCD2.
;* Number of words :25
;* Number of cycles :751/768 (Min/Max)
;* Low registers used :3 (tBCD0,tBCD1,tBCD2)
;* High registers used :4(fbinL,fbinH,cnt16a,tmp16a)
;* Pointers used :Z

; Subroutine Register Variables
.equ AtBCD0 =13 ;address of tBCD0
.equ AtBCD2 =15 ;address of tBCD1
.def tBCD0 =r13 ;BCD value digits 1 and 0
.def tBCD1 =r14 ;BCD value digits 3 and 2
.def tBCD2 =r15 ;BCD value digit 4
.def fbinL =r16 ;binary value Low byte
.def fbinH =r17 ;binary value High byte
.def cnt16a =r18 ;loop counter
.def tmp16a =r19 ;temporary value

bin2BCD16:
 ldi cnt16a,16 ;Init loop counter
 clr tBCD2 ;clear result (3 bytes)
 clr tBCD1
 clr tBCD0
 clr ZH ;clear ZH (not
 needed for AT90Sxx0x)
bBCDx_1:lsl fbinL ;shift input value
 rol fbinH ;through all bytes
 rol tBCD0
 rol tBCD1
 rol tBCD2
 dec cnt16a ;decrement loop counter
 brne bBCDx_2 ;if counter not zero
 ret ; return
bBCDx_2:ldi r30,AtBCD2+1 ;Z points to
result MSB + 1
bBCDx_3:
 ld tmp16a,-Z ;get (Z) with pre-decrement

123ElEctronics ProjEcts vol. 26

 subi tmp16a,-$03 ;add 0x03
 sbrc tmp16a,3 ;if bit 3 not
 clear
 st Z,tmp16a ;store back

 ld tmp16a,Z ;get (Z)
 subi tmp16a,-$30 ;add 0x30
 sbrc tmp16a,7 ;if bit 7 not clear
 st Z,tmp16a ; store back
 cpi ZL,AtBCD0 ;done all three?
 brne bBCDx_3 ;loop again if not
 rjmp bBCDx_1 ;End of the subroutine
 section

; Main program routine starts here
Start:ldi R16,low(RAMEND);Load low byte address
 of end of RAM into
 register R16
 out SPL,R16 ; Initialize stack pointer to
 end of internal RAM
 ldi R16,high(RAMEND);Load high byte
 address of end
 of RAM into
 register R16
 out SPH, R16 ;Initialize high
 byte of stack pointer
 to end of internal RAM
 ldi r16,$c0 ; c0 for int. ref, e0 with adch alone
 used.
 out admux,r16 ; channel 0 is selected
 ldi r16,0b11000101 ;prescale /32 (1x32=33 usec)
 ;adc enable,adc start,adc freerun,adcflag,adcno
 int,
adcprescale/32
 out adcsra,r16
 ldi r16,0
 out sfior,r16 ; write 0-0-0 to bits d7-d5 for
 free
run adc
here1:in r16,adcsra
 andi r16,0b01000000
 breq here1 ;value got
 ldi R16,255
 out ddrb,R16 ; port b is all bits output
 out ddrc,R16 ; so is port c
 ldi r16,0
 out ddra,r16 ;port a input
init: rcall initsio
 sei ;enable global interrupt
LCD: rcall init_lcd
lcd1: ldi R16,$80
 rcall cmd
 rcall delay1
 rcall delay1
 rcall delay1
 rcall delay1
here3:in r16,adcsra
 andi r16,0b01000000
 brne here3 ;value got
 in r16,adcl
 IN R17,adch
 push r16
 ldi r16,0b11000101 ;prescale /32 (1x32=32
usec)
;adc enable,adc start,adc freerun,adcflag,adcno int,
adcprescale/32
 out adcsra,r16
 pop r16
 rcall lcddisp
 rjmp lcd1
 in r16,udr
 andi r16,07
 mov r14,r16
 ori r16,$c0
 out admux,r16
 ldi r16,$43
 rcall tout ; intimate new channel to host
 ldi r16,$48
 rcall tout
 mov r16,r14
 ori r16,$30
 rcall tout
 rjmp lcd1

The above program reads the ADC
output data, whose decimal value is
output to pin 15 (TX) of ATmega8535 at
4800 bauds in 8-bit ASCII data format.
If a MAX232 is wired to pin 15, it can
be directly connected to the receive pin
of the RS-232 com port of a PC. Then,
by using any terminal program (such as
XTALK), it can be received by the PC.

The program (ADC_CH.ASM) may
be tested as follows:

1. Wire ATmega8535 to the LCD
and the serial port through a MAX232
IC as shown in Fig. 21.

2. Connect an analogue signal (e.g.,

Fig. 22: Screenshot of ADC_CHSEL application

Fig. 23: Integrated actual-size PCB layout (including the 5V power supply circuit given in Part 1) for all
the applications described in this 3-part article

Fig. 24: Component layout for the PCB

124 ElEctronics ProjEcts vol. 26

a DC voltage in the 0-5V range tapped
from a potmeter or the output of LM35
used in the preceding application) to
ADC Ch. 0 (pin 40).

3. Program the adc_ch.asm file into
the flash memory of ATmega8535 after
compilation.

4. Place the IC on the breadboard
and press reset.

5. Connect the RS-232 connector of
the PC through a 3-wire cable to the
MAX232 pins on the board. The TXD
output from ATmega8535 should go to
RXD pin of the PC’s com port and the
PC’s TXD output should go to RXD pin
of ATmega8535.

6. Run the XTALK program on the
PC and set the baud rate as ‘4800,’ data
as ‘8 bits,’ parity as ‘none,’ stop as ‘1,’
and com as ‘1’ or ‘2,’ type ‘go low,’
then press ‘Enter’ key.

7. Observe the ADC data continu-
ously on the screen.

The PC terminal program can
be used to select one of the eight
desired channels. For this, type any
number from ‘0’ to ‘7.’ For example,
to select channel-3 ADC, type ‘3.’
Remember you need not press Enter
key thereafter.

The data from the PC terminal is
received by the USART_RX subrou-
tine in the interrupt mode. The main
program configures the received data
to interrupt the processor. In the inter-
rupt routine, the number sent is used

to change (by altering the value of the
bits in the ADMUX register of the chip)
the ADC channel currently chosen.
Thus all the following data will pertain
to this channel only and the same will
be informed to the PC terminal also by
sending CH3 followed by data stream.

The XTALK terminal program is
given only for testing purposes. The
Visual Basic program (ADC_CHSEL)
provided in the EFY-CD of this month
does the same. It has two windows,
one of which is a Combo box for select-
ing the channel and the other shows
the 5-digit data continuously. Selec-
tion of the channel is possible via the
Combo box (Fig. 22).

Application notes with
programs
You may visit Atmel’s Website ‘www.
atmel.com/dyn/products/app_notes.
asp?family_id=607’ for the following
application notes.

1. AVR100: Accessing the EE-
PROM . This application note
contains assembly routines for
accessing the EEPROM for all AVR
devices. It includes the code for
reading and writing EEPROM addresses
sequentially and at random addresses.

2. AVR223: Digital Filters with
AVR. This document focuses on
the use of the AVR hardware multi-
plier and general-purpose registers
for accumulator functionality, scaling

of coefficients when implementing
algorithms on fixed-point ar-
chitectures, actual implementation
examples and possible ways to optimise/
modify the implementations suggested.

3. AVR240: 4x4 Keypad-Wake Up
on Keypress. This application note
describes a simple interface to a 4×4
keypad designed for low-power bat-
tery operation.

Also there are application notes for
interfacing the AVR to an IR detector
much like the TV remote. Other topics
of interest relating to the AVR are use
of watchdog, power idle modes, SPI
interfacing for communication, etc.
Many have tried out the SPI interface
for data communication, but it is
found to be more complex compared
to the RS-232 protocol. The RS-232
link for ADC data, which is described
above, makes a really useful serial
data-acquisition system.

An integrated actual-size PCB
layout (including the 5V power
supply circuit given in Part 1) for
all the applications described in this
3-part article is shown in Fig. 23.
The component layout for the same
is shown in Fig. 24. Suitable pads
(not shown in the component layout)
have been provided for wiring the
components.

Download source code: http://
www.efymag.com/admin/issuepdf/
Application%20AVR%20Part%20II.zip

