MICROCONTROLLERS

Microcontrollers fo

Figure 1.

A Diecimila Arduino board.
The new Duemilanove
board is almost identical.
These boards are cheap
and easy fo find.

32

Clemens Valens (Elektor France Editorial)

Apparently Arduino is an ltalian name — but when you search on the Internet, you mainly

find dozens of references relating to electronics and programming. What's more, these

references are often in relation to art. Electronics and art — now there’s an interesting

subject that's worth delving into! So just what exactly is Arduino?

At first sight, Arduino [1] is a small microcontroller board
with a USB port (Figure 1) that comes in several models.
There are even ‘daisy’-shaped boards (Lilypads) intended
for wearable applications, i.e. to be incorporated into gar-
ments. The Arduino board is programmed in a language
very similar to C using Open Source tools available for
Windows, Mac, and Linux. The hardware is also Open and
anyone can make their own Arduino — the circuit diagrams
and PCB photo masks are available free over the Internet.
Arduinos are used a great deal by artists who need elec-
tronics in their creations.

When you look at it a bit more closely, an Arduino is not
exactly a microcontroller board. In fact, an Arduino is quite
simply an 8-bit microcontroller from Atmel — an ATmega8
for the earliest Arduinos and now more likely to be an
ATmega168. This microcontroller is loaded with a ‘boot-
loader’ program that lets you load an application into the
controller via a serial port, without overwriting the boot-
loader. Since modern computers no longer have serial
ports, a USB port is often used. All this becomes an Arduino
when you decide to dedicate certain pins of the controller

to certain functions, since this allows the Arduino develop-
ment environment to be used for writing and compiling
application before loading them onto the controller.

The applications, called “sketches’, are written in a lan-
guage that closely resembles C. Hardly surprising — it is
C, but with some additional functions. All of the functions
presented as the language for Arduino form a Hardware
Abstraction Layer that lets you program the controller with-
out needing to delve into the innards of the processor. The
language has everything you need for most applications.
Broadly speaking, there are functions for digital and ana-
logue inputs/outputs, a few basic mathematical functions,
time management functions (delays) and a few function for
serial port communication — asynchronous (UART) and syn-
chronous (SPI).

The digital /O functions let you manipulate the logic levels
of the pins, to read and write them. There is also a special
function that makes it possible to measure the duration of
a pulse. Using the analogue 1/O functions, it is possible to
read voltages and generate PWM signals. Lots of appli-
cations don’t require anything more than this, and this is
exactly where Arduino’s strength lies. There's no need to
go ferreting around in the registers and the controller data
sheet to make a PWM output or a counter work — the ‘dirty
work’ has already been done.

If these functions aren’t enough, it's perfectly possible to pro-
gram on a lower level and, just as in standard C, you can
also add libraries with their own functions. But do watch
out — if you go off into the darker depths of the Arduino
programming language, you risk losing compatibility with
the rest of Arduino community.

The Arduino community? Already, Arduino is a microcon-
troller, as well as a development environment and a pro-
gramming language - now it's a community too2 Yes! In
fact, Arduino is more of a philosophy, the aim of which is
to popularize technology to make it accessible to artists.
Arduino is a logical sequel to Processing [2] and Wiring [3]
projects. Processing is a multimedia programming language
and Wiring is a development environment for artistic elec-
tronics But now we're starting to get away from our original

elektor - 2/2009

r Dummies ...

point; refer to the box about the origins of Arduino if
you want to find out more.

Elektorino

Simple, free programming is something we're interested in.
What's more, the electronics involved seem to be simple
- so what could be more logical than to produce our own
Arduino-compatible system@ Well, that's just what we're
going to do!

Our starting point is the basic Arduino Serial board. The
office computer | use all the time still has a serial port, but
for the unlucky owners of a computer that doesn’t, we're
going to use the USB-TTL cable [4]. In any event, we're
going to be needing a TTL inferface of some kind, as our
own Arduino will only have a TTL serial port.

Our processor is going to be an ATmega 168, which we'll
be running at 16 MHz, to avoid getting caught out. For
even though the controller is perfectly capable of operat-
ing at up to 20 MHz, the standard bootloader assumes a
speed of 16 MHz. This can of course be modified if you
are prepared to go delving info the bootloader - but for the
moment we just want an Arduino board that works.

To finish off our Arduino, all we need do is add an LED, a
reset push-button, a few resistors and capacitors, and two
connectors: one for the serial port and the other for pro-
gramming the bootloader. We need the latter to be able to
program our Arduino for the first time, when the controller
is still blank. Later, when the application is finished and the
bootloader is no longer needed, this connector can be used
for programming the controller directly from the application,
which saves memory.

The LED has several functions. Given that the LED is present
on several types of Arduino, lots of sketches use it. So does
the bootloader, which flashes it at start-up.

Here's the circuit diagram of our finished Arduino (Fig-
ure 2). Thanks to the simplicity of the circuit, we can build
it on prototyping board.

Unfortunately, we are not allowed to call our fine project
Arduino - only boards approved by the Arduino community
have the right to that name. This is why a second move-
ment Freeduino [5] was created, which allows free use of

2/2009 - elektor

the name Freeduino for home-made
Arduino boards. But after all, it's only
a name, so let’s call ours Elektorino.

Implementation

Before you can load a sketch into the Elektorino, you need
to load the bootloader. This is where things get more com-
plicated, as there are two official Arduino bootloaders, the
only apparent difference between them being the way the
sketch is run after loading. This is achieved by way of a
controller reset, which the Arduino environment can handle
if the board has been equipped for it, and if it has the right

+5V +5V
® ®
RO
L E
Ioon
{2
com |z1_7_|zo Lvsssr
J3 AREF VCC AVCC
of1_pmo 2100 pes | RESET J5
ofz_pm1 3o pos |28 IN5 slo
o3 P2 4]eops IC1 pea 127 IN4 515
ofs_pms 5103 pea |28 IN3 als
ofs_Pma [s pea 125 IN2 1 DS
ofs_ems 1] 005 ot 24 IN1 215
ofz_Pme 12) 06 peo |22 INO i DS
ofe_emz 18] 07
L ATmegal68
141pBo pes 12
J4 151 pB1 peaf 2 WSO
; 1 PINg —%1pe2 pB3 17 SCK
ofrtme | GND PB6 _ PB7 GND
o3Pt
o4 P MOS!
ofs P2
ofs_Pmi3
D7

080931 - 11

Figure 2.

The circuit of the
Elektorino. Not at

all complicated. The
connectors for the pins are
not necessary, they are
mainly used as a reference.

33

MICROCONTROLLERS

Figure 3.
The Arduino development
environment.

34

bootloader. We haven’t made any provision for this, and so
we need the basic bootloader for the so-called NG (New
Generation) boards.

But there is also another option: a third bootloader called
ADABOQT [6]. This bootloader, an improved version of the
official bootloaders, handles the reset and run delays differ-
ently. Initially, | worked for a bit with the NG bootloader,
before replacing it with ADABOOT. Both worked perfectly
well, but in the end | adopted ADABOOT, because it flashes
the LED while the sketch is loading and because it is more
convenient.

See the box to find out how to load the bootloader into the
controller.

...is not as hard as all that, as long as you have all the information you need. To save you hours on the Net, we’ve summed it up

for you here in a few lines.

First of all, you need a programmer. There are several possibilities, for example, the one published in the 2008 double issue [7],
or another ‘SK200 compatible’ programmer, easy to build using the circuit available on the PonyProg website [8]. On the Arduino
website [1] yet another parallel port programmer is mentioned which is very simple and can be used directly from the Arduino en-
vironment. | tried it out, and managed to scramble one controller with it... so | went back to an SK200 one | already had.

Next, choose your bootloader. | recommend ADABOOT [6], but the NG version available on the Arduino website works perfectly

well too.

Loading the bootloader into the controller can be done, for example, using AVRDUDE [9], supplied with the Arduino environ-
ment. AVRDUDE is a typical UNIX tool — it’s basically a FreeBSD tool — with lots of incomprehensible options. Because it’s very
! easy to make a mistake, here are the commands that work well (copy the bootloader into the directory that contains the AVRDUDE

executable):

avrdude -p ml68 -c pony-stk200 -V -e -U lock:w:0x3F:m -U hfuse:w:0xDF:m -U lfuse:w:0xFF:m -U efuse:w:0x0:m
avrdude -p mlé68 -c pony-stk200 -V -D -U flash:w:ATmegaBOOT_168_ng.hex

avrdude -p ml68 -c pony-stk200 -V -U lock:w:0x0F:m

If you use another programmer, replace pony-stk200 with the appropriate value. Also check the name of your bootloader.

There are three commands that, broadly speaking, unlock the memory, load the program, set the fuses, and finally lock the me-
mory. Refer to the AVRDUDE instructions if you want to know exactly what is going on (sensitive souls are advised to refrainl). Loc-
king the memory is used to avoid overwriting the bootloader accidentally when loading a sketch.

A good website about the AVR is called Lady Ada [10].

Hello world!

Once you have succeeded in loading the bootloader, it's
time to see if Elektorino manages to communicate with the
Arduino environment and if it is possible to load a sketch.
So let's install Arduino. I've only done it under Windows
XP, and that was extremely easy. All | had to do was down-
load a large zipped file and unzip it somewhere onto the

hard drive.

After running the Arduino environment (arduino.exe), you
find yourself with a window like the one shown in Fig-
ure 3. Go into the Tools menu, then Board, and select the
Arduino board being used. Of course, our one isn't listed,
but an NG board using an ATmega168 will do.

You also have to select the serial port to be used for pro-
gramming the microcontroller. Go into the Tools menu, then
Serial port and select the correct port. If you want to use a
USB serial port, check first that the drivers are present.
The Arduino environment comes with a small sketch, Blink,
for checking that the board is working, and we can use this,
since we have fitted the LED. The procedure is simple:

- Load the sketch; it's in File > Sketchbook > Examples >
Digital > Blink.
- Compile the sketch by clicking the Verify/Compile button;
this only takes a few seconds and (usually) ends with a suc-
cess message.

- Load the sketch into Elektorino; first press the Reset button
briefly, then click Upload to set the program loading. If all
is well and if you are using ADABOQT, after a short delay
you'll see the LED start to flash randomly — this is normal,
it shows the transfer is taking place. After around five sec-
onds (depending on the size of the sketch), the program
is loaded and the controller is rebooted (the exact way in
which the program is run depends on the bootloader). If
the LED now flashes at a frequency of 1 Hz, everything has
gone alright. Elektorino is working! If nothing happens, try
resetting Elektorino.

elektor - 2/2009

A real application

It's all very well to have an Arduino development environ-
ment that works wonderfully well, but without a real appli-
cation, it's not very interesting. | already had ten motorized
slider pots, and it was high time to put them to good use.
Why not with Elektorino? Elektorino has analogue inputs
and PWM outputs — everything we need to drive a motor.
So I'm going to suggest a driver for motorized faders. Note
that this circuit can be used with any ATmega168-based
Arduino board.

The fader in question (Figure 4) consists of a slider pot,
a small motor, and an assembly of a few rollers, springs,
and a piece of cord that enables the motor to move the
slider in both directions. This assembly allows the motor to
freewheel when the slider is unable to move — at each end
of its travel, for example. Apart from the 10K B marked on
the fader, | didn't have any technical data on it, but a few
experiments showed that the motor turned at a suitable
speed when powered from 12 V. In this case, its consump-
tion was around 200 mA.

The B marked on the fader might lead us to think it's a log
model (as is often the case), but after checking, my faders
turned out to be linear ones.

As a motor driver, | chose a cleverly-modified double H
bridge with just two control lines and three states: anti-
clockwise, clockwise, and braking - just what we need
(Figure 5). Usudlly, two controls allow four states, but in
this circuit, states 00 and 11 are the same. A 5 V regulator
has been slipped into the circuit so as to be able to power
the whole controller assembly and motor from 12 V. The
transistor are all NPN types, and those forming the bridge
must be capable of carrying 200 mA happily. In my proto-
type, | used BD139s.

The potentiometer is wired as a simple potential divider. By
measuring the voltage on the wiper, we know where it is
(just so long as it's a linear pot).

The motor driver controls must be connected to digital out-
puts capable of supplying a PWM signal. An Arduino
based around an ATmega168 has six, an ATmega8 only
three. The pot wiper itself can be connected to any of the
analogue inputs — in our case, in0.

The sketch

Now that we have connected a motor driver to Elektorino
(Figure 6), it's time to deal with the software. You'll see,
the final sketch will be amazingly simple, thanks to the
power of the Arduino.

A basic sketch consists of two functions: setup() and loop(],
which are called by the layer of a lower level. In setup,
called once at runtime, we put everything that relates to ini-
tializing the system — for example, the inputs/outputs and
the serial port speed.

99.9% of embedded programs probably spend their whole
lives in a loop. This is why in Arduino this loop is already
implemented in the form of the loop function. This loop
function is called periodically and may be regarded as
Arduino’s main. It's important to realize that, even though
it looks like a special function, loop is just like any other
function in C. So its local variables are reset each time it is
called and variables that are required to keep their values
between different occasions loop is called must be declared
globally (or as static, for those familiar with C.)

The setup in our sketch doesn’t contain anything very much.

The Arduino pins are inputs by default, so only the two
outputs need to be initialized. We're going to be using the

2/2009 - elektor

- D2 2x D5 ™
R navor A
W BD139

& o

1N4001 1N4001
T2 Ts

D3 2 D6
: 1N4001 ::

hl

BD139 BD139

; 080931 - 12

serial port to drive our circuit, and for this it needs to be
initialized. Thanks to the simplification offered by Arduino,
all we have to do is enter the communication speed - in

our case, 9,600 baud.

Figure 4.
A motorized fader of
unknown make.

Figure 5.

The modified double H
bridge and its three states.
The lubels refer to the

pin designations, not the
terminals on the controller.

Figure 6.

The Elektorino prototype:
the ATmegal68 is on the
left and the double H
bridge to drive the motor
on the right.

35

36

MICROCONTROLLERS

Several books have already been written on Processing.

the Interaction Design Institute Ivrea (IDII) in ltaly.

‘Wiring'.

Moving the pot wiper is done in loop. The principle is very
simple: if the voltage measured on the input pin is different
from the voltage required, the slider must be moved in the
direction which will reduce this difference. In real life, it's
a bit more complicated than that. To start with, there’s the

The STK200 compatible programmer used by the author. There are also simpler
programmers — it's a matter of personal preference.

MiSO

IC3
LPT
. N

oo
162 of— 1 C
” o o4 2li;r D ¥

o 13 4
18| O
P o ole 6

ro 7 8
20| O

ro 8 1
21 (e, 102
» o o 13
»° oo [5]

o o]
24| O4—

o 12
515 T, 74HCT244

leg
\ 080931-13

problem of direction, but more significant still is the problem
of inertia. Once the slider is moving, it takes a little time for
it to come to a complete halt. So it's easy to overshoot the
required position if braking occurs too late. In the event of
an overshoot, the slider has to be brought back, with the
same risk of overshooting again, and so on. The system

. If you use the FT232R chip as a USB interface and if you have access to all its pins, it is possible to use this chip to load the boot-
loader into the microcontroller without even needing a special ISP programmer! The FT232R chip has a bus called a CBUS with

' a bit function that lets you manipulate the associated pins individually. A certain Mr Suz from Japan has written a small piece of
software that exploits this possibility and which can be downloaded free. lts avrdude-serjtag tool only works under Windows and
' its website is unfortunately in Japanese (suz-avr.sblo.jp/article/4438871.html). However, on his site one of his compatriots kindly
explains in detail in English how to program an Arduino using this tool. See reference [11] for details.

Processing [2] is a language and an Open Source programming environment for programming images, animations, and inter-
actions. The project, an initiative from Ben Fry and Casey Reas, is based on ideas developed by the Aesthetics and Computation
Group of the MIT Media Lab. Processing was created in order to teach the fundamentals of programming in a visual context and
to serve as a sketchbook or professional software production tool. Processing runs under GNU/Linux, Mac OS X, and Windows.

gramming, and quick prototyping. Wiring, programmed in Processing, is an initiative by Hernando Barragdn and was designed at

Arduino [1] is a fast, Open Source electronic prototyping platform. Arduino is aimed at artists, stylists, enthusiasts, and anyo-
ne inferested in creating objects or interactive environments. Created by Massimo Banzi, Gianluca Martino, David Cuartielles,

Just like Arduino, Wiring [3] is a programming environment with microcontroller board for exploring electronic arts, teaching pro- |
and David Mellis, Arduino uses a programming language based on ‘Processing’. Arduino may be regarded as a simplification of |

may even begin to oscillate.

To avoid these problems, we have used a Proportional Dif-
ferential (P-D) regulator. In this type of regulator, the system
reaches its final value without overshoot by continuously
adjusting the correction signal according to the difference
remaining to be corrected. So at the start of an adjustment,
when the error is greatest, a strong correction signal is
applied. Then, once the difference starts to reduce, the cor-
rection signal reduces too and the system slows down.
The correction signal consists of two parts: a signal propor-
tional to the error (P) and a signal proportional to the error
reduction (D). With a properly adjusted system of this sort,
the slider can be moved quickly without overshooting the
target value.

In the sketch (Listing 1) we can see the P-D regulator in the
loop function. First, we measure the voltage at the wiper.
The target value is subtracted from the measured value to
obtain the error to be corrected. From this value, we calcu-
late the two components P and D of the correction signal.
The P component is the error multiplied by the constant K.,;
the D component is obtained by multiplying the difference
between the current value and the previous error by the con-
stant K. The values for these constants were determined by
experimentation, and you can modify them to see how the
affect the adjustment. It's highly instructive.

The two components P and D are combined and the result
is adapted to the range of usable values. The pot slider
doesn’t move for values below 50, and the maximum value
for the PWM signal is 255.

Then we look to see if the error is small enough for us to be
able to stop the motor. This comparison has to be performed
for both slider directions. We leave a small margin for error,
since perfection is perhaps a litle over-ambitious.

When the error is small enough, we prevent further correc-
tions so as to free up the slider; we make the assumption
that the system is never going to overshoot the target value.

elektor - 2/2009

In this way, it's possible to move the slider manually, with-
out the system’s trying to move it back into place. (Who's
the strongest2)
Once the slider has been released, the system starts to out-
put the slider position periodically (10 Hz) via the serial
port. The serial port input is also scanned and as soon as
four characters have been received, they are transferred as
a target value for the slider and the PD regulator is re-acti-
vated fo move it to its new position. No format checking
is performed for the value received, the system requires an
ASCII four-digit value between 0000 and 1023. To mini-
mize errors, the target value obtained is limited between 3
and 1020, which minimizes problems of continuous activa-
tion at the ends of the travel.
The serial port is not used while the motor is operating, as
this might produce interference, resulting in inaccurate posi-
tions or even oscillation. I've not taken the trouble to find
out why: I'll leave that for you to dol

(080931-1)

References and Resources

[1] http://arduino.cc

[2] www.processing.org

[3] http://wiring.org.co

[4] www.elektor.fr/usb-ttl

[5] www.freeduino.org

[6] http://nearspacevermont.org/TheShoppe/freeduino/ADA-
BOOT.shtml

[7] SimpleProg — ISP for AVR, Elektor, July/August 2008

[8] www.lancos.com/prog.html

[9] www.bsdhome.com/avrdude

[10] www.ladyada.net/learn/avr/index.html

[11] www.geocities.
jp/arduino_diecimila/bootloader/index_en.html

Getting Started with Arduino, Banzi, Massimo, O'Reilly, 2008
Making Things Talk, Igoe, Tom, O'Reilly, 2007

The Duemilanove Arduino board is available from several sour-
ces including FunGizmos (US), LittleBird (Australia), SKPang (UK),
Tinker (ltaly), Make Magazine (Makershed.com).

2/2009 - elektor

void loop ()
{

int error;

int wval;

int spd;

float spd p, spd d;

// read wiper voltage.
val = analogRead(slider) ;

// Calculate error.
error = val - target;

// Calculate proportional component P.
// Two directions - so use absolute value.
spd_p = abs(error) *Kp;

// Calculate differential component D.
spd d = (last_error-error) *Kd;
last_error = error;

// Now mix P and D.
spd = int (spd p+spd d);

// Do not exceed limits.
spd = constrain(spd, 0,255) ;
// Compensate friction.

if (spd<50) spd += 50;

if (error<-1 && stop==0) |
{ :
// To maximum value (“left”). 1
digitalWrite (motor2, LOW) ; 3
analogWrite (motorl, spd) ; 1
) s
else if (error>1l && stop==0) |
(s
// To minimum value (“right”). !
digitalWrite (motorl, LOW) ; |
analogWrite (motor2, spd) ; '

}

else

// Shut down motor
digitalWrite (motorl, LOW) ;
digitalWrite (motor2, LOW) ;
stop = 1;

// Transmit cursor position.
Serial.println(val) ;
delay (100) ;

// 4 characters form a new target value.
if (Serial.available()>=4)

{
target = Serial.read()
- ‘0’; // Thousand.
target = Serial.read() - ‘0’
+ target*10; // Hundred.
target = Serial.read() -
‘0’ + target*10; // Ten.
target = Serial.read() -
‘0’ + target*10; // One.
constrain(target,1,1022) ;
// Start motor
stop = 0;

37

