

Swordfish Compiler
Structured BASIC for PIC® microcontrollers

Language Reference

Guide

 Provisional

i

Table of Contents

Introduction...1

Nomenclature... 1
Contact Details... 1
Copyright... 1

Identifiers and Reserved Words...2

Comments..2

Constants...3

Array Constants ...4

Variables..5

Boolean Types.. 6
String and Char Types... 7

Arrays ..9

Structures and Unions..11

Unions... 12
User Types... 14

Alias and Modifiers...14

EEPROM Data ...16

Conditional Statements..18

The If…Then Statement ... 18
The Select…Case Statement... 19
Conditional Jump .. 20

Repetitive Statements..20

The While…Wend Loop... 20
The Repeat…Until Loop .. 21
The For…Next Loop ... 21
Short Circuit Boolean Expressions ... 22
Break .. 22
Continue.. 23

Subroutines and Functions...24

Subroutine Declarations... 24
Function Declarations .. 24
Parameters .. 25
Subroutine and Function Scope .. 28
Frame Recycling ... 29
Inline .. 29
Function Return Types... 30
Exit... 32
Subroutine and Function Aliasing .. 32
Overloading ... 33
Compound Subroutines ... 34

Using Embedded Assembler ...37

With Statement..37

Interrupts ..38

Enabling and Disabling Interrupts ... 40

Events..41

Context Saving...43

Compiler Directives..44

#constant .. 44
#variable... 44
#define ... 45
#undefine.. 45
#ifdef…#else…#endif .. 45
#ifndef…#else…#endif .. 45

ii

#if…#elseif…#else…#endif... 45
#error ... 46
#warning... 46
#option ... 46
IsOption .. 47
Preprocessor Expressions... 47
Predefined Directive Constants ... 48

Predefined Subroutines and Functions...48

AddressOf.. 48
BitOf ... 48
Bound ... 49
Clear... 49
Dec... 50
DelayMS .. 50
DelayUS .. 50
High.. 50
Inc.. 51
Input... 51
Low... 51
Output .. 51
Terminate.. 51
Toggle... 52

Creating and Using Programs...52

Clock... 53
Program Includes, Declarations and Statements ... 54

Creating Modules ...56

Device and Clock .. 56
Module Includes, Declarations and Statements ... 56

Appendix 1 - Operators..1

Operator Precedence... 1
Relational Operators.. 1
Mathematical Operators... 2
Logical Operators.. 2
Bitwise Operators ... 2

Appendix 2 - Reserved Words ..3

Appendix 3 - Types, Modifiers and Constants...4

Core Types .. 4
Variable Modifiers ... 4
Promotional Modifiers.. 5
Inbuilt Constants .. 5

Appendix 4 - Predefined Directive Constants ...6

1

Introduction

Swordfish is a structured Basic language for 18 series PIC® microcontrollers from
Microchip™ Corp. This document is a language reference only and describes the
keywords, syntax and functions provided in the language. It is assumed that the
reader is familiar with structured languages and the techniques employed in

developing programs using a structured language.

The language can be further extended through the addition of libraries. A set of
standard libraries is provided with the language and described in a separate

manual.

Nomenclature

The following nomenclature is used throughout this manual:

[] Optional item

| Item choice
{} Zero or more items

Keywords will be highlighted in bold where they are used in statements. Where
example code is shown, this will reflect the default format of the Swordfish IDE.
For example,

dim Index, Range as byte

Contact Details

Mecanique
85 Marine Parade
Saltburn by the Sea
TS12 1BZ
United Kingdom

www.sfcompiler.co.uk
enquiries@sfcompiler.co.uk

Copyright

Copyright © 2006 Mecanique. Reproduction in any manner without prior written

consent is strictly forbidden.

PIC, PICmicro and dsPIC are registered trademarks of Microchip Technology Inc. in
the USA and other countries

2

Identifiers and Reserved Words

The most common use of an identifier is to name constants, variables, aliases,
structures, subroutines and functions. You should try and use descriptive names
for identifiers, as this will make your program easier to follow and debug. A valid
identifier is composed of the following elements:

[underscore] letter {letter | digit | underscore}

In other words: an optional underscore character followed by a single letter of the

alphabet, followed by one or more letters, digits or underscores.

A reserved word has a special meaning for the compiler and cannot be used as an

identifier. A list of reserved words is shown in Appendix 2.

Comments

Comments are not compiled and are used to document your program. To add a
single line comment, use a quote character or double forward slash. For example,

// this is a comment...

’ this is a comment...

Value = 10 // this is also a comment

ValueB = 20 ’ and so is this.

Swordfish also supports block comments. You can use either left and right braces

or you can use left parentheses plus asterisk followed by asterisk plus right
parentheses. For example,

(*

 this is a block

 comment

*)

ValueA = 10

{

 this is also a

 block comment

}

ValueB = 20

You cannot mix the two different style of block comment. For example,

(*

 this is NOT a

 valid block comment

}

However, you can nest the two different styles. For example,

(*

 this is a valid block

 { comment}

*)

It's usually good programming practice to stick with one type of block comment
within your code. This way, you can make lots of notes using one block comment
style and use the other to comment out large chunks of code when debugging.

3

Constants

[private | public] const identifier [as type] = expression

• Private – An optional keyword which ensures that a constant is only
available from within the module it is declared. Constant declarations are

private by default.
• Public – An optional keyword which ensures that a constant is available to

other programs or modules.
• Identifier – A mandatory constant name, which follows the standard

identifier naming conventions
• Type – An optional data type. Supported types include boolean, bit, byte,

word, longword, shortint, integer, longint, float and char.

• Expression – A mandatory literal, constant declaration or a mixture of both.

A constant declaration can be used in a program or module in place of a literal
value. Constant data cannot be changed at runtime (that is, you cannot assign a

new value to a constant when your program is executing). However, constants
have the advantage of making your code much more readable and manageable.

You can declare constants one at a time, like this

const MaxSamples = 20

const SizeOfArray = 20

or as a list,

const

 MaxSamples = 20,

 SizeOfArray = 20

You can also use an expression on the right hand side of a constant declaration.

For example,

const

 Hello = "Hello",

 HelloWorld = Hello + " World",

 ValueA = 12 * 0.4,

 ValueB = ValueA + 10

Swordfish will automatically assign the type of a constant, based on the expression
itself. For example,

const MyStr = "Hello World" // a string constant

const ValueA = -100 // a signed constant

const ValueB = 100 // an unsigned constant

const ValueC = 0.4 // a floating point constant

Constants, unlike program variables, do not use RAM to store their values. If a

constant is used in a program expression, code memory is used instead. When
declaring numeric constants, or when using numeric literals in your program, you
can use different number representations.

4

Representation Prefix Example Value

Decimal none 100 100 decimal

Binary % %100 4 decimal

Hexadecimal $ $100 256 decimal

Swordfish will compute a constant declaration such as const Value = 5 / 1024

using integer arithmetic, resulting in Value being equal to zero. This is because
both 5 and 1024 are ordinal values. If you want to force the type of Value to
floating point, one or more of the literals in the expression should be made floating

point, for example, const Value = 5.0 / 1024 or const Value = 5 / 1024.0

Array Constants

[private | public] const identifier(size) as type = (value {, value})

• Private – An optional keyword which ensures that a constant array is only
available from within the module it is declared. Constant arrays are private

by default.
• Public – An optional keyword which ensures that a constant array is

available to other programs or modules.
• Identifier – A mandatory constant name, which follows the standard

identifier naming conventions
• Size – A mandatory constant expression which defines the number of

elements in the constant array

• Type – A mandatory data type. Supported types include boolean, bit, byte,
word, longword, shortint, integer, longint, float, string and char.

• Value – One or more data values.

Array constants are extremely useful for accessing sets of data from within your
program at runtime. Like single constant declarations, array data values cannot be
changed at runtime.

Constant arrays can be declared one at a time, or in a list. You can even mix single
constant declarations with array constants. For example,

const

 ArraySize = 5,
 ConstArray(ArraySize) as byte = (1, 2, 10, 20, 100),

 CR = 13,

 LF = 10

Constant arrays can be accessed in the same way as you would any other variable
array. For example,

// import modules...

include "USART.bas"

include "Convert.bas"

const ConstArray(2) as byte = (100, 200)

dim Index as byte

5

// display value to terminal program, include

// CR and LF

USART.SetBaudrate(br19200)

for Index = 0 to bound(ConstArray)

 USART.Write(DecToStr(ConstArray(Index)), 13, 10)

next

You can also directly assign a constant array to a variable array, if the number of
array elements is the same. For example,

const ConstArray(2) as byte = (100, 200) // two elements

dim VarArray(2) as byte // two elements

VarArray = ConstArray // assign values to variable array

You can even assign constant string arrays to variable string arrays. The only
caveat is that the size of each string size, as well as the number of array elements,

must be the same. This is easy to do by packing out the constant array strings
with spaces. For example,

// largest string (Au revoir) is 9 characters, so

// pack each string to match…

const MenuEnglish(2) as string = ("Hello ", "Goodbye ")

const MenuFrench(2) as string = ("Bonjour ", "Au revoir")

dim Menu(2) as string(10) // 9 + null terminator

// program start…

Menu = MenuEnglish // menu is now set for english

Menu = MenuFrench // menu is now set for french

You only need to pack constant strings when performing direct assignment, like in

the example above. If you just wish to access each array element individually,
then no packing is required.

Constant arrays can only have a single dimension. Swordfish does not currently
support multi-dimensional constant arrays. Constant arrays use program memory
and not data RAM to store their values. This is unlikely to cause problems under
normal circumstances, given the amount of code space available with current PIC®

microcontrollers. However, code space is not unlimited and care should be
exercised if using exceptionally large constant array declarations.

Variables

[private | public] dim identifier {, identifier} as type

• Private – An optional keyword which ensures that a variable is only
available from within the module it is declared. Variables are private by

default.
• Public – An optional keyword which ensures that a variable is available to

other programs or modules.

• Identifier – A mandatory variable name, which follows the standard
identifier naming conventions

• Type – A mandatory data type. Supported types include boolean, bit, byte,
word, longword, shortint, integer, longint, float, string, char and structures

A variable holds data on which a program operates. Unlike constants, variable
values can change dynamically when the program is executing. A variable is like a

6

box, which holds values. You have to tell the compiler in advance the type of
variable that will fit into the box.

You can declare variables one at a time, like this

dim Index as byte

dim Range as byte

or you can declare them as a list,

dim

 Index as byte,

 Range as byte

In the examples opposite, the variables are of the same type (a byte). You could
therefore use the following syntax

dim Index, Range as byte

As mentioned previously, the type defines what values can fit into a variable. It's

important to note that data RAM on a PIC® microcontroller is substantially less
than the code memory used to store your program. In addition, program
operations on large data types (for example, long words) will generate more
underlying ASM code.

Refer to Appendix 3 for a list of Variable types supported by the compiler and their
storage requirements.

The PIC® 18 series is an 8 bit microcontroller, so it makes sense to keep your
types limited to unsigned bytes if at all possible. For example, you may want to
store a numeric value which ranges from 0 to 200. In this case, a byte type would

be ideal, as this can store numbers in the range 0 to 255 and only takes 8 bits of
data RAM. Of course, the compiler can easily accommodate larger types, but
choosing the right variable type is essential not only in terms of saving precious
data RAM, but also in terms of the size and efficiency of the ASM code produced.

The types bit, byte, word, longword, shortint, integer, longint and float shown in
Appendix 3 clearly outline the numeric ranges for any variables declared using
them. The following sections discuss in more detail boolean, string and char.

Boolean Types

The boolean data type enables you to represent something as true or false. It
cannot hold a numeric value. The right hand side of an assignment expression

must always evaluate to true or false, or set directly by using the compilers

Unlike many other BASIC compilers, Swordfish does allow variables of different
types to be used in the same expression. For example, an unsigned byte can be
multiplied by an integer and assigned to a variable declared as floating point.

However, this practice should be avoided if possible, as the code automatically
generated by the compiler needs to convert one type into another in order to
compute the correct result. This will result in a larger code footprint than would
otherwise be generated if all of the variables used had been declared as the

same type.

7

predefined boolean constants. For example,

dim OK as boolean

OK = true

Booleans are particularly useful when dealing with flow control statements, such as
if…then or iteration statements, such as while…wend or repeat…until. A
Boolean data type can significantly contribute to the readability of a program,

making code sequences appear more logical and appropriate.

For example, the following code shows how you could set a bit flag, if the value of
index falls within 10 and 20,

dim Index as byte

dim DataInRange as bit

if Index >= 10 and Index <= 20 then

 DataInRange = 1

else

 DataInRange = 0

endif

However, if we change the flag DataInRange to a boolean type, we could write the
code like this,

dim Index as byte

dim DataInRange as boolean

DataInRange = Index >= 10 and Index <= 20

In the first example, testing index using if…then evaluates to true or false. In
the second example, DataInRange is a boolean type, so we can dispense with the
if…then statement altogether and assign the result directly to DataInRange.

In addition, because DataInRange is a boolean type, we don't have to explicitly
test it when encountering any conditional expressions. Remember, a boolean can
only be true or false, so we simply write something like this,

if not DataInRange then

 // output an error

endif

In this example, if DataInRange is false, then the if…then statement will evaluate
to true (the boolean operator not inverts the false into a true) and an error is

output.

String and Char Types

A string variable can be described as a collection of character elements. For
example, the string "Hello" consists of 5 individual characters, followed by a null
terminator. The Swordfish compiler uses a null terminator (0) to denote the end of

a string sequence. A string variable can be declared and initialized in the following
way,

dim MyString as string

MyString = "Hello World"

8

By default, the compiler will allocate 24 bytes of RAM for each string declared. That
is, you can assign a string sequence of up to 23 characters, plus one for the null

terminator.

In the previous example, "Hello World" is 11 characters long. Assuming MyString
will never get assigned a sequence larger than this, we can save some RAM

storage by explicitly specifying the size of the string after the string keyword, like
this

// 11 characters + null terminator...

dim MyString as string(12)

Swordfish enables you to specify string sizes of up to 256 bytes, which equates to
255 individual character elements. Unlike strings, a char type can only hold one

single character. A char variable can be declared and initialized in the following
way,

dim MyChar as char

MyChar = "A"

The compiler supports the "+" operator to concatenate (join) two strings. For
example,

dim StrA, StrB, StrResult as string

StrA = "Hello"

StrB = "World"

StrResult = StrA + " " + StrB

Will result in StrResult being set to "Hello World". The two relational operators =

(equal) and <> (not equal) are also supported for string comparisons. For
example,

if StrA = StrB then

 USART.Write("Strings are equal!")
endif

if StrA <> StrB then

 USART.Write("Strings are NOT equal!")
endif

You can also mix the concatenation operator with the supported relational
operators, as shown in the following example,

include "USART.bas"

dim StrA, StrB as string

SetBaudrate(br19200)

StrA = "Hello"

StrB = "World"

if StrA + " " + StrB = "Hello World" then

 USART.Write("Strings are equal!", 13, 10)

endif

It is extremely important that string variables are declared with enough

character elements to support the runtime operation of your program. Failure to
do so will certainly result in problems when your code is executing. For
example, concatenating (joining) two strings that contain 20 characters each

will require a destination string that has reserved 41 elements (2 * 20, + 1 line
terminator).

9

The compiler can also read or write to a single string element by indexing it in the
following way,

StrResult(5) = "_"

This would result in "Hello World" being changed to "Hello_World". Note that the
first character of a string variable is located at 0, the second character at 1 and so
on.

A useful compiler constant is null, which can be used to set, or tested for, a string
null terminator.

In the example overleaf, the length of a string is computed and output via the
microcontroller’s hardware USART.

include "USART.bas"

include "Convert.bas"

dim Str as string

dim Index as byte

SetBaudrate(br19200)

Str = "Hello World"

Index = 0

while Str(Index) <> null

 inc(Index)

wend

USART.Write("Length is ", DecToStr(Index), 13, 10)

It should be noted that the compiler constant null is logically equivalent to "" (an
empty string).

Arrays

[private | public] dim identifier(Size) {, identifier(Size)} as type

• Private – An optional keyword which ensures that an array is only available
from within the module it is declared. Arrays are private by default.

• Public – An optional keyword which ensures that an array is available to

other programs or modules.
• Identifier – A mandatory variable name, which follows the standard

identifier naming conventions

• Size – A mandatory size which describes the number of elements in the
array. Arrays can only have a single dimension. Swordfish does not
currently support multi-dimensional arrays.

• Type – A mandatory data type. Supported types include boolean, bit, byte,

word, longword, shortint, integer, longint, float, string, char and structures

An alternative way to assign a single character to a string element or char
variable is by using the # notation. For example, the underscore character ("_")
can be represented by the ASCII number 95 decimal. We could therefore write

StrResult = #95. This technique is particularly useful when dealing with non
white space characters, such as carriage returns and line feeds.

10

Arrays are collections of values, with each element being of the same type. When
you have many variables in your program, it is sometimes useful to use a more

manageable array, rather than keep track of them manually.

You can declare arrays one at a time, like this

dim Array1(5) as byte

dim Array2(10) as byte

or as a list,

dim

 Array1(5) as byte,

 Array2(10) as byte

In the examples above, the arrays are of the same type (a byte). You could
therefore use the following syntax

dim Array1(5), Array2(10) as byte

To access a single array element in your program, use the array name followed by
round brackets around the index of element you want. For example, if you want to
access the second element of Array1, then use

Array1(1) = 10

Note that the first element of an array is located at 0, the second element at 1 and
so on. Because Swordfish arrays begin with zero indexes, care must be taken when
iterating through an array. For example,

for Index = 0 to 4

 Array1(Index) = 200

next

is correct, and will set all 5 array elements (0 to 4) of Array1 to the value 200. A
very useful compiler keyword is bound, which will automatically insert the correct
upper bounds of your array when the program is compiled. The bound keyword is
particularly useful when arrays are passed to functions or procedures, allowing you
to write a routine that accepts arrays with different upper bounds. Using bound,

we could rewrite the previous example like this,

for Index = 0 to bound(Array1)

 Array1(Index) = 200

next

Using bound prevents your program inadvertently indexing an array beyond its
highest element, which would certainly lead to problems when you program is
executing. For example,

dim Array(5) as byte

dim Index as byte

For bit or boolean arrays, accessing a single element using a variable index is

very computationally expensive. For example BitArray(index) = 1. If at all
possible, use a byte array instead.

11

for Index = 0 to 5

 Array(Index) = 2

next

After compilation the variable Index would be stored in data RAM, directly after the

Array declaration. When Index = 5, the memory location used by Index is
overwritten with a 2 because we have set the incorrect upper limit in the
for…next loop. Instead of terminating at 5, the for…next loop will never finish

because the loop counter Index has been changed from 5 to a value of 2.

Structures and Unions

[private | public] structure identifier
 variable-declaration
 {variable declaration}
end structure

• Private – An optional keyword which ensures that a structure is only

available from within the module it is declared. Structures are private by

default.
• Public – An optional keyword which ensures that a structure is available to

other programs or modules.
• Identifier – A mandatory type name, which follows the standard identifier

naming conventions
• Variable-declaration – One or more variable declarations. Supported types

include boolean, bit, byte, word, longword, shortint, integer, longint, float,
string, char and structures

A structure is a collection of one or more variable declaration fields. Each field can
be a different data type. A structure is an extremely useful and powerful feature of

the Swordfish language which enables you to assemble dissimilar elements under
one single roof.

To better understand structures, the following example illustrates how to create a

new structure called TTime,

structure TTime

 Hours as byte

 Minutes as byte

end structure

The declaration above informs the compiler that TTime contains two byte fields

(Hours and Minutes). We can now create a variable of type TTime, in exactly the
same way as you would any other compiler type, such as byte or float,

dim Time as TTime

Access to an individual field within the variable Time is achieved by using the dot

(.) notation,

Time.Hours = 9

Time.Minutes = 59

A structure can also use another structure in one or more of its field declarations.

For example,

12

structure TSample

 Time as TTime

 Value as word

end structure

dim Sample as TSample

We now have a type called TSample, who's field members include Time (of type
TTime) and Value (of type word). Again, dot (.) notation is used to access
individual field elements,

Sample.Time.Hours = 15

Sample.Time.Minutes = 22

Sample.Value = 1024

Structures can also be used with arrays. For example, using the previously
declared TSample type, we could declare and access multiple TSample variables by
declaring an array,

dim Samples(24) as TSample // array of samples, one every hour

To access each field for every array element, we just need to iterate through the
samples array,

dim Index as byte

for index = 0 to bound(Samples)

 Samples(Index).Time.Hours = 0

 Samples(Index).Time.Minutes = 0

 Samples(Index).Value = 0

next

The above code is actually a very verbose way of initializing all fields to zero, but it
does demonstrate how each field can be accessed. It should be noted that by using

the inbuilt compiler command clear, the above can be achieved by using,

clear(Samples)

Unions

In the previous structure example, the total size of the structure is the sum of all
members of the structure. For example, TTime has two member fields (hours and

minutes) and each field is one byte in size. Therefore, the total size of the
structure is two bytes. A union works differently in that member fields can share
the same address space. For example,

structure TStatus
 Val as byte
 Enabled as Val.0
 Connected as Val.1
 Overrun as Val.2
end structure

The member fields enabled, connected and overrun are aliased to the byte variable
Val. They don't have separate storage requirements - they are shared with Val. For
example,

dim MyStatus as TStatus
MyStatus.Val = 0 // clear status

13

MyStatus.Connected = 1

In the above example, we can access the structure as a byte value or access

individual bits. Importantly, the total structure size is only one byte. You can apply
all the standard aliasing rules to structures. For example,

structure TIPAddr
 Val(4) as byte
 IP as Val(0).AsLongWord
end structure
dim IPAddr as TIPAddr
IPAddr.IP = $FFFFFFFF
IPAddr.Val(0) = $00

In this example, the IP address structure only uses 4 bytes of storage. In some
cases, it may not be possible to create a union through aliasing alone. For

example, the member field type may be another structure. In these situations, you
can use the union keyword, like this:

structure TWord

 LSB as byte

 MSB as byte

end structure

structure TValue

 ByteVal as byte union

 WordVal as TWord union

 FloatVal as float union

end structure

In the above example, the size of the structure is equal to the size of the largest
member field which is 4 bytes (the size of float). Another way to think of the union
keyword is that it 'resets' the internal offset address of the member field to zero.

For example,

Structure TValue
 FloatVal As Float // offset = 0 (0 + 4 byte = 4)
 WordVal As Word // offset = 4 (4 + 2 byte = 6)
 ByteVal As Byte // offset = 6 (6 + 1 byte = 7)
End Structure // total storage requirement = 7

The above structure declaration shows the starting offset address, with the total
storage requirement for the structure. Now take a look at the same structure, but
this time with the union keyword:

Structure TValue
 FloatVal As Float Union // offset = 0 (0 + 4 byte = 4)
 WordVal As Word Union // offset = 0 (0 + 2 byte = 2)
 ByteVal As Byte Union // offset = 0 (0 + 1 byte = 1)
End Structure // total storage requirement = 4

14

User Types

[private|public] Type identifier = Type

• Private – An optional keyword which ensures that an alias is only available
from within the module it is declared. Variables are private by default.

• Public – An optional keyword which ensures that an alias is available to
other programs or modules.

• Identifier – A mandatory and previously declared variable name, which
follows the standard identifier naming conventions

• Type – A mandatory data type. Supported types include boolean, bit, byte,
word, longword, shortint, integer, longint, float, string and char.

You can create your own specific user type based on an existing data type or
structure. This has two main purposes:

• To ensure a rigorous application of type checking. See type casting later in

this reference.
• To enable overloaded operations to identify which overloaded routine to call

when the data presented is of a similar data type. See overloading later in

this reference)

Here is an example of a user type:

type MyType = byte

dim MyVar as MyType

Alias and Modifiers

[private | public] dim alias {, alias} as identifier{.modifier}

• Private – An optional keyword which ensures that an alias is only available
from within the module it is declared. Variables are private by default.

• Public – An optional keyword which ensures that an alias is available to

other programs or modules.
• Alias – A mandatory alias name, which follows the standard identifier

naming conventions
• Identifier – A mandatory and previously declared variable name, which

follows the standard identifier naming conventions
• Modifier – One or more optional modifiers which can be used to access

different parts of the variable identifier

Unlike a variable, an alias is declared without a type and does not allocate any
data RAM. As the name suggests, it shares its data RAM with a previously declared
variable.

A simple alias declaration is shown below,

dim Value as byte

dim MyAlias as Value

MyAlias = 100

In this example, Value has been declared as a byte type. MyAlias has been
declared as an alias to Value. When 100 is assigned to MyAlias, the number is
stored at the RAM location reserved for Value. In other words, Value becomes

15

equal to 100. Whilst a simple alias like this may be useful, substantial power and
flexibility can be achieved when using an alias declaration with a modifier. For

example, the program

dim LED as PORTB.7

while true

 high(LED)

 delayms(500)

 low(LED)

 delayms(500)

wend

will flash an LED connected to PORTB, pin 7. A list of additional modifiers is shown
in Appendix 3.

Some modifiers use an array notation. For example, PORTB.7 can be written as
PORTB.Bits(7). The Booleans() array modifier is very useful for changing a bit field

into a boolean. For example, many PIC® microcontrollers have hardware USARTs
to support serial communication. You can test to see if data is available in the
receive buffer by testing PIR1.5. Using the booleans modifier, we can create a
more descriptive alias which has the virtue of being easy to test when using

if…then, while…wend and repeat…until statements,

dim DataIsAvailable as PIR1.Booleans(5) // RCIF flag

if DataIsAvailable then

 // process data here...

endif

Modifiers can also be used directly from within your program code. You don't need
to explicitly declare an alias using the dim keyword. For example,

dim Value as word

Value.Byte1 = $FF

will set the high byte of the variable Value to 255 decimal. Alias and modifiers can

also be used on arrays. This is particularly useful if you want to access a single
element in a complex data structure. In the following example, Value is aliased to
the first array elements Minutes field.

structure TTime

 Hours as byte

 Minutes as byte

end structure

dim Array(10) as TTime

dim Value as Array(0).Minutes

// these assignments are logically identical...

Value = 10

Array(0).Minutes = 10

Aliases and modifiers can also be used on previously declared aliases. For example,

dim Array(10) as word // a word array

dim ElementAlias as Array(3) // alias to element 4

dim ByteAlias as ElementAlias.Byte1 // element 4, high byte

dim BitAlias as ByteAlias.7 // element 4, high byte, bit 7

16

The modifiers discussed up until now have been used to access smaller parts of a
larger variable. The Swordfish compiler also supports modifier promotion. That is,

aliasing a smaller variable to a larger whole. For example, given the declarations

dim Array(8) as byte

dim Lower as Array(0).AsLongWord

dim Upper as Array(4).AsLongWord

we can now access the lower and upper 4 bytes of an array using single
assignments, like this

Lower = $F0F0F0F0

Upper = $F0F0F0F0

Each element of Array will now be set to $F0. Modifier promotion can be very
useful when interfacing to some of the PIC® microcontrollers hardware registers.
For example, the File Select Register (FSR) on an 18 series PIC® is made up of two
8 bit registers, such as FSR0L and FSR0H. Using modifier promotion, we can assign

a single 16 bit value, like this

dim FSR0 as FSR0L.AsWord

FSR0 = $0ABC

This works because FSR0H (the high byte) is located in the next RAM location after
FSR0L (the low byte). A list of additional promotion modifiers is shown in Appendix
3.

Modifier promotion can also be used directly from within your program code for

user declared variables. However, please note that the Swordfish compiler does
not currently support modifier promotion of PIC® microcontroller register names
from within a code block.

EEPROM Data

eeprom [(address)] = (item [as type] {, item [as type]})

• Address – An optional starting address for the EEPROM data. If a starting
address is omitted, data is stored starting from address 0.

• Item – One or more data items.
• Type – An optional item type. Supported types include byte, word,

longword, shortint, integer, longint, float, string and char.

The eeprom declaration enables you to store data on a microcontroller that

supports on-chip EEPROM.

The simplest form of eeprom declaration does not have a starting address or type

modifier. For example,

eeprom = (10, 20, 30)

eeprom = (40, 50, 60)

will store the values 10, 20, 30, 40, 50, 60 at consecutive EEPROM byte locations,
starting at address 0. If you want to change the format of the data stored, you can

specify a type. For example,

eeprom = (10 as word, 20 as longword)

17

will store the values 10, 00, 20, 00, 00, 00 at consecutive EEPROM byte locations,
starting at address 0. You can also use string types in your data item list. For

example,

eeprom = ("One", "Two")

will store the values "O", "n", "e", 0, "T", "w", "o", 0 at consecutive EEPROM byte
locations, starting at address 0. Note that strings always end with a null
terminator. Data item types can also be mixed in a single declaration. For

example,

eeprom = ("One", 10, 3.142)

If you want your data items to start at particular EEPROM location, you can give an
explicit starting address, for example

eeprom(100) = (10 as word, 20 as byte)

will store the values 10, 00, 20 at consecutive EEPROM byte locations, starting at

address 100.

Unlike standard constant declarations, there is no direct language support for
reading or writing to EEPROM using the Swordfish compiler. If you wish to read
and write to the microcontroller’s EEPROM when your program is executing, there
are a number of routines provided in the compiler EEPROM library. For example,

include "USART.bas"

include "EEProm.bas"

include "Convert.bas"

eeprom = ("Value = ", 10)

dim NextAddress,Value as byte

dim Str as string

USART.SetBaudrate(br19200)

EE.Read(0,Str, Value)

USART.Write(Str, DecToStr(Value), 13, 10)

When creating large blocks of EEPROM data, it can sometimes become difficult to

manage address locations, particularly if you use random access to EEPROM rather
than reading data sequentially. For example,

eeprom(100) = ("MyString", 10, 20, 30)

In this example, it is difficult to identify the starting address of the byte data after
the string. You could of course use a constant to identify the start of the byte data,

like this,

const

 StringEE = 100,

 DataEE = 109

dim

 ValueA as byte

eeprom(StringEE) = ("MyString")

eeprom(DataEE) = (10, 20, 30)

EE.Read(DataEE, ValueA)

18

In this example, the first value of byte data can be accessed from your code by
using the constant address value DataEE. Although this is just about manageable

for small sets of EEPROM data, it becomes virtually unworkable for larger data sets
because you need to manually calculate where each starting address will be. Worse
still, if you change the size of a data element (for example, changing "MyString" to
"My New String") then you will need to recalculate all starting addresses for items

following the change. Fortunately, you can let swordfish do the work for you. For
example,

include "USART.bas"

include "EEPROM.bas"

include "Convert.bas"

eeprom(@StringEE) = ("String Data...")

eeprom(@DataEE) = (10, 20, 30)

dim

 ValueA, ValueB, ValueC as byte,

 ValueStr as string

SetBaudrate(br19200)

EE.Read(DataEE, ValueA, ValueB, ValueC)

EE.Read(StringEE, ValueStr)

USART.Write(ValueStr, " : ",

 DecToStr(ValueA), " ",

 DecToStr(ValueB), " ",

 DecToStr(ValueC), 13, 10)

Using the @ symbol before an EEPROM address identifier will tell the compiler to
automatically create a constant declaration and initialize its value to the next free

EEPROM address location. This means that if any items are modified or new items
are inserted into you EEPROM table, the new starting address is computed
automatically.

Conditional Statements

Conditional statements are used in a program to alter the operational flow. That is,
to decide which statement or statements to execute, based on the evaluation of a

single value or expression. Swordfish supports three types of conditional
statements: if…then, select…case and conditional jump.

The If…Then Statement

if expression then
 statements
[elseif expression then]

 {statements}
[else]
 {statements}

endif

The if…then statement is used to make a program execute user code, but only
when certain conditions are met. If an expression evaluates to true, then any
statements following the evaluation are executed. If no expression evaluates to

19

true, then any statements contained after an optional else are executed. For
example,

if Value <= 10 then

 Message = "OK"

elseif Value > 10 and Value < 20 then

 Message = "Warning"

else

 Message = "Error"

endif

The Select…Case Statement

select expression
 case condition {, condition}

 {statements}
 …
 [else {statements}]
endselect

Although there is nothing technically wrong with using large if…then blocks, it can
sometimes be difficult to read them. The select…case statement is an alternative
to using a large or multiple if…then…elseif statement. For example,
select MenuChoice

 case "Q", "q" Message = "Quit"

 case "M", "m" Message = "Main Menu"

 case "A", "a" Message = "Option A"

 case "B", "b" Message = "Option B"

 case "C", "c" Message = "Option C"

else

 Message = "Error"

endselect

In this example, the select part is a single char type which is tested against each
successive case condition. The commas used in the case conditions are equivalent
to using an if statement’s logical or operator. For example, you could write the first

case as an if…then statement in the following way,

if MenuChoice = "Q" or MenuChoice = "q" then …

If one of the case conditions is met, then any statements following the condition
are executed and the program jumps to any code immediately following
endselect. If no case conditions are met, statements contained in the optional

else clause are executed.

Case conditions can also include relational operators, or the to operator can be
used for a range of values. For example,

select Value * 2

 case < 10, > 100

 Result = 1

 case 10 to 20, 50 to 100

 Result = 2

else

 Result = 0

endselect

20

In this example, Value is multiplied by two and then tested against each case
condition. If the select expression is < 10 or > 100, then Result becomes equal to

1. If the select expression is in the range 10 to 20 or 50 to 100, then Result
becomes equal to 2. If none of the select conditions are met, Result is set to 0 in
the select…case else block.

Conditional Jump

if expression goto label

The conditional jump is a special construct that can be used with a standard goto
statement. For example,

if Value <> 0 goto SkipCode

 high(LED)

 delayms(500)

SkipCode:

 low(LED)

Notice the difference in syntax when compared to a normal if…then statement.
Firstly, no endif is required. Secondly, the then part of the statement is not

present. You can of course use a goto inside a normal if…then statement, but the
above form allows you to write the same thing more concisely.

The goto statement has a nasty reputation because of its ability to jump to almost
anywhere. Some people view this lack of control as very bad. Using a goto can
produce what is called spaghetti code. It gets this name because with a goto
infested program, drawing a line between a goto and its destination label would

look like a big plate of spaghetti. Used with care, a goto statement can be useful.
However, given the highly structured nature of the compiler language, a goto
statement should be used sparingly and is best avoided.

Repetitive Statements

Repetitive statements enable one or more statements to repeat. The Swordfish
compiler has three repetitive statements: while…wend, repeat…until and

for…next.

The While…Wend Loop

while expression
 {statements}
wend

A while…wend loop will execute one or more statements if the expression
evaluates to true. When an expression becomes false, the while loop terminates.

The condition can be any boolean expression or a single boolean variable. The
following example shows how a while…wend loop can be used to count from 0 to
9, outputting each value in turn,

Index = 0

while Index < 10

21

 USART.Write(DecToStr(Index), 13, 10)

 inc(Index)

wend

The while…wend loop is can be useful for delaying program execution until a

certain event has occurred. For example, if we write

dim PinIsHigh as PORTB.Booleans(0)

while PinIsHigh

wend

then the code following wend is not executed until PORTB.0 becomes equal to 0.

The Repeat…Until Loop

repeat

 {statements}
until expression

A repeat…until loop will execute one or more statements if the expression
evaluates to false. When an expression becomes true, the repeat loop terminates.
The condition can be any boolean expression or a single boolean variable. Unlike a

while…wend loop, any statements in a repeat…until loop will be executed at
least once, since the conditional test is evaluated at the bottom of the loop. For
example,

Index = 0

repeat

 USART.Write(DecToStr(Index), 13, 10)
 inc(Index)

until Index > 9

Note the conditional termination logic of a repeat…until loop expression is the
opposite of a while…wend loop. That is, a while…wend will loop while some

condition is true but a repeat…until will loop while some condition is false.

A repeat…until loop will always execute the enclosed statements at least once
whereas while…wend may never execute the enclosed statements if the

expression initially evaluates to false.

The For…Next Loop

for variable = expression to expression [step expression]
 {statements}
next

The for…next loop will execute one or more statements a predetermined number
of times. Unlike while…wend or repeat…until loops, the for…next loop does
not use a boolean expression for termination control but a control variable. For

example,

for Index = 0 to 9

 USART.Write(DecToStr(Index), 13, 10)

next

22

In this example, the control variable is Index. The control variable must be an
ordinal type, such as byte or word. It cannot be a non-ordinal, such as floating

point. The control variable is initialized to zero when the loop begins and
terminates when the control variable is greater than nine. In other words, the
for…next iterates through its loop ten times (0 to 9). If no step value is given, the
control variable is incremented by one each iteration.

You can change the default increment value of the control variable by specifying a
step value. For example,

for Index = 0 to 9 step 3

 USART.Write(DecToStr(Index), 13, 10)

next

will output 0, 3, 6 and 9. If the start expression is larger than the end expression

(that is, you want to count downwards) then a negative step value must always be
specified. For example,

for Index = 9 to 0 step -3

 USART.Write(DecToStr(Index), 13, 10)

next

will output 9, 6, 3 and 0.

Note - When using a for…next loop, it is standard practice never to modify the

control variable in any way.

Short Circuit Boolean Expressions

Statements such as if…then, if…goto, while…wend and repeat…until depend
on the evaluation of a boolean expression to determine program flow or to control
loop iterations. The Swordfish compiler uses short circuit evaluation, which can
make these statements execute more quickly. For example,

if a < b and c = d and e > f then

 // execute statements

endif

The if…then statement block will only be executed if all of the three conditions are
true. That is, if a is less than b and c is equal to d and e is greater than f.
However, if a is NOT less than b, then there is no point testing any of the other
conditions, because the final result will always be false.

In short, the Swordfish compiler will immediately stop evaluating any boolean
expression, if a certain outcome becomes known in advance. The expression is said
to short circuit, causing the program to skip over the rest of the evaluation code.

Break

Calling break from within a while…wend, repeat…until or for…next loop will

force your program to jump immediately to the end of the currently executing

23

loop. For example,

include "USART.bas"

include "Convert.bas"

dim Index as word

SetBaudrate(br19200)

Index = 0

while Index < 1000

 if IsDataAvailable then

 break

 endif

 USART.Write(DecToStr(Index), 13, 10)
 delayms(100)

 inc(index)

wend

If the IsDataAvailable flag is false, the while…wend loop will iterate normally.

However, if the hardware USART in this example receives data, the IsDataAvailable
flag becomes true and the loop terminates.

Using break too often can result in multiple exit points in a block of code, which
can make your program difficult to debug and harder to read. When possible, it is
better programming practice to allow your looping construct to control all exit
conditions. For example, the previous code sample code be written as,

while Index < 1000 and not IsDataAvailable

 USART.Write(DecToStr(Index), 13, 10)

 delayms(100)

 inc(index)

wend

If you find yourself using break inside a for…next loop, it may be an indication

that a while…wend or repeat…until statement is a more appropriate construct
to use.

Continue

Calling continue from inside a while…wend, repeat…until or for…next loop will
force your program to begin the next iteration of the currently executing loop. For
example,

include "USART.bas"

include "Convert.bas"

dim Index as byte

SetBaudrate(br19200)

for Index = 0 to 5

 if Index = 3 then

 continue

 endif

 USART.Write(DecToStr(Index)), 13, 10)

next

will output 0, 1, 2, 4 and 5. This is because when the control variable Index

24

reaches 3, the program immediately begins another iteration of the for…next
loop, skipping the call to Write().

Subroutines and Functions

Subroutines and functions enable you to divide a program into smaller parts. A

subroutine or function is a named group of statements, constants, variables and
other declarations that perform a particular purpose. A function is identical to a
subroutine in every respect, with the one exception: it can return a single value to
the calling program. Swordfish subroutines and functions are non-reentrant, that

is, you cannot make recursive subroutine or functions calls.

Subroutine Declarations

[private | public] [inline] sub identifier ([param {, param}])
 {declarations}
 {statements}
end sub

• Private – An optional keyword which ensures that a subroutine is only

available from within the module it is declared. Subroutine declarations are
private by default.

• Public – An optional keyword which ensures that a subroutine is available to
other programs or modules.

• Identifier – A mandatory subroutine name, which follows the standard

identifier naming conventions
• Param – One or more optional formal parameters

A formal parameter has the following parts

[byval | byref | byrefconst] identifier as type [= constexp]

• ByVal – An optional keyword indicating that an argument is passed by
value. By default, formal parameters arguments are passed by value.

• ByRef – An optional keyword indicating that an argument is passed by
reference.

• ByRefConst – An optional keyword indicating that a code constant is passed
by reference

• Type – A mandatory data type. Supported types include boolean, bit, byte,

word, longword, shortint, integer, longint, float, string, char and structures
• ConstExp – An optional constant expression

Function Declarations

[private | public] [inline] function identifier ([param {, param}]) as type
 {declarations}
 {statements}
end function

• Private – An optional keyword which ensures that a subroutine is only

available from within the module it is declared. Subroutine declarations are
private by default.

25

• Public – An optional keyword which ensures that a subroutine is available to
other programs or modules.

• Identifier – A mandatory subroutine name, which follows the standard
identifier naming conventions

• Param – One or more optional formal parameters
• Type – A mandatory data type. Supported types include boolean, bit, byte,

word, longword, shortint, integer, longint, float, string, char and structures.
Array types are not supported.

A formal parameter has the following parts

[byval | byref | byrefconst] identifier as type [= constexp]

• ByVal – An optional keyword indicating that an argument is passed by
value. By default, formal parameters arguments are passed by value.

• ByRef – An optional keyword indicating that an argument is passed by
reference.

• ByRefConst – An optional keyword indicating that a code constant is passed
by reference

• Type – A mandatory data type. Supported types include boolean, bit, byte,
word, longword, shortint, integer, longint, string, float, char and structures

• ConstExp – An optional constant expression

Parameters

Subroutines and function headings that do not have any formal parameters are
written in the following way,

include "USART.bas"

sub Print()

 USART.Write("Hello World", 13, 10)

end sub

// main code block

SetBaudrate(br19200)

Print

The subroutine declaration Print() outputs "Hello World" each time it is called. Note
that although no formal parameters have been declared, start and end round

brackets are still required. A more useful example would enable any string to be
output. To do this, a formal parameter is added,

include "USART.bas"

sub Print(pStr as string)

 USART.Write(pStr, 13, 10)

end sub

// main code block

SetBaudrate(br19200)

Print("Hello World")

The Print() subroutine declaration will now output any string value passed to it.

26

In the previous examples, the string parameter argument was passed to the
subroutine using the compilers default mechanism of by value (byval). Passing by

value means that a local copy of the variable is created, and the subroutine or
function operates on a copy. If your subroutine or function statement block
changes the parameter value, it doesn't change the value of the actual variable
being passed. This is in contrast to passing a variable by reference (byref).
Passing by reference means that a subroutine or function receiving the variable
can modify the contents of the variable being passed. This is sometimes referred to
as a variable parameter. For example,

include "USART.bas"

include "Convert.bas"

sub NoChange(pValue as byte)

 pValue = 10

end sub

sub ChangeValue(byref pValue as byte)

 pValue = 10

end sub

dim Value as byte

SetBaudrate(br19200)

Value = 0

NoChange(Value)

USART.Write("Value : ", DecToStr(Value), 13, 10)

ChangeValue(Value)

USART.Write("Value : ", DecToStr(Value), 13, 10)

The first subroutine NoChange() has a formal parameter that accepts arguments
passed by value. The second subroutine ChangeValue() has a formal parameter
that accepts arguments passed by reference. When the following lines are

executed,

NoChange(Value)

USART.Write("Value : ", DecToStr(Value), 13, 10)

The value output will be 0, because NoChange() has received a copy of the

contents of Value. When the following lines are executed,

ChangeValue(Value)

USART.Write("Value : ", DecToStr(Value), 13, 10)

The value output will now be 10, because ChangeValue() has received the actual

RAM address of Value. Some declaration types, such as arrays, must always be
passed by reference. For example,

sub PassArray(byref pArray() as byte)

end sub

Notice that pArray is followed by open and closing round brackets. This is to inform
the compiler that an array is being passed. Without the brackets, the compiler
would just interpret the parameter argument as a single byte type.

You do not have to explicitly give the size of a formal parameter string when
passing a string argument to a subroutine or function. For example, pStr as
string(20). This is because the Swordfish compiler has a powerful mechanism

for calculating at compile time the maximum RAM needed for any string passed
by value.

27

It is important to remember that when a parameter argument is passed by
reference, you can only call a subroutine or function with a single variable type.
For example, given the declaration

sub MySub(byref pValue as word)

end sub

then an error 'cannot be passed by reference' message is generated when any of
the following calls are made,

MySub(10)

MySub(Index * Index)

Remember, passing by reference forces the compiler to pass the RAM address of a
variable, allowing it to be changed from within a subroutine or function. Constants
or expressions do not have RAM addresses associated with them, and so cannot be

used if a parameter argument is expecting pass by reference. If your subroutine or
function parameter declaration is likely to be passed as a constant or expression,
then you must always pass by value.

When a parameter is passed by value, it is sometimes useful to initialize the
argument with a constant. For example,

sub Print(pStr as string, pTerminator as string = #13 + #10)

 USART.Write(pStr, pTerminator)

end sub

The formal parameter pTerminator has a default value of #13#10, which
corresponds to a carriage return, line feed pair. If the subroutine Print() is called

without a pTerminator argument value,

Print("Hello World")

then pTerminator will default to #13#10 when USART.Write() is called. If you wish
to explicitly override the formal parameter default, then call your subroutine with
the required value, like this

Print("Hello World", null)

Here, pTerminator is set to the null terminator when USART.Write() is called. It

should be noted that you can only assign constants if the formal parameter
argument is passed by value. In addition, you can only assign constants to
parameters that appear at the end of the formal parameter list. For example,

sub MySub(pA as byte, pB as byte = 10, pC as byte = 20)

end sub

is correct, but

sub MySub(pA as byte = 10, pB as byte, pC as byte)

end sub

Unlike arrays, structures can be passed by value. However, if your structure has
a large number of variables (or uses arrays and strings) it would be more

computationally efficient to pass by reference, rather than the compiler having
to copy large amounts of data, as would be required if passed by value.

28

will generate a compilation error.

There is a third parameter passing mechanism, which is primarily used for constant
arrays. On a PIC® microcontroller, constant arrays are stored differently from data
RAM which requires the use of byrefconst. This ensures that a ROM address is

passed and not a RAM address. For example,

include "USART.bas"

const Names(3) as string = ("David", "Fred", "Peter")

sub DisplayNames(byrefconst pNames() as string)

 dim Index as byte

 for Index = 0 to bound(pNames)

 USART.Write(pNames(Index), 13, 10)

 next

end sub

SetBaudrate(br19200)

DisplayNames(Names)

In this example, DisplayNames() will output all the string values contained in the
constant array Names.

Subroutine and Function Scope

Scope is a common term used to describe the visibility of a particular declaration
within a program. The scope of parameter arguments, constants, structures and

variables that are declared within a subroutine or function are local. That is, they
do not exist outside of the subroutine or function block. For example,

sub MySub(pValue as byte)

 dim LocalIndex as byte

end sub

LocalIndex = 10

pValue = 20

Will generate two 'identifier not declared' error messages, because pValue and
LocalIndex can only be seen from inside MySub().

It's useful to understand how the compiler finds a local declaration. For example, if
your subroutine or function references a variable called Index, it will first look to
see if a local variable or parameter called Index has been declared. If it's not
found, then it will then look in the current module or program to see if the variable
has been declared. If it has still not been found, it will then search all include files
referenced in the current module to see if any public variable called Index have
been declared. If it still has not been found, an error is generated.

There can be instances where a potential ambiguity arises, for example there may
be 2 libraries which contain a Read Function. Use redirection to resolve the

This means that only the include files that are specifically defined in the current
module are within the scope of the module. Hence the same module could be
included a number of times with a program. The compiler, however, will only
include that module once.

29

ambiguity by prefixing the item with the Module name separated by a period. For
example,

USART.Write(“My Message”)

will provide a unique reference to the USART library’s Write subroutine. This can
apply to any variable, structure subroutine or function. Alternatively create an
alias to the required function

Dim SerOut As USART.Write

Frame Recycling

A frame describes the area of RAM reserved for use by local variables and
parameters. Variables and parameters that are declared local to a subroutine or

function are recycled by the compiler, whenever possible. For example,

sub MySubA()

 dim Array(1000) as byte

 dim Index as byte

 for Index = 0 to bound(Array)

 Array(Index) = 0

 next

end sub

sub MySubB()

 dim Array(1000) as byte

 dim Index as byte

 for Index = 0 to bound(Array)

 Array(Index) = 0

 next

end sub

The subroutine MySubA() allocates just over one thousand RAM bytes for its frame,
to support the Array and Index declarations. MySubB() does exactly the same.

However, when you call both of the subroutines from your program,

MySubA

MySubB

the compiler will just allocate RAM for one frame only (a little over one thousand
bytes). This is because the subroutine calls are not dependent on each other,

which means MySubB() can overlay its frame over the one allocated for MySubA().
Of course, if MySubB() made call to MySubA(), then twice as much frame RAM is
needed. This is to ensure that the variable and working register state of MySubB()

is preserved, preventing MySubA() from overwriting it.

Frame recycling is a very powerful mechanism for minimizing RAM usage on
microcontrollers with limited resources. If at all possible, declare working variables

inside the scope of a subroutine or function, rather than at the program or module
level, to fully exploit frame recycling.

Inline

When an inline subroutine or function is generated, the computational expense of a
call and return is removed by inserting the subroutine or function statement block
at the point where the original call was made. By default, the compiler will make all

30

subroutines and functions inline, if they are called only once from your program.
For example, the following Print() subroutine

sub Print()

 USART.Write("Hello World", 13, 10)

end sub

SetBaudrate(br19200)

Print

USART.Write("The End", 13, 10)

would be converted to inline, which is the same as writing,

SetBaudrate(br19200)

USART.Write("Hello World", 13, 10)

USART.Write("The End", 13, 10)

You can force the compiler to always inline a subroutine or function by
prefixing the declaration with the inline keyword. For example,

inline sub Print()

 USART.Write("Hello World", 13, 10)

end sub

To prevent the compiler from making a subroutine or function inline, simply prefix
the declaration with the noinline keyword. For example,

noinline sub Print()

 USART.Write("Hello World", 13, 10)

end sub

Take care when explicitly making a subroutine or function inline. Although inline
routines remove the time overhead associated with making a call, there can be a
significant cost in terms of code space used. Generally, you should only use inline

for very small routines that need to execute quickly.

Function Return Types

A function is identical to a subroutine in every respect, with the one exception: it
can return a single value to the calling program. You can use functions in
expressions anywhere you would normally use a constant or variable of the same

type. For example,

function Multiply(pValue as byte) as word

 Multiply = pValue * pValue

end function

dim Value as word

Value = 100

Value = Multiply(Value) + Multiply(Value * 2) - 50

Functions can return boolean, bit, byte, word, longword, shortint, integer, longint,
float, string, char and structures. To assign a value to a function, you can use its
name. For example,

function Multiply(pValue as byte) as word

 Multiply = pValue * pValue

end function

31

Alternatively, you can use an implicitly declared variable called result,

function Multiply(pValue as byte) as word

 result = pValue * pValue
end function

You can override the implicit result variable by declaring a variable of the same
name,

function Multiply(pValue as byte) as word

 dim result as word

 result = pValue * pValue

 Multiply = result

end function

The function return type can be used on the left and right hand side of an
expression. For example,

function Multiply(pValue as byte) as word

 result = pValue

 result = result * pValue

end function

You can also use modifiers with the function return type, like you would any other

variable. For example,

function SetUpper(pValue as byte) as word

 result.Byte0 = 0

 result.Byte1 = pValue

end function

String return types are a special case. They can be declared in a number of ways.
The first uses the same method as a formal parameter declaration. That is, no

explicit size is given.

function StrCopy(pStr as string) as string

 result = pStr

end function

Here, the compiler will ensure result is allocated enough RAM to hold the return
value, which depends on the value of pStr. It may be the case that you don't
explicitly assign a string value to the function result. For example, when using

assembler you will be manipulating the result string directly. The compiler
therefore cannot calculate how much RAM to allocate, so you need to do one of
two things. You can give the return string an explicit size

function MyFunc(pStr as string) as string * 32

end function

will allocate 32 bytes, including the null terminator, for the result. Your return
string must therefore never exceed 31 characters. Alternatively use the auto
keyword, to automatically track the size of a formal parameter,

function MyFunc(pStr as string) as string auto(pStr)

end function

as pStr grows in size during compilation, so will the size of the function result.

32

Exit

Calling exit will immediately terminate a currently executing subroutine or function
and return to the next code statement following the subroutine or function call. For
example,

include "USART.bas"

include "Convert.bas"

sub DisplayValue(pValue as byte)

 if pValue = 5 then

 exit

 endif

 USART.Write("Value = ", DecToStr(pValue), 13, 10)

end sub

dim Index as byte

SetBaudrate(br19200)

for Index = 0 to 10

 DisplayValue(Index)

next

In this example, the main program for…next loop will make repeated calls to

DisplayValue() with an Index that ranges from 0 to 10. The if…then statement
inside DisplayValue() will call exit if the value passed is equal to 5, giving an
output of 0, 1, 2, 3, 4, 6, 7, 8, 9, and 10.

Using exit too often can result in multiple termination points in a subroutine or
function, which can make your program difficult to debug and harder to read.
When possible, it is better programming practice to allow conditional and looping

constructs to control exit conditions. For example, the previous subroutine
DisplayValue() could be written as,

sub DisplayValue(pValue as byte)

 if pValue <> 5 then

 USART.Write("Value = ", DecToStr(pValue), 13, 10)

 endif

end sub

If you must use exit from within a function, it is essential that a return value is
assigned before terminating.

Subroutine and Function Aliasing

Subroutines and functions can be aliased, in much the same way as you would

Forgetting to assign a value to a function return type is a very common error.
You should always ensure that a function result is assigned a value before the
function exits. If you don't, the function value will be left in an undetermined

state leading to very erratic program behavior which may be difficult to debug.

33

alias a variable. For example,

// standard libraries...

include "USART.bas"

include "LCD.bas"

// rename standard library functions...

dim HSerOut as USART.Write

dim LCDWrite as LCD.Write

// use the alias names

HSerOut("Hello World", 13, 10)

LCDWrite("Hello World")

In this example, the standard library routines for writing have been renamed to

match the naming conventions used by some other PIC® microcontroller BASIC
compilers.

Overloading

Overloading enables you to have multiple subroutines and functions in the same
scope that share the same name. The compiler will select the most appropriate
routine to call, based on its signature. A subroutine or function signature is

constructed by using the number of formal parameters and also the type of each
parameter. An overloaded routine must therefore have a unique combination of
parameters, so that the compiler can identify which
routine to call during compilation. For example,

function Multiply(pValueA, pValueB as byte) as word

 Result = pValueA * pValueB

end function

function Multiply(pValueA, pValueB as byte) as float

 Result = pValueA * pValueB
end function

will generate an error because the overloaded function signatures are identical.
That is, they both have two parameters each of type byte. It is important to note

that the compiler does not use function return types as part of the signature, only
parameters The previous problem can be corrected by overloading the function
with a unique parameter signature, like this,

function Multiply(pValueA, pValueB as byte) as word

 Result = pValueA * pValueB

end function

function Multiply(pValueA, pValueB as float) as float

 Result = pValueA * pValueB
end function

dim Result as word

Result = Multiply(10,20)

In this example, the first overloaded function is called because the parameter
arguments are of type byte. The compiler will try and invoke the routine whose

parameters have the smallest range that will accommodate the arguments in the
call. For example, if the call to Multiply() is made with the following arguments,

34

Result = Multiply(-10,20)

then the second function will be called, because the floating point parameter is the
only one that can accommodate a value of -10.

If the type of the value to be returned is to be the only unique way of identifying
an overloaded routine a Sub should be used and the result of the routine passed
byRef in the parameters. For example:

sub MySub(byref pValue As Byte)

end sub

Sub MySub(byref pValue As Word)

end sub

If any parameters are assigned a constant in an overloaded routine, care should be
taken to ensure you don't inadvertently create a situation where a routine cannot

be called, for example,

sub MySub(pValueA as byte, pValueB as word = 0)

end sub

sub MySub(pValueA as byte)

end sub

MySub(10)

In this example, the compiler cannot determine if the first or second overloaded

routine should be called, because the parameter arguments are ambiguous.

Compound Subroutines

[private | public] compound sub identifier ([subroutine {, subroutine}])

• Private – An optional keyword which ensures that a compound subroutine is

only available from within the module it is declared. Subroutine declarations

are private by default.
• Public – An optional keyword which ensures that a compound subroutine is

available to other programs or modules.
• Identifier – A mandatory compound subroutine name, which follows the

standard identifier naming conventions
• Subroutine – One or more previously declared subroutine identifiers. Please

note that a compound subroutine can only call other subroutines, not
functions.

A compound subroutine allows you to assign a single identifier that can be used to
make multiple calls to a named subroutine, in one single statement. For example,

rather than writing

WriteByte(10)

WriteByte(100)

WriteByte(5)

you can declare a compound subroutine,

compound sub Write(WriteByte)

35

and then call it from your main program,

Write(10,100,5)

Each time the compiler encounters the compound subroutine Write(), it takes each
parameter argument in turn and generates a call to WriteByte().
You can have more than one subroutine contained in the compound declaration
parameter list. For example,

compound sub Write(SetAddress, WriteByte)

When declaring a compound subroutine with more than one subroutine parameter,

only the last subroutine in the parameter list will be called multiple times. For
example,

Write(100,100,20)

Would be the same as writing

SetAddress(100)

WriteByte(100)

WriteByte(20)

Compound subroutines are extremely powerful when used in conjunction with
overloaded subroutines. For example,

// overloaded sub to output a string...

sub WriteItem(pValue as string)

end sub

// overloaded sub to output a byte...

sub WriteItem(pValue as byte)

end sub

// create compound subroutine...

compound sub Write(WriteItem)

// make the call...

Write(10,"Hello World", 13, 10)

In this example, the compound subroutine Write() is declared with an overloaded

subroutine parameter called WriteItem(). When Write() is called from the main
program, the compiler will make a call to the overloaded subroutine WriteItem(),
based on the argument type. This allows you to create compound calls which
accept arguments of different types and in any order.

Typecasting

The compiler uses relatively strong type checking, which means that an error is

generated if you try and assign variables of different types to each other. This is
good. It helps prevents program errors through the incorrect assignment of

Because a compound subroutine will pass each argument in turn, it is essential
that the subroutine to be called has been declared with exactly one parameter.

Failure to do so will generate a compiler error message.

36

variable types. However, you can typecast a value to override this behavior. For
example, you may want to assign a char to a byte or a bit to a boolean, like this

MyByte = byte(MyChar)

MyBoolean = boolean(STATUS.2)

Type assignment is a little more relaxed when assigning floating point to ordinal or
vice versa, so typecasting is not needed. For example,

dim MyFloat as float

dim MyByte as byte

MyByte = MyFloat

MyFloat = MyByte

Typecasting can be particularly useful for controlling code generation when
expressions are used. If an expression has more than two operands, temporary
storage is automatically allocated by the compiler to store intermediate results. For
example,

dim a, b, c as byte

dim result as word

result = a + b + c

Would translate to something like

TMP_WORD = a + b

result = TMP_WORD + c

Notice that the temporary variable is a word size, because adding two bytes may
result in a number larger than 8 bits. To override this behavior, you can use a

typecast,

result = byte(a + b) + c

The intermediate storage allocation for (a + b) will now only be a byte.
Typecasting can also be used to reduce the size of a declared variable, for example

result = byte(WordVar) + b + c

This will generate a temporary storage value of 16 bits (rather than 32), because

byte + byte will require a 16 bit result. Note the subtle difference between

// MyWord made a byte, added to b, tmp storage = 16 bits

result = byte(WordVar) + b + c

// result of (MyWord + b) is byte, tmp storage is 8 bits

result = byte(WordVar + b) + c

You do not normally have to worry about mixing types within Swordfish
expressions, as the compiler will promote variables automatically to ensure the
correct result is obtained. However, typecasting can be extremely useful for
expressions that contain mixed types. For example,

dim SValue as integer

dim UValue as word

dim FValue as float

dim Result as word

Result = SValue + UValue + FValue

37

In this example, the compiler needs to ensure that the signed and unsigned ordinal
addition (SValue + UValue) is computed correctly by internally converting and

promoting the sub-expression before a signed addition is performed. Next, the
intermediate result is converted to a floating point format, before it can be added
to FValue. Finally, the floating point intermediate result is converted into an ordinal
type and assigned to the variable Result. All these computations need to be done

for the correct result to be calculated, given that the compiler knows nothing about
the state of the mixed types used.

However, if you understand what your programming is doing, you can change the

behavior of the compiler expression generator to produce better optimized code.
For example, we could write the expression as,

Result = word(SValue) + UValue + word(FValue)

This would reduce the amount of code needed to support the computation by

approximately 70%, when compared against the previous example. Of course, the
correct result will only be obtained if the assumptions about the state of SValue
and FValue when the expression is computed are correct.

Please remember, the compiler expression generator will produce code to obtain
the correct results, given any mix of variable types. It does not make assumptions
about your code. Changing this behavior may lead to an incorrect result being

obtained. Worse, the incorrect result may be intermittent, which makes very
difficult debugging sessions. Typecasting is very useful, but it must be used with
extreme care.

Using Embedded Assembler

You can embed PIC® assembler code in subroutines and functions, as well as your
main program code, by using an asm… end asm block. You can also declare local

variables inside your subroutine or function and use them in you assembler code.
For example,

function AddTen(pValue as byte) as byte

 dim LocalVar as byte

 LocalVar = 10

asm

 movf LocalVar, W ; 10 into W

 addwf pValue, W ; add parameter pValue to W

 movwf Result ; move W into function result

end asm

end function

Please note that the compiler does not manage RAM banking in asm…end asm

blocks. For further information on writing PIC® assembler and issues relating to
bank switching, refer to the Microchip document MPASM User's Guide.

With Statement

with item {, item}
 {statements}
end with

38

A with statement is a shorthand for referencing the fields of a record or module.
For example,

structure TDate
 Day as byte
 Month as byte
 Year as word
end structure
dim Date as TDate

with Date
 Day = 23
 Month = 3
 Year = 2007
end with

This is the same as writing

Date.Day = 23
Date.Month = 3
Date.Year = 2007

A with statement can have multiple items. For example,

with USART, Date
 Day = 23
 Month = 3
 Year = 2007
 Write(Day, Month, Year)
end with

Each reference name in a with statement is interpreted as a member of the
specified structure or module. If there is another variable or procedure call of the

same name that you want to access from the with statement, you need to
prepend it with a qualifier. For example,

with USART, Date
 Day = 23
 Month = 3
 Year = 2007
 Write(Day, Month, Year) // write to usart
 EE.Write(0, Day, Month, Year) // write to eeprom
end with

Interrupts

interrupt Identifier([priority])
 {statements}
end interrupt

Priority is an optional numeric value that allows you to assign different priorities to
multiple Interrupt Service Routines (ISR). The PIC® 18 series of microcontroller
supports two priority levels, high and low. If your program has only one ISR, you

should not assign any priority level. The compiler will assign the correct priority for

39

you. An ISR declaration for a program with one interrupt would therefore look like
this:

interrupt OnTimer()

 // code statements here…

end interrupt

A program that has two priority levels would look something like this,

const

 ipLow = 1,

 ipHigh = 2

interrupt OnTimer1(ipLow)

 // code statements here…

end interrupt

interrupt OnTimer3(ipHigh)

 // code statements here…

end interrupt

Interrupts perform basic context saving. If a single ISR is declared in your
program, the STATUS, WREG and BSR are saved and restored in hardware shadow
registers. If both high and low ISRs are declared within the same program, the

high priority interrupt will save and restore STATUS, WREG and BSR in hardware
shadow registers, but the low priority interrupt will save and restore STATUS,
WREG and BSR in software.

You can force the compiler to perform software context saving in software for both
high and low interrupts, rather than using hardware shadow registers. This is
achieved by using the ISR_SHADOW option. For example,

#option ISR_SHADOW = false

disables all hardware shadow register context saving.

The basic context saving of an interrupt means it is unsuitable for supporting high
level language constructs. For example, what appears to be a simple statement

may involve using many different system and compiler registers. If these are
changed in your ISR, your main program will almost certainly fail. You should also
never call another subroutine or function from an interrupt unless additional steps
have been taken with respect to context saving.

You can modify an interrupt to handle more complex context saving. For example,
you might want to buffer data to an array inside your interrupt using an indirect

register that points to your data buffer. In order to do this, you must save and
restore the register you intend to alter in your ISR:

interrupt OnDataRX()

 dim FSRSave as word // temp register

 FSRSave = FSR0 // save FSR

The PIC® 18 series has only one level of hardware shadow registers for context

saving. A lower priority interrupt has therefore to save and restore STATUS,
WREG and BSR in software to preserve their values.

40

 FSR0 = AddressOf(MyBuffer) // we can now change FSR

 asm

 ; buffer data here…

 end asm

FSR0 = FSRSave // restore FSR

end interrupt

Another technique is to use a save…restore block, which is discussed later in this
document.

A Swordfish interrupt has excellent performance characteristics but assumes a user
knows what they are doing. Great care should be taken in implementing interrupts
and studying the relevant PIC® datasheet is essential.

Enabling and Disabling Interrupts

Although the PIC® 18 series only allows a maximum of two interrupts to be used
(one high and one low priority), the compiler allows you to declare more than one

of each. You only commit the assignment of your ISR to an individual interrupt
vector when you issue an enable command. For example:

enable(OnTimer)

The enable keyword explicitly assigns an ISR to a microcontroller high or low
interrupt vector. In addition, the microcontroller GIEH or GIEL flags are set to true.

Once enable is called, your program is committed to using this interrupt. Calling
enable twice on two different ISRs of the same priority will generate a compiler
error message. To set the interrupt enable flags to false, call:

disable(OnTimer)

Note that calling disable does not remove your ISR from the microcontroller

interrupt vector.

// program constants...

const

 TimerReloadValue = 50,

 TimerValue = 65536 - _clock * 2500

// timer 1...

dim Timer1 as word(TMR1L)

dim Timer1IF as PIR1.0

dim Timer1IE as PIE1.0

dim Timer1On as T1CON.0

// additional program variables...

dim LED as PORTD.0

dim TimerCounter as byte

// timer interrupt - blink LED every 500ms or so...

interrupt OnTimer()

 Timer1 = Timer1 + word(TimerValue) // force integer arithmetic

 dec(TimerCounter)

 if TimerCounter = 0 then

 TimerCounter = TimerReloadValue

 toggle(LED)

 endif

41

 Timer1IF = 0

end interrupt

// configure and activate timer 1...

sub ActivateTimer()

 Timer1 = TimerValue

 T1CON = 0

 Timer1IF = 0

 Timer1IE = 1

 Timer1On = 1

 enable(OnTimer)

end sub

// program start...

low(LED)

ActivateTimer

// loop forever...

while true

wend

Events

[private | public] event identifier ()

 {declarations}
 {statements}
end event

• Private – An optional keyword which ensures that an event is only available
from within the module it is declared. Event declarations are private by
default.

• Public – An optional keyword which ensures that an event is available to
other programs or modules.

• Identifier – A mandatory event name, which follows the standard identifier
naming conventions

Events, unlike subroutines or functions, cannot be called directly from a user
program or module. Instead, you call an event via a variable which holds the
address of the event handler routine. For example,

// event handler type...

type TEvent = event()

// the event handler to call...

event EventHandler()

 high(PORTD.0)

end event

// declare event variable...

dim OnEvent as TEvent

OnEvent = EventHandler // assign handler

OnEvent() // call handler

Events are also different from subroutines and functions with respect to their frame
allocation, which isn't recycled. This is because event pointers cannot be tracked at

compile time, preventing the frame usage for an event from being calculated.
Events are therefore allocated their own, unique frame space.

42

Whilst the non-recycle nature of event frame allocation may appear to be a
disadvantage, it's actually extremely useful when used with interrupts. An interrupt

cannot risk calling a subroutine or function without proper context saving (see
save…restore, later in this document), because it may damage the frame stack.
Events on the other hand have a unique frame space, which makes it safe to
execute an event from within a subroutine. There are some caveats though. These

are:

• A high and low priority interrupt should never call the same event handler.
• Although an event frame space is protected, making calls to other

subroutines or functions could cause the program to become unstable, in
much the same way as an interrupt would.

In short, events allow you to 'plug in' code into an ISR, without having to alter the
interrupt logic. However, it should be noted that you should treat an interrupt
triggered event handler with the same respect in terms of context saving and
usage as you would the main interrupt routine itself.

The following is an example of an interrupt driven module, which fires an event
handler when the hardware USART received some data:

module MyRX

// import USART library...

include "USART.bas"

// event handler type...

type TEvent = event()

// local and public variables...

dim FOnDataEvent as TEvent

public dim DataChar as USART.RCRegister.AsChar

// ISR routine...

interrupt OnRX()

 FOnDataEvent()

end interrupt

// initialize...

public sub Initialize(pOnDataEvent as TEvent)

 FOnDataEvent = pOnDataEvent

 USART.ClearOverrun

 USART.RCIEnable = true

 enable(OnRX)

end sub

The main program code can now use the generic functionality of the interrupt
module to take some specific action, through the use of an event…

program MyRXProgram

// import module...

include "USART.bas"

include "MyRX.bas"

// event handler

event OnRX()

 if MyRX.DataChar = " " then

 high(PORTD.0)

43

 elseif MyRX.DataChar = "*" then

 high(PORTD.1)

 endif

end event

// main program

SetBaudrate(br19200)

MyRX.Initialize(OnRX)

while true

wend

In the above example, PORTD.0 goes high if a space character is received and

PORTD.1 goes high if an asterisk is received.

Context Saving

save (Item {, Item})
 {statements}
restore

• pItem - A variable, subroutine or function to save. A constant 0 will context
save the compilers system registers.

Extreme care needs to be taken when using interrupts and events with respect to

context saving. This is because a certain number of system registers or frame
variables may be allocated by the compiler when executing a routine or performing
a mathematical calculation. The integrity of these variables must be preserved at

all times when executing an interrupt or event.

For example, let's assume we have an interrupt which calls a simple function called
GetValue(). The program looks like this:

// get value function...

function GetValue(pValue as byte) as longword

 result = pValue * pValue * pValue

end function

// some interrupt...

interrupt MyInt()

 dim Value as longword

 Value = GetValue(10)

end interrupt

It looks harmless enough doesn't it? But it isn't.

The GetValue() function uses seven frame variables. One for the parameter, two to
store the intermediate results of the calculation and four for the result, which is a
long word. When this function is called, RAM locations 0 to 6 will be altered. If the

interrupt is triggered when your program is executing a routine which also uses
one or more RAM locations between 0 and 6, then the outcome will be certain
disaster. This is because when the interrupt finishes, it will return to the main
program and these locations are now permanently damaged. Worst still, the

calculation in GetValue() also uses a number of system registers to perform the
long word multiplication. These will also be damaged.

To correct the problem, use a save…restore statement block to protect the

44

system and frame registers, like this:

// some interrupt...

interrupt MyInt()

 dim Value as longword

 save(0,GetValue)

 Value = GetValue(10)

 restore

end interrupt

FSR0 and FSR1 are automatically saved when context saving the system registers.
Next, we save the system register block followed by all of the GetValue() frame
variables. In deciding which items you should context save, it is always worth

• Reading the microcontroller datasheet
• If calling a function or subroutine, examine the source code.
• Examine the generated ASM file. It can help determine what system

registers or microcontroller registers are touched.

Compiler Directives

A compiler directive is a non executable statement which tells the compiler how to
compile. That is, it won’t generate any code that can be run on the target device.
For example, some microcontrollers have certain hardware features that others
don’t have. A compiler directive can be used to tell the compiler to add or remove

source code, based on that particular devices ability to support that hardware.

Directives can be nested in the same way as source code statements. For example,

#ifdef MyValue

 #if MyValue = 10

 const CodeConst = 10

 #else

 const CodeConst = 0

 #endif

#endif

#constant

#constant identifier = expression

Creates a constant identifier. A constant identifier is global and its value cannot be

changed once set.

#variable

#variable identifier = expression

Unlike normal program code, the preprocessor works with directives on a line by

line basis. You should therefore ensure that each directive is on a line of its own.
Don’t have directives and source code on the same line.

45

Creates a variable identifier. A variable identifier is global, but unlike a constant
directive, its value and type can be changed. For example,

#variable MyValue = 10

#variable MyValue = “Hello”

#define

#define identifier [= expression]

Creates a define identifier. A define identifier is global, which can be taken out of
scope using the #undefine directive. An optional expression can be assigned to a
define directive. This can be used like a constant in any expression.

#undefine

#undefine identifier

Undefines a previously declared define directive.

#ifdef…#else…#endif

#ifdef identifier
 {code}
[#else

 {code}]
#endif

Include source statements if a define directive has been declared. If the expression
evaluates to false (that is, the identifier has not been declared), the code
statements following #else are included. The #else directive is optional.

#ifndef…#else…#endif

#ifndef identifier
 {code}

[#else
 {code}]
#endif

Include source statements if a define directive has not been declared. If the
expression evaluates to false (that is, the identifier has been declared), the code
statements following #else are included. The #else directive is optional.

#if…#elseif…#else…#endif

#if expression
 {code}
[#elseif expression
 {code}]
[#else

46

 {code}]
#endif

Include source statements if an expression evaluates to true. If the expression
evaluates to false, each #elseif is then evaluated. If neither #if or #elseif evaluate
to true, code statements following #else are included. Both #elseif and #else

directives are optional.

#error

#error "Error string"

Generate a preprocessor error and halt compilation.

#warning

#warning "Error string"

Generate a preprocessor warning. Unlike #error, compilation will continue.

#option

#option identifier [= expression]

Creates an option identifier. An option identifier is global and identical to the
#define directive in every way, except for two main differences. Firstly, an option
identifier can be seen and used in the declaration block of a user program. For

example,

#option BUFFER_SIZE = 64

const MyBufferSize = BUFFER_SIZE

In the above example, the program constant MyBufferSize becomes equal to 64,

as this is the value assigned to the option identifier BUFFER_SIZE. It is important
to note that a user program identifier will always take precedence over an option
directive. For example,

#option BUFFER_SIZE = 64

const BUFFER_SIZE = 16

const MyBufferSize = BUFFER_SIZE

In this example, MyBufferSize becomes equal to 16. The other difference between
option and define directives is that re-declaring an option twice, using the same

identifie,r will not cause an error. For example,

#option BUFFER_SIZE = 64

#option BUFFER_SIZE = 16

In this example, BUFFER_SIZE will become equal to 64, which is the first option

found by the preprocessor. The second declaration of BUFFER_SIZE is ignored.

47

This capability may appear a little redundant at first, but it's an extremely useful
technique to enable users to configure a module from their main program code.

IsOption

IsOption(Identifier)

Used in conjunction with an #If…#else…#endif statement IsOption will return
true if an #option for the referenced identifier has been defined. This is primarily
of use for validating the parameters which have been defined in the #option.
Typically, if the validation fails an error can be raised to the preprocessor and the

error message reported to the IDE.

#if IsOption(USART_LS) and not (USART_LS in (true, false))

 #error USART_LS, "Invalid option. LS must be TRUE or FALSE."

#endif

#option USART_LS = false

This will check to see if the option USART_LS has been previously defined. If it
has, it will check the values that have been assigned to the option are true or

false. If any another value has been assigned to USART_LS it will generate an
error.

The last line will then set a default value for the USART_LS option.

Preprocessor Expressions

The preprocessor allows you to use a rich set of operators within expressions. They

include

Relational <, <=, <>, >=, >, =

Logical and, or, xor, not
Bitwise <<, >>, and, or, xor, not
Math +, -, /, *, mod

In addition to the standard operators show above, the preprocessor also allows the
use of the in operator. For example,

#if _clock = 3 or _clock = 4 or _clock = 8 or _clock = 10

 #define LowSpeed

#endif

can be written more simply as

#if _clock in (3,4,8,10)

 #define LowSpeed

#endif

You can also use a range of values with the in operator. For example,

#if Value in (1 to 10, 20, 100 to 255)

 #define LegalRange

#else

 #error "Value out of range"

#endif

48

Because the in operator evaluates to true or false, you can apply other boolean
operators. For example,

#if not (Value in (1 to 10))

 #error "Out of range"

#endif

In the above example, an error is generated if value is not in the range 1 to 10.

Predefined Directive Constants

The compiler supports a number of predefined directive constants. These are

listed in Appendix 4.

Predefined Subroutines and Functions

Most of the time you will be using subroutines and functions that you have created,
or you may use routines from a supplied library. However, the compiler provides a
number of inbuilt subroutines and functions, many of which have been specially
optimized for use with a PIC® microcontroller.

AddressOf

function addressof(byref variable) as word

function addressof(byref sub | function) as word | longword

There are times when you may want to access the address of a variable,
subroutine or function. For example,

function CopyString(byref pStr as string) as string

 FSR1 = AddressOf(pStr)

 FSR0 = AddressOf(Result)

asm

 movf POSTINC1, W

 bz $ + 6

 movwf POSTINC0

 bra $ - 6

 clrf INDF0

end asm

end function

You can also use the unary @ operator, rather than AddressOf(), to access an
address value. For example, @pStr and @Result.

BitOf

function bitof(byref variable, masked as boolean= true) as byte

The bitof function returns the bit number of a bit variable. By default, bitof

returns a masked value. To return a non-masked value, call with the masked

49

parameter set to false. For example,

include "USART.bas"

include "Convert.bas"

sub DisplayBitOf(byref pBit as bit)

 USART.Write("Mask :", DecToStr(BitOf(pBit)), 13, 10)

 USART.Write("NoMask:", DecToStr(BitOf(pBit,false)), 13, 10)

end sub

USART.SetBaudrate(br19200)

Write(PORTD.7)

will output

Mask : 128

NoMask: 7

Bound

function bound(byref Array()) as word

The bound function returns the highest addressable index for a given array. For
example,

sub Init(byref pArray() as byte)

 dim Index as byte

 for Index = 0 to bound(pArray)

 pArray(Index) = $FF

 next

end sub

dim ArrayA(20) as byte

dim ArrayB(32) AS byte

Init(ArrayA)

Init(ArrayB)

Clear

sub clear(byref variable)

The clear subroutine fills a variable with zeros. For example,

// declare a structure...

structure TStruct

 a,b as byte

 Value as word

end structure

// create some variables...

dim Array(10) as byte

dim Struct as TStruct

dim Value as byte

50

// set to zero...

clear(Array)

clear(Struct)

clear(Value)

Dec

sub dec(byref ordinal [, expression as word])

The dec subroutine decrements an ordinal value either by one, or by an optional
ordinal expression. For example,
dim Value as word

dec(Value) // dec by one

dec(Value, 2) // dec by two

dec(Value, Value / 2) // dec by half of value

DelayMS

sub delayms(expression as word)

The delayms subroutine suspends program execution for up to 65535 milliseconds
(ms). For example,

delayms(100) // delay 100 ms

delayms(Value) // delay Value ms

delayms(Value * 2) // delay Value * 2 ms

DelayUS

sub delayus(expression as word)

The delayus subroutine suspends program execution for up to 65535
microseconds (µs). For example,

delayus(100) // delay 100 µs

delayus(Value) // delay Value µs

delayus(Value * 2) // delay Value * 2 µs

High

sub high(byref portpin as bit)

The high subroutine sets a port pin to a high state. The port pin is automatically
set to output. For example,

// turn on LED...

dim LED as PORTD.7

high(LED)

51

Inc

sub inc(byref ordinal [, expression as word])

The inc subroutine increments an ordinal value either by one, or by an optional
ordinal expression. For example,

dim Value as word

inc(Value) // inc by one

inc(Value, 2) // inc by two

inc(Value, Value / 2) // inc by half of value

Input

sub input(byref portpin as bit)

The input subroutine makes the specified port pin an input. For example,

input(PORTD.7)

Low

sub low(byref portpin as bit)

The low subroutine sets a port pin to a low state. The port pin is automatically set
to output. For example,

// turn off LED...

dim LED as PORTD.7

low(LED)

Output

sub output(byref portpin as bit)

The output subroutine makes the specified port pin an output. For example,
output(PORTD.7)

Terminate

sub terminate()

The terminate subroutine stops the currently executing program and places it into
a continuous loop. The device is also placed into low power mode. For example,

// if PORTD.0 goes low, terminate program...

if PORTD.0 = 0 then

 terminate

endif

52

Toggle

sub toggle(byref portpin as bit)

The toggle subroutine switches the input or output state of a port pin. That is, a
high state becomes low and vice versa. The port pin is automatically set to

output. For example,

dim LED as PORTD.7

low(LED) // LED is off

delayms(1000) // wait one second

toggle(LED) // switch on

Creating and Using Programs

The simplest program that can be compiled using Swordfish is a blank page! The
information outlined in this section outlines the key components you will require in
moving from a blank page to generating some useful code that will be executed on
a PIC® microcontroller.

Program Constructs

[program identifier]

[device = devicename]
[clock = frequency]
 {modules}
 {declarations}

 {statements}
[end]

• Identifier – A optional program name, which follows the standard identifier
naming conventions

• Device – An optional PIC® device name
• Clock – An optional device crystal frequency

• Modules – An optional group of module files
• Declarations – An optional group of declarations. For example, constants,

structures, variables, subroutine and function declarations
• Statements – An optional group of statements. For example, variable

assignments, conditional statements and looping statements

If the program keyword is used, it must always be at the start of your program

and be followed by a unique identifier. For example,

program DCMotorControl

A program identifier can be useful for documentation purposes. It also makes
turning a program into a module a little easier, by substituting program with

module. However, it is entirely optional and there is little to be lost by leaving it
out. Like program, the end keyword is entirely optional and can be used to
explicitly bring to an end your program block.

53

Device

The device keyword informs the compiler which PIC® microcontroller you are
targeting. If you leave it out, the compiler will default to an 18F452. If you do
explicitly assign a microcontroller to device, it must always appear before any
module includes or declarations. If you don't, an error is generated. This is to

ensure that any modules or declarations with compiler directives are processed
correctly. For example,

device = 18F8720

include "EEPROM.bas"

In the above example, the EEPROM library uses a number of pre-processor
directives to ensure the correct code is generated for devices that have more than
256 byte of onboard EEPROM.

You can access the device name as a string constant from within your main
program code by prefixing with an underscore character. For example,

device = 18F4520

include "USART.bas"

SetBaudrate(br19200)

USART.Write(_device, 13, 10)

Clock

The clock keyword informs the compiler what crystal frequency is being used by
the target device. This serves two primary purposes. Firstly, it enables to the
compiler to produce the correct timings for some of its in-built commands, such as

delayms. Secondly, it enables a program or module to generate different code for
various frequencies through the use of compiler directives. If you don't explicitly
set clock, it will default to 20MHz. Like the device keyword, clock must always
appear before any module includes or declarations. For example,

device = 18F4520

clock = 10

include "USART.bas"

You can however place clock before device, like this

clock = 10

device = 18F4520

The crystal frequency of a device can be represented as a floating point number.
For example,

clock = 3.2768

This can be extremely useful when used in conjunction with the pre-processor to
generate different timing code. However, it is important to note that the built in
routines will only currently generate the correct timings for a certain range of clock

frequencies. These include: 3.58, 4 to 13, 14.32, 15 to 40 and 64Mhz. Any
frequencies falling outside of this range will be matched to the nearest supported
value.

You can access the clock frequency as a floating point constant from within your
main program code by prefixing with an underscore character. For example,

54

device = 18F4520

include "USART.bas"

include "Convert.bas"

SetBaudrate(br19200)

USART.Write(DecToStr(_clock), 13, 10)

Program Includes, Declarations and Statements

A module include declaration enables you to import pre-tested subroutines and

functions into your main program body. Modules may also contain other public
declarations which your program can use, such as constants and variables. To
import a module into your program, use the include keyword, followed by the
modules name. For example,

include "USART.bas"

include "Math.bas"

include "Convert.bas"

Once imported, you can start using any of the module’s public declarations in your
main program. For example,

SetBaudrate(br19200)

Write(FloatToStr(sin(10)), 13, 10)

The subroutines SetBaudrate() and Write() are located in the USART library and
the function Sin() is located in the math library.

Some modules may use the same naming convention for identifiers. For example,

the USART library and LCD library both have an output subroutine called Write().
You can easily use both from within your program through redirection. This is
achieved by prefixing the identifier by the modules name and by using the dot
notation. For example,

include "USART.bas"

include "LCD.bas"

SetBaudrate(br19200)

USART.Write("USART Write", 13, 10) // redirect to USART module

LCD.Write("LCD Write") // redirect to LCD module

If you did not use redirection, then all output would be sent via the USART module.
This is because the USART library has been included before the LCD library. If you
switched them around, then all output would be sent via the LCD module.
Redirection is a really good way to document your programs, even if it is not

actually needed. For example,

USART.SetBaudrate(br19200)

USART.Write("Hello World", 13, 10)

Module includes are usually followed by your program declarations such as

constants, structures, variables, subroutines and functions. For example,

include "USART.bas"

const Factor = 10

dim Index, Value as byte

55

However, you can mix the order if you wish, like this,

dim Index, Value as byte

include "USART.bas"

const Factor = 10

dim FloatValue as float

Generally, the order in which you declare items is a matter of personal style.
However, it is important to remember that even though Swordfish is a multi-pass
compiler, it does not support forward referencing. Identifier names are resolved in

the first compiler pass. This means you must declare something before it is used.
For example,

dim Alias as Value.Byte0

dim Value as word

will generate a number of errors, because Value has been referenced before it has

been declared. As a guide, it is usually good practice to import modules and
declare items in the following order,

• modules
• constants
• structures
• variables

• aliases and modifiers
• subroutines and functions

The final part of a program block is the statements group. That is, the code you
write to get the microcontroller to start doing something. The compiler does not
require you to give an explicit entry point for your statement code, such as 'main'.
You just start writing your code. For example,

include "LCD.bas"

include "Convert.bas"

dim Index as byte

delayms(200)

LCD.Cls

for Index = 0 to 10

 LCD.Cursor(1,1)

 LCD.Write(DecToStr(Index))

 delayms(500)

next

It should be noted that as soon as you start a statement group, you cannot then
start importing modules or make further declarations. For example,

include "USART.bas"

SetBaudrate(br19200) // statement

dim Index as byte // ERROR!

56

Creating Modules

module identifier

[device = devicename]
[clock = frequency]
 {modules}

 {declarations}
 {statements}
[end]

By keeping your most useful routines in a module, you can build programming
libraries for other programs to reuse. Modules are also extremely useful for
dividing large programs into small, more manageable pieces by storing different

parts in separate modules.

• Identifier – A mandatory module name, which follows the standard identifier
naming conventions

• Device – An optional PIC® device name
• Clock – An optional device crystal frequency
• Modules – An optional group of module files
• Declarations – An optional group of declarations. For example, constants,

structures, variables, subroutine and function declarations
• Statements – An optional group of initialization statements. For example,

variable assignments, conditional statements and looping statements

The module keyword is mandatory and is followed by unique identifier, which is
used to support redirection from other modules or programs. The end keyword is
entirely optional.

Device and Clock

You can explicitly give a device name and clock frequency inside a module in
exactly the same way as you would a program. Although occasionally useful, this

practice is best avoided as it ties the module to a particular device or clock speed
and will also override any settings contained in the main program block.

Module Includes, Declarations and Statements

You can import module libraries in exactly the same way as you would in a normal
program, using the include keyword. It doesn't matter if you new module and the
program that uses it imports the same set of modules. The compiler will only load

the necessary libraries once. For more information on importing modules, see the
section entitled Creating and Using Programs.

The most fundamental difference between program and module declarations is the
use of the private and public keywords. A declaration that is private is only
available from within the module it is declared. A program that imports a module
cannot access a private declaration. Private declarations are sometimes called

helper declarations, because they help the module perform one or more specific
tasks.

This is in contrast to a declaration that is made public, which is available to other
modules and programs. A public declaration is therefore the interface to a module.
All Swordfish declarations are private by default. If you want other modules or
programs to access them, they must be explicitly declared as public. For example,

57

module MyUtils

include "USART.bas"

include "Convert.bas"

// private helper

function GetMax(byref pArray() as byte) as byte

 dim Index as byte

 result = 0

 for Index = 0 to bound(pArray)

 if pArray(Index) > result then

 result = pArray(Index)

 endif

 next

end function

// public interface

public sub DisplayMax(byref pArray() as byte)

 USART.Write("MAX = ", DecToStr(GetMax(pArray)), 13, 10)

end sub

The module is named MyUtils, which declares a private helper function called
GetMax() and a public interface subroutine called DisplayMax(). The DisplayMax()
subroutine uses the private helper GetMax() to calculate the maximum array

value, before outputting via the USART modules Write() subroutine. We can now
use this module in a program, to output the maximum value of an array,

include "USART.bas"

include "MyUtils.bas"

dim Index, Array(5) as byte

SetBaudrate(br19200)

for Index = 0 to bound(Array)

 Array(Index) = USART.ReadByte

next

DisplayMax(Array)

However, if you try and make a call to the private helper function GetMax() from

the program, an error is generated during compilation.

The final part of a module block is the statements group. This can be extremely
useful for initializing the module before it is used, as module statements are
always executed before the main program executes. For example,

module Stack

// private variables...

dim StackItems(100) as byte

dim StackPointer as byte

// push byte onto stack...

public sub Push(pValue as byte)

 if StackPointer <= bound(StackItems) then

 StackItems(StackPointer) = pValue

 inc(StackPointer)

 endif

end sub

// pop item off stack...

public function Pop() as byte

 if StackPointer > 0 then

58

 dec(StackPointer)

 endif

 result = StackItems(StackPointer)

end function

// initialise stack pointer

StackPointer = 0

In this example, the module manages an array of byte items that can be pushed
and popped off a stack. Before the module can be used, it is essential that the

stack pointer is initialized to zero. If not, the value of stack pointer may contain
any value when the main program executes and the module would certainly fail.

Care must be exercised when using a module statement block, as any code

included will be executed before the main program code begins executing. Don't fill
it with unnecessary statements; just include code that is absolutely essential for
the correct operation of a module.

 A1

Appendix 1 - Operators

Operator Precedence

Level Operators

1 @, unary -, unary +, NOT

2 *, /, MOD

3 +, -

4 <<, >>

5 =, <, >, <=, >=, <>

6 AND

7 OR, XOR

Operators at level one have the highest precedence, with operators at level seven
having the lowest precedence. Parentheses can be used to override the order of

precedence rules, allowing parts of an expression to be evaluated before others.

Relational Operators

The operators used for comparison are called relational operators. Applying a

relational operator will yield a result of true or false.

Operator Meaning

= Is equal to

< Is less than

> Is greater than

<= Is less than or equal to

>= Is greater than or equal to

<> Is not equal to

The only relational operators supported for string types are equal and not equal.

Because the internal binary representation of floating point numbers may not be
exact, the equality operator should be avoided for floating point numbers.

 A2

Mathematical Operators

Operator Meaning

* Multiply

/ Divide

+ Addition

- Subtraction

MOD Modulus

In addition to the mathematical operators shown above, you can use the unary
operator to change the sign. For example,

dim Value as shortint

Value = 10 // Value = 10

Value = -Value // Value = -10

Logical Operators

Operator Meaning

NOT Negate

AND Logical AND

OR Logical OR

XOR Logical XOR

Logical operators can be used to build conditional expressions, for example, when
using if…then, while…wend and repeat…until statements. Applying a boolean
operator yields either true or false.

Bitwise Operators

The following operators perform bitwise manipulation on ordinal operands, which
include byte, shortint, word, integer, longword and longint.

Operator Meaning

NOT A bitwise NOT or complement

AND Bitwise AND

OR Bitwise OR

XOR Bitwise XOR

<< Shift Left

>> Shift Right

 A3

Appendix 2 - Reserved Words

A list of compiler reserved words is shown below.

absolute

access

addressof

and

as

asm

auto

bit

bitof

boolean

bound

break

byref

byrefconst

byte

byval

case

char

clear

clock

compound

config

const

continue

dec

delayms

delayus

device

dim

disable

eeprom

else

elseif

enable

end

endif

end

select

exit

false

float

for

function

goto

high

if

inc

include

inline

input

integer

interrupt

longint

longword

low

mod

module

next

noinline

not

null

or

output

port portpin

private

program

public

repeat

restore

save

select

shortint

step

string

structure

sub

system

terminate

then

to

toggle

true

type

until

wend

while

word

xor

 A4

Appendix 3 - Types, Modifiers and Constants

Core Types

Type Bit Size Range

Boolean 1 True or False

Bit 1 1 or 0

Byte 8 0 to 255

Word 16 0 to 65535

LongWord 32 0 to 4294967295

ShortInt 8 -128 to 127

Integer 16 -32768 to 32767

LongInt 32 -2147483648 to 2147483647

Float 32 -1e37 to +1e38

Char 8 Single character

String Variable Multiple (up to 255) characters

Structure Variable Variable

Variable Modifiers

Type Modifiers

Byte,
ShortInt

0..7, Bits(0..7), Booleans(0..7)

Word,

Integer

0..15, Bits(0..15), Booleans(0..15)

Byte0, Byte1, Bytes(0..1)

LongWord,
LongInt,
Float

0..31, Bits(0..31), Booleans(0..31)
Byte0, Byte1, Byte2, Byte3, Bytes(0..3)
Word0, Word1, Words(0..1)

 0..7, Bits(0..7), Booleans(0..7)

 A5

Promotional Modifiers

Variable

Type

Legal Promotional Modifiers

Byte,
Shortint,
Char

AsWord, AsInteger, AsLongWord, AsLongtInt, AsFloat

Word,

Integer

AsLongWord, AsLongtInt, AsFloat

Inbuilt Constants

True

False
Null

 A6

Appendix 4 - Predefined Directive Constants

_device Target device name. For example, 18F452
_clock Clock frequency
_core Device core. Currently 16 only.
_maxram The number of device RAM locations

_maxrom The number of device ROM locations
_ports The number of device ports
_adc Number of device ADC channels
_adres ADC resolution

_eeprom The number of device EEPROM locations
_usart The number of hardware USARTS
_usb USB support

_mssp The number of MSSP modules available
_ccp The number of CCP module available
_eccp The number of extended CCP modules available
_comparator The number of comparator modules available

_psp The number of onboard Parallel Slave Ports (PSP) available
_ethernet Ethernet support
_can CAN support
_flash_write FLASH write capability

