Electronics Now, September 1999

w
o

PIC Assembly LANC,UAqE

MPLAB - E:\PIC\TURNON.PIT

; File TURNON.A!

Turns or
Uses RC

CPU coni,
<]

mpilin
mnand gi

t

Progran

-

ilding TURNON. |k5;;]:-10n
TURNON

wi arninu[224] ‘B:\Evisa
Build conpleted trlsb

8} Special Function Register Window

; Assembly code fnr PICIGPQFR Nane

iid11141
tatu- 20011600
VE | rta

rth
11141111
edata uaaaaaal
eeconl
eadr
Beiath
peclal

ﬁntcon

| e0eseNRNEHE

Fﬁyra

nov 1w leﬂ
tris

nov 1w Bx!
novuf Bx6

for The Complere Beginner

hese days, the field of elec-
tronics is divided into “haves”
and “have-nots"—people who can
program microcontrollers and peo-
ple who can't. If you're one of the
“have-nots,” this article is for you.
Microcontrollers are one-chip
computers designed to control
other equipment, and almost all
electronic eqguipment now uses
them. The average American
home now contains about 100
computers, almost all of which are
microcontrollers hidden within
appliances, clocks, thermostats,
and even automobile engines.
Although some microcontrollers
can be programmed in C or BASIC,
you need assembly language fo get
the best results with the least expen-
sive micros. The reason is that assem-
bly language lets you specify the
exact instructions that the CPU will
follow; you can conirol exactly how

Michael Covington does research on advanced
microcontroller applications at the University of
Georgia’s Artificial Intelligence Center. He also
conducts the monthly “Q&A” section in Electronics
Now Magazine.

Microcontrollers have revolutionized the world of electronics, but
they are useless to you if you don’t know how to program them.
This month, we show you how easy that is to do.

much time and memory each step
of the program will take. On a finy
computer, this can be imporiant.
What's more, if you're not already an
experienced programmer, you may
well find that assembly language s
simpler than BASIC or C. In many
wawys it's more like designing a circuit
than writing soffware.

The trouble with assembly lan-
guage is that it’s different for each
kind of CPU. There's one assembly
language for Pentiums, another for
PIC microcontrollers, still another for
Motorola 68000s, and so forth. There
are even slight differences from
one model of PIC to another. And
that leads to a serious problem—
each assembly-language manual
seems to assume that you already
know the assembly language for
some other processorl So as you
look from one manual fo another in

MICHAEL A. COVINGTON

puzzlement, there’s no way to get
started.

That's the problem this article will
address. We won't feach you all of
PIC assembly language: just enough
to get you starfed. For simplicity, deal
with just one processor, the PIC16F84.
To be very precise, it wil be the
PIC 16F84-04P, which operates up to 4
MHz and is housed in a plastic DIP
package. This is a product of
Microchip, Inc. (Chandler, Arizona,
Web: www.microchip.com), and it's
closely related to the rest of the PIC
family.

What You’ll Need. To do the exper-
iments described in this article,
you'll need one or more PIC16F84-
04P chips; we strongly recommend
having more than one so you can
rule out a damaged PIC if your cir-
cuit doesn’t work, You'll also need

PIC16F84|
S, AP
a3 Aol
1 PWROR] L
—4liicR o2flS
lanp v+ 4
S, prfits
Elly; pgpls
G L
S90p; pyfHl

Fig. 1. Here's the pinout of a 16F84 PIC micro-
processor that's being used as our example
device.

the other parts for the circuits you
want to build (refer to the schemat-
ics as we go along). And you'l
need a PC:compatible personal
computer, the MPASM assembler
soffware (which you can down-
load from www.microchip.com),
and a PIC programmer such as
Ramsey Electronics’ PICPRO (avail-
able for $59.95 plus $6.95 postage
and handling in the U.S. from
Ramsey Elecfronics, 793 Canning
Parkway, Victor, NY 14564, Tel: 716-
924-4560, Fax: 716-924-4886, Web:
www.ramseyelectronics.com),
which Is based on this author’s
NOPPP programmer published in
the September 1998 issue of this
magazine and described at
www.mindspring.com/~covingfton
/noppp. The PIC16F8X data sheet,
actually a 122-page manual, will
also come in handy; it's called
PIC16F8X because it covers both
PIC16F84 and PIC16F83, and you

LISTING 1

; File TURNON.ASM

; Assembly code for PIC16F84 microcontroller

; Tums on an LED connected to BO.
; Uses RC oscillator, about 100 kHz.

; CPU configuration
; (it's a 16F84, RC oscillator,
; watchdog timer off, power-up timer on.)

processor 16184

include <p16f84.inc>

__config _RC_OSC & WDT_OFF & PWRTE_ON

; Program

org 0 ; start at address 0
; At startup, all ports are inputs.
; Set Port B to all outputs.

movlw B'00000000"
tris PORTB

; Put a 1 in the lowest bit of port B.

moviw B'00000001"
movwf PORTB

; Stop by going into an endless loop
fin: goto fin

end

can download it or request a print-
ed copy from Microchip.

What's Inside a PIC? The pinouf of
the PIC16F84 is shown in Fig. 1, and
Fig. 2 shows the most important
parts inside of the device. The PIC is
a tiny but complete computer. It
has a CPU (central processing unit),
program memory (PROM), working
memory (RAM), and two input-out-

; W := binary 00000000
; copy w to port B control reg

; W := binary 00000001
; copy w to port B itself

; program ends here

put ports.

The CPU is, of course, the “brain”
of the computer. It reads and exe-
cutes instructions from the program
memory. As it does so, it can store
and retrieve data in working mem-
ory (RAM). Some CPUs make a dis-
finction between registers located
within the CPU and RAM located
outside it; the PIC doesn’t, and ifs
general-purpose working RAM is

8-BIT BUS FILE SPECIAL
/—{ REGISTERS [~ FUNCTION — PORTA | PORT B
(RAM) REGISTERS
OSCHESION PROGRAM A4 A3 A2 A1 A0O B7 B6 BS B4 B3 B2 B1 B0
W REGISTER
il Il 7 MEMORY CMOS INPUTS AND OUTPUTS
ot 02 14-BIT BUS (FLASH EPROM)

Fig. 2. As you can see from this simplified block diagram of the 16F84, the device is essentially a

one-chip computer.

MON S0IU0103|T ‘6661 Jequsideg

(5]
~

Electronics Now, September 1999

8

Fig. 3. Any of the four schemes on the left can be used to power a PIC, though the last one should

only be used where the device is not driving an LED or a high-current load. Regardless of which
power scheme you use, it is important to connect a 0.1-uF capacitor to pin 14 as shown on the left.

also known cs “file registers.” On the
‘F84, there are 68 bytes of general-
purpose RAM, located at address-
es hex OC fo hex 4F,

Besides the general-purpose
memory, there Is a special “working
register” or "W register” where the
CPU holds the data that it's working
on. There are also several special-
function registers each of which
controls the operation of the PIC in
some way.

The program memory of the 'F84
consists of flash EPROM:; it can be
recorded and erased electrically,
and [t retains its contents when
powered off. Many other PICs
require uliraviolet light for erasure
and are not erasable If you buy the
cheaper version without the quartz
window. The ‘F84, however, is always
erasable and reprogrammable.

There are two input-output ports,
port A and port B, and each pin of
each port can be set individually
as an input or an output. The blts of
each port are numbered, starting
at 0. In output mode, bit 4 of port A
has an open collector (or rather

" open dradin); the rest of the outputs

are regular CMOS. (Working with
microcontrollers, you have to
remember detalls like this; there's
no programming language or
operating system to hide the
details of the hardware from you.,)
The CPU treats each port as one 8-
bt byte of data even though only

five bits of port A are actually
brought out as pins of the IC.

PIC inputs are CMOS-compati-
ble; PIC outputs can drive TIL or
CMOS logic chips. Each output pin
can source or sink 20 mA as long as
only one pin Is doing so at a time.
Further information about electrical
Iimits is given in the PIC16F84 data
sheet,

The ‘F84 also has some features
we won't be using, Including an
EEPROM for long-term storage of
data, an onboard timer-counter
module, and optional pull-up resis-
tors on port B.

Power and Clock Requirements.
The PIC16F84 requires a 5-volt sup-
ply; actually, any voltage from 4.0
to 6.0 volts will do fine, so you can
run it from three 1.5-volt cells.
Several power-supply options are
shown in Fig. 3. The PIC consumes
only 1 mA—even less, at low clock
speeds—but the power supply
must also provide the current flow-
ing through LEDs or other high-cur-
rent devices that the PIC might be
driving. Thus, the last circuit, with the
Zener dlode, Is only for PICs that
aren’t driving LEDs.

Also, as shown In Fig. 3, all four
power supply circults rely on a 0.1-
wrF capacitor from pin 14 (V4) fo
ground, mounted close to the PIC,
to protect the PIC and adjacent
components from electrical noise.

This capacitor should be present no
matter how clean you think your
DC supply Is.

The MCLR pin Is normally con-
nected to V+ through a 10,000-
ohm resistor. Grounding it momen-
tarly will clear RAM and reset the
PIC. If your power supply voltage
comes up slowly, the PIC may start
up in a confused state; in that case
you should add a normally-open
reset button between MCLR and
ground.

Like any CPU, the PIC needs a
clock—an osclllator to control the
speed of the CPU and step it
through its operations. The maxi-
mum clock frequency of the
PIC16F84-04P Is, as already noted, 4
MHz. There Is no lower Imit. Low
clock frequencies save power and
reduce the amount of counting
the PIC has to do when timing a
slow operation. At 30 kHz, a PIC can
runon 0.1 mA.)

A selection of the most popular
clock circults Is shown in Fig. 4. The
clock signal can be fed in from an
external source, or you can use the
PIC’s on-board oscillator with either
a.crystal or a resistor and capacitor.
Crystals are preferred for high accu-
racy: 3.58-MHz crystals, mass-pro-
duced for color TV circuits, work well
and are very cheap. The resistor-
capacitor osclllator is cheaper yet,
but the frequency Is somewhat
unpredictable; don’t use it if your cir-
cuit needs to keep time accurately.

Assembly Language. A PIC spends
its time reading Instructions from
the program memory, one after
another, and doing whatever those
instructions say. Each instruction
consists of 14 bits. If you could see
the bits as binary ones and zeroes,
a program like the one In Lsting 1
would look like this:

11000000000000
00000001100110
11000000000001
00000010000110
10100000000100

The earliest computers were pro-
grammed by technicians wrlting
binary codes just ltke this. As you
can see, though, binary codes are
very hard for human belngs to read
or write because they‘re complete-

PIC16F84

o018« ExTERNAL cLOCK.

ozHE ne

3.3K (1.5 MHz)
PIC16F84 ap el
o 100K (100 kHz)
100

02— NC I pF

PIC16F84

(o)}

T

Fig. 4. Three ways are shown to generate the
clock signal that is required by the PIC.

ly arbitrary; they look like gibberish.

Another reason binary codes
are hard to write is that many of
them refer to locations in memory.
For instance, a “go fo” instruction
will have to say what memory
address to jump to. Programming
would be much easier if you could
label a location in the program
and have the computer figure out
its address.

For both of those reasons, assem-
bly language was invented over
forty years ago. Or, to be more pre-

+5V
A
IC1
o & |PicreFea] < R2
<
10K S “2“‘2 '“"; AR08
—4A3 AOl—
as o8 c2
AR o2l2 Ak 1,,0,?
e =
5 c1
7 0.1
puF
8
9

Fig. 5. Here’s the circuit that accompanies pro-
gram Listing 1.

cise, many assembly languages
have been invented, one for each
type of CPU. What assembly lan-
guages have in common is that the
instructions are abbreviated by
readable codes (mnemonics) such
as GOTO, and locations can be rep-
resented by programmer-assigned
labels. For example, in assembly lan-
guage, the binary insfructions just
mentioned would be:

moviw B’00000000°
fris PORTB
moviw B’00000001°
movwf PORTB

fin: gofo fin

In English: Put the bit pattern
00000000 into the W register and
copy it to the tri-state control regis-
ter for port B, thereby setting up
port B for output; then put 00000001
infto W and copy it to port B itself;
and finally stop the program by
going info an endless loop. The
result from the outside world'’s point

Checking E:\PICNTURNON.ASH for symbol
Assembling. ..

TURNON.ASH 58

Building files...

{Errors H a
L. i 1 reported,
A reported.

ssages -
25 fissembled : 186

Press an to continue.

B suppressed
8 suppressed

Each instruction is divided into
three parts, the label, the opcode
(operation code or instruction
code), and fthe operand (also
called argument). For example, in
the line:

fin: goto fin

the label is fin: (with a colon), the
opcode Is goto, and the operand is
fin.

The label, opcode, and operand
are separated by spaces. The
assembler doesn’t care how many
spaces you use; one is enough, but
most programmers use additional
spaces fo make their instructions
line up info neat columns.

If there’s no label, there must be
at least one blank before the
opcode, or the assembler will think
the opcode is a label. Although
current PIC assemblers can offen
recover from this kind of error, it is an
error, and other assemblers aren’t
as folerant,

ey

crochip Technnlog Inc./Byte Craft Lini

Fig. 6. To assemble the program in Listing 1, you'll need MPASM, a free program downloadable
from www.microchip.com, or a similar PIC assembler.

of view is that pin 6 of the 'F84 goes
high, while pins 7 through 13 remain
low.

Program Layout. Listing 1 shows a
complete, ready-to-assemble pro-
gram. Look closely at its layout. The
semicolon (;) is the comment mark-
er; the computer ignores every-
thing after the semicolon on each
line. Much of the program consists
of comments; thai’s as it should be,
because although it's not as bad
as binary code, assembly lan-
guage is still relatively hard to read.

Assembling a Program. A com-
pufer “assembles” the assembly-
language program info the binary
instructions, which, for brevity, are
actually written in hexadecimal
(more about that shortly) and
stored in what is called a HEX file.
Some computers run their own
assemblers, but the PIC is far too
small for that; instead, you'll type
and assemble your PIC programs
on a DOS or Windows PC. Then
you'’ll download the .HEX file into a
PIC using a PIC programmer and its
associated software.

MON $91UON08|T ‘666 Jequsides

(]
w0

The program in Listing 1 does
one very simple thing—it turns on
an LED connected to pin BO. The
circuit needed to try this program
out is shown in Fig. 5. Admittedly,
turning on one LED is not a great
feat of computation, but it's
enough to show that the PIC works.

To assemble this program, you’ll
need MPASM, the free PIC assem-
bler downloadable from www.
microchip.com. You also need the
file P16F84.INC, which comes with
MPASM and tells the assembler
the particulars of the ‘F84 as
opposed to the numerous other
varieties of PIC. You won't need
the other .INC files also included
with the assembler.

What you do is type your pro-
gram onfo a file with a name end-
ing In .ASM, using Windows
Notepad, DOS EDIT, or any other
text editor. Don't use a word
processor unless you are sure you
can save your file as plain ASCII.

Then run MPASM from a DOS
prompt (a DOS box under Windows

is OK). If your program file is named
turnon.asm, type the command:

mpasm furnon.asm

and Fig. 6 shows what you'll see on
the screen.

What MPASM is telling you is that
it assembled your .ASM file, gener-
ating one warning message (which
is unimportani—more about this
next month) results consists of a
HEX file containing the assembled
instructions and a .LST file contain-
ing a detailed program listing with
error messages. If the program con-
tained serious errors, no .HEX file
would be generated and you
should study the .LST file fo see
what went wrong.

MPASM is the simple way fo go.
Microchip also gives away a devel-
opment environment called MPLAB
(shown at the beginning of this arti-
cle) that contains an assembler plus
asimulator so you can make your PC
pretend to be a PIC and actually
see your program run. MPLAB is very

useful but ifs operation is beyond the
scope of this article. For some tips,
see www. mindspring.com/
~covingfon/noppp.

Now that you have a .HEX file, you
have to get it into the PIC. This is
done with a programmer such as
Microchip’s “Picstart Plus” or the
NOPPP/Ramsey Electronics PICPRO.
On your PC, you run whatever soft-
ware your programmer requires and
follow the instructions.

Finally, put the programmed PIC
info the circuit (handling it carefully
to prevent static damage) and
apply 5 volts. The LED should turn
on. There—you’'ve made a PIC do
something.

Next Time. Unforfunately, we've
run out of space for this issue. Next
month, we’ll look at our little program
in more depth, then see if we can
tackle something that’s a litle more
ambifious. We'll also look at some
resources you can use fo extend
your new-found ability to program
microprocessors even further. Q

