DRAWING BOARD

BY ROBERT GROSSBLATT

“This month we start the
fesign of a general-purpose
controller circuit.

WHENEVER I HAVE TO START ON A
NEW PROJECT HERE, THE FIRST

PLACE I SEARCH FOR IDEAS IS IN THE MAIL. HISTORICALLY

SPEAKING, MY MAIL HAS CHANGED OVER THE YEARS.

Once upon a time, the majority
of the requests I received were for
coverage of very general subjects—
a tutorial on op-amps, for example,
or how to design with FETs. In the
last few years, though, the requests
have changed.

Most of the mail now concerns
specific applications rather than
general ones. This is okay with me
because I've always believed that
you learn more by working with
real-world circuits. The only prob-
lem with doing this is that the pro-
jects often get so complex that the
general theory behind them tends
to get lost. Without a thorough
understanding of the underlying
theory, all you're really doing is
building a kit. This becomes evi-
dent if you try to change to the
design because you suddenly realize
that while you might have built a
circuit, you don’t understand how
it works—or why it doesn’t work!

The best way for me to answer
all the application-specific requests
T've received is to design a circuit
that can do many things with mini-
mum changes to the design. The
best way to design such a
chameleon-like circuit is to base it
on a microprocessor. Once you
have a basic microprocessor circuit
working with a good amount of

controllable input/output (170),
you can alter its function just by
writing new software.

Designing a general-purpose
controller circuit isn’t all that diffi-
cult, but it is definitely more com-
plicated than using discreet logic.
The price you pay for a micro-
processor’s versatility is that you
must know how the microprocessor
works and how it can be pro-
grammed.

Different microprocessors
require different support hardware
and software. However, they differ
only in the details—the principles
are the same. If you can design
around Intel microprocessors, you
won’t have any trouble adjusting to
the Motorola family. I'll be using
an Intel microprocessor here
because they’'re inexpensive and
easy to find. Perhaps the most
important reason to use Intel
processors is that you’ll need to
write software, and every version of
DOS comes with utilities that make
the job of converting source code
to Intel-compatible binary files
easy to do. Finally, I've designed
many circuits around Intel proces-
sors, seen most of the problems,
and have worked out most of the
answers.

Over the next several cloumns,

o] Liss ~ vee 40
—2 4 s 137
—B3ls e /5328
. Py 1754 2L
—A 4 855 22
_6/7/0 A/9/56 6—5'
4 55124
—8las MR
—DNapy 27 P2
L 4pe 8088 4y p 3L
N 45 w4 122
2l 4pu Wz 2L
L2453 Zo/iER |2
%Aoz 07/@ %7
—4D/ DEN ——
il pye e 22
/L;sz 17/__7—_;_1 2—:
L2 7R 7E57 =
L sk oy E2
EZ iy potd T8

FIG. 1—THE 8088 MICROPROCES-
SOR s really a 16-bit chip squeezed
into an 8-bit package.

I'm going to design a general-pur-
pose, microprocessor-based con-
troller circuit, with software con-
figurable 1/0. Although I'll go
through each step in detail, it will
be impossible for you to follow
unless you have the following:

1. Data sheets on the ICs we’ll be
using

2. A basic understanding of micro-
processors

3. A general understanding of pro-
gramming

4. Access to an oscilloscope

5. A familiarity with hex code

6. Access to an EPROM program-
mer

MON SOIUONIOB|T ‘G661 1890100



Electronics Now, October 1995

—Lesmwe Vec B~
) N A
—3izv7 X2 |2
—A eoyy AsyACE
—Slesupy erritt
—Slevy 2 V7
— vz oscl2
—Blosxk oz SfL—
——9— GND RfSET/L

FIG. 2—THE 8284 CLOCK CON-
TROLLER will produce clock signals that
are exactly tailored to driving the 8088.

It’s sometimes hard to find books
on this subject and that’s why I wrote
one myself. It’s called “The 8088
Project Book,” Book #3171 from
TAB Books (800) 822-8158. You
won’t find data sheets (or an oscillo-
scope) in the book, but it will proba-
bly answer any questions you have
COnNCerning microprocessors.

The 8088 CPU

The 8088 microprocessor, whose
pinout is shown in Fig. 1, is a field-
tested CPU that you can buy for
about a buck. If you look at the pin
names, you'll notice that some of the
pins perform double duty. This is
because the 8088 is really a 16-bit
chip squeezed into an 8-bit package.
The standard 40-pin DIP just doesn’t
have enough pins for every line to be

brought out separately.

A microprocessor needs a clock
signal, memory, and software to tell it
what to do. The 8088’s pin-multi-
plexing scheme requires some addi-
tional, minimal hardware.

CPU satisfaction

The first of the 8088’s circuit
requirements is a clock signal, and
this is pretty easy to satisfy. The clock
must have sharp shoulders (rise and
fall times of less than 10 microsec-
onds) and a 33% duty cycle. The
maximum speed depends on the
CPU. A standard 8088 tops out at
4.77 MHz, the 8088-2 can run at 8
MHz, and the 8088-1 goes up to 10
MHz. Minimum speeds for all flavors
of the CPU is about 2 MHz because
the internal registers are made from
single storage capacitors that must be
refreshed in the same way as dynamic
RAM. This saves space on the sub-
strate, but it made it a bit more diffi-
cult to really slow things down to
debug a circuit. Since you can’t slow
the clock to a crawl, you must use
software to put in lots and lots of wait
states to get the same effect.

When Intel first started to design
the 80XX series of microprocessors,
one goal was to offer a set of chips
specifically designed to support the
CPUs. These included clock genera-
tors, bus controllers, coprocessors,
DMA controllers, and so on. Some of

s S5y
Bl e eeserHl—o
A oy roy/Ht—o
/€0>’2—6—O e
ze/ 44 54
8284 5/-[-’?0
—\
AsynvC ——©
lcsyme osclZ o
3l = 2 CcLOCK
A
7AE/V/ PC. /<8——o eonrs
AENZ cLxEP—o0
N enn x2}2
Bl x sz —J 10—e
22 $ ¢ o
s /20F /4 318 Mz
v/ b R/ 74
00 spa
AAA

FIG. 3—WE'RE USING THE 8284 in its simplest configuration as a clock source for the
60 8088. Most of the control and data pins on the 8284 aren’t needed for this project.

them became popular and others
didn’t. One of the most popular was
the 8284 clock controller shown in
Fig. 2. This chip, plus a handful of
components, will produce clock sig-
nals that are exactly tailored to dri-
ving the 8088.

Getting the 8284 to generate the
clock signals for the CPU is a piece of
cake. As you can see in the circuit of
Fig. 3, most of the control and data
pins on the 8284 aren’t needed for the
simple job that we want the chip to
do. They come into play when the
clock generator must drive more than
one CPU or generate more than one
clock frequency. My circuit will use
the 8284 in its simplest configura-
tdon—as a clock source for the 8088.

You have to get the-clock circuit
working before you can go any fur-
ther since it’s going to drive the rest
of the circuitry you’ll be assembling
over the next few months. It’s simple
to find out whether or not you have
the clock circuit working correctly.
There are three clock outputs avail-
able on the chip: +scclk+xsc at pin 8 is
the main output for the 8088. It's one
third the crystal output and has a duty
cycle of 33% that’s required by the
8088. 0sC at pin 12 is a TTL-level
buffered version of the crystal fre-
quency. PCLK at pin 2 is a TTL-level
frequency that’s equal to half the CLK
output and has a 50% duty cycle.

If you put an oscilloscope or fre-
quency counter on any of those out-
puts, you'll know immediately if the
clock is working correctly. Next time
I'll be adding the CPU, creating the
address and data buses, adding mem-
ory, and putting some basic I/O on
the board. A lot of information is
going to be thrown at you and you’ll
stand a lot better chance of catching it
if you have the basic data on paper in
front of you.

Would this be classified as
a minor malfunction... a small design
flaw... or just stupidity?




