AD ERNMN I

8-bit microcontroller implements
digital lowpass filter

Abel Raynus, Armatron International, Malden, MA

Filtering occurs frequently in the

analog world. Unfortunately, in’
the digital world, engineers apply it
mainly to the DSPs (digital-signal pro-
cessors) and not to the small 8-bit mi-
crocontrollers that designers common-
ly use. This situation occurs because
the math for the filter design is more
complicated than most engineers are
willing to deal with. Moreover, digital
filtering requires calculations on inte-
gers instead of on floating-point num-

bers. This scenario causes two prob-

TANITIADV DA 2NNQ

Ed

lems. First, the rounding-off error from
the limited number of bits can degrade
the filter response or even make it un-
stable. Second, you must handle the
fractional values with integer math.
Several ways exist to solve these is-
sues. For example, you can use opera-
tions with 16-, 32-, and 64-bit num-
bers, or you cgn scale for better accu-
racy. These and other methods usually
require more memory, and, as a result,
the program often does not fit into a
small microcontroller. A literature

search shows that published digital-fil-
ter firmware is written in C. Programs
in C need more memory than those
written in assembler. This situation of-
ten makes them unacceptable for small
microcontrollers with limited memory
resources.

Listing 1, available at the Web ver-
sion of this Design Idea at www.edn.
com/080124dil, shows a simple en-
gineering method to design single-
pole, lowpass-digital-filter firmware
for 8-bit microcontrollers. The low-
end Freescale (www.freescale.com)
MC68HC08(QQT?2 is the target of the
asbembler program, but you can apply
this Design [dea to any type of micro-
controller because it uses only standard
assembler instructions.

designideqs

—

Leaving aside the sophisticated de-
sign methods based on Z transformation
with its extensive math, this idea uses
another approach based on a recursive
equation. You calculate each output-sig-
nal sample as the sum of the input sig-
nal and the previous output signal with
corresponding coefficients. A recursive
equation defines a single-pole lowpass
filter as: Y[n]=X[n]Xa0+Y[n—1]Xbl,
where X[n] and Y[n] are input and out-
put values of sample [n], Y[n-1] is an
output value of the previous sample
[n—1], and a0 and bl are weight coef-
ficients that decrement 8 controls. The
coefficients have the value of 0<8<1,
a0=1-3, and b1=8. Physically, 8 is
the amount of decay between adjacent
output samples when the input signal
drops from a high level to a low level.
You can directly specify the value of &
ot find it from the desired time con-
stant of the filter, d, which is the num-
ber of samples it takes the output to rise
to 63.2% of the steady-state level for a
lowpass filter. A fixed relationship ex-
ists between d and 8: 8=e ', where e
is the base of natural logarithms. The
preceding equations yield Y[n]=Y[n—
1]+(1-3)X(X[n]—Y[n—11).

|
|

' NUMERICALLY

' PERFORMING THE
FILTERING FUNCTION

| PROVIDES THE BENEFIT

' OF CONSISTENCY
BECAUSE COMPONENT
TOLERANCES, TEMPERA-
TURE DRIFT, AND AGING
DO NOT AFFECT THE
FILTER'S ALGORITHM.

Instead of multiplying a decimal-point
number, 1—39, it is more convenient
for assembler programming to divide
by the reciprocal integer, F=1/(1—3):
Yinl=Y[n—1}+(X[n]-Y[n—1])/
E Thus, you can determine the digital
filter’s parameters using the following
steps:

1. Choose the parameter E For as-
sembler, it is convenient to perform di-
vision as right shifts. For right shifts, the
value of F should be 2S, where S is the
number of shifts. Let F equal 8, which
| you reach after three right shifts.

2. Calculate the decrement: 8=1—1/
F=1-1/8=0.875.

3. Calculate the time constant as
d=—1/In8=—1/In0.875=7.49 samples.

The equation Y[n]=Y[n—1]+(X[n]
—Y[n—1])/F determines the design of
the microcontroller’s algorithm for the
filter. The algorithm needs three reg-
isters: input for X[n], output for Y[n],
and an increment register to keep the
(X[n]—Y[n—1])/F term. The size of
these registers depends on the inputs.
In this application, the signals from the
built-in 8-bit ADC range from 00 to
$FF and must go through the lowpass
filter. So, the input and the output reg-
isters are 1 byte in size. To increase the
accuracy of division, add half the divi-
sor to the dividend. This action increas-
es the increment register to 2 bytes.

Numerically performing the filtering
function provides the benefit of con-
sistency because component toleranc-
es, temperature drift, and aging do not
affect the filter’s algorithm. The imple-
mentation of the digital filter in the
microcontroller gives the additional
benefit of flexibility to adjust the fil-
ter’s parameters, because this flexibility
depends only on the firmware.EDN

