
16 SERVO 09.2011

your fish scale if you have a big motor.
That is the math you would use to choose your motors.

This will get you close to what you need for success.
Gordon McComb (of Robot Builders Bonanza fame) shared
his secret for success: the heft method. He would look at
his robot frame, pick up a motor, and hold it to gauge its
heft to determine its suitability. I myself do not have
Gordon’s calibrated arm, so I tend to do a little math.

Q. I want to store way-points and sensor data
during a robot’s run-time. This really adds up and is
way more than most EEPROMs I’ve seen can do.

I’ve been trying to get an SD card to work using an SPI
interface, but it just isn’t working. I can’t initialize the card.
How does this work?

— Thomas Q.
Boise, ID

A. I have been fascinated with SD cards for a variety of
reasons, and this gives me a great reason to work
with them. I am currently having fun with Microchip

PIC24 devices and so used one of their demo boards with
an SD PICtail card for experimenting. The target hardware
isn’t all that important, so my code should work with
anyone’s microcontroller; just change how you deal with
the SPI hardware to get your required clock rates. An SD
card can take SPI clocks of 20 to 50 MHz, so there is no
issue about going too fast. As it happens, my 32 MHz
PIC24FJ64 part can only go 8 MHz, but that gave me pretty
good transfer rates (compared to serial ports, anyway) and I
was happy. The secret to success is to start out at a clock
rate of 400 kHz until the card is up and listening, then
move to the high speed clock. To fully understand the
interface — which is pretty simple — and the protocol —
which is slightly less simple, check out this site and get the
SD Association Simplified Specs: www.sdcard.org/dev.../
pls/simplified_specs.

This site took me a long way towards getting my SD cards
to work: http://elm-chan.org/docs/mmc/mmc_e.html.

There is a raft of information out on the net for
handling the reading and writing of data blocks to the SD
card, so that part was easy. The big thing to know is that
the SD card wants the block address in bytes, on 512 byte
boundaries; the SDHC card has a much higher capacity and
wants its block addressing done where each block is 512
bytes. My initialization code shown here takes this into
account by storing the attributes of the SD or SDHC card
being used so that the read/write routines know which
type of block addressing to use. Many thanks to the
pioneers of SD card usage that helped me with this work!

I have given my various routines here, but did not
bother with the actual block read and writes. I’ll leave that
as an exercise for the reader. If anyone is interested, you
can send me an email (see end of article) and I’ll do a more
detailed write-up.

There are a lot of constants in Listing 1. They refer to
various values for commands, which are pretty obvious
when you look at the specifications for SD commands. I

Listing 1: SD Card Initialization.
uint8_t SD_Write(uint8_t b)
/**
* Read and write a single 8-bit word to
* the SD/MMC card. Using standard, non-buffered
* mode in 8 bit words.
* **Always check SPI1RBF bit before reading
* the SPI2BUF register
* **SPI1BUF is read and/or written to
* receive/send data
*
* PRECONDITION: SPI bus configured, SD card
* selected and ready.
* INPUTS: b = byte to transmit (or dummy
* byte if only a read done)
* OUTPUTS: none
* RETURNS:
*/
{
SPI1BUF = b;

// write to buffer for TX
while(!SPI1STATbits.SPIRBF);

// wait for transfer to complete
SPI2STATbits.SPIROV = 0;

// clear any overflow.

return SPI1BUF;
// read the received value

}

// Not worth code defining these since
// they are all the same.
#define SD_Read() SD_Write(0xFF)
#define SD_Clock() SD_Write(0xFF)
#define SD_Disable() nMEM_CS = 1; SD_Clock()
#define SD_Enable() nMEM_CS = 0

uint8_t SD_SendCmd(uint8_t cmd, LBA addr)
/**
* Send an SPI mode command to the SD card.
*
* PRECONDITION: SD card powered up, CRC7
* table initialized.
* INPUTS: cmd = SPI mode command to send
* addr= 32bit address
* OUTPUTS: none
* RETURNS: status read back from SD card (0xFF
* is fault)
* *** NOTE nMEM_CS is still low when this
* function exits.
*
* expected return responses:
* FF - timeout
* 00 - command accepted
* 01 - command received, card in idle state
* after RESET
*
* R1 response codes:
* bit 0 = Idle state
* bit 1 = Erase Reset
* bit 2 = Illegal command
* bit 3 = Communication CRC error
* bit 4 = Erase sequence error
* bit 5 = Address error
* bit 6 = Parameter error
* bit 7 = Always 0
*/
{

uint16_t n;
uint8_t res;
uint8_t byte;
uint8_t CRC7 = 0x95;

// Generic CRC7 byte

SD_Enable();
// enable SD card

MrRoboto - Sep 11.qxd 7/28/2011 5:49 PM Page 16

http://www.sdcard.org/dev.../pls/simplified_specs
http://elm-chan.org/docs/mmc/mmc_e.html
http://www.sdcard.org/dev.../pls/simplified_specs

SERVO 09.2011 17

byte = cmd | 0x40;
SD_Write(byte);

// send command packet (6 bytes)
byte = addr>>24;
SD_Write(byte);

// msb of the address
byte = addr>>16;
SD_Write(byte);
byte = addr>>8;
SD_Write(byte);
SD_Write(addr);

// lsb

SD_Write(CRC7);
// Not used unless CRC mode on

// now wait for a response (allow for up
// to 8 bytes delay)
n = 9;
do {

res = SD_Read();
// check if ready

if (res != 0xFF)
break;

} while (—n > 0);

return (res);
// return the result

}

void SD_InitSPI(void)
/**
* Configure the SD card SPI bus hardware
* settings and software. *
*** Using the SD SPI mode spec settings
* instead of the MCHP example.
*
* PRECONDITION: none
* INPUTS: none - The hardware is explicitly
* set up
* OUTPUTS: none
* RETURNS: none.
*/
{

nMEM_CS = 1;
// De-select the SD card

if (sdcard.cardInit == 1) {
return;

}
// init spi module for a slow (init) clock
// speed, 8 bit byte mode
// Master, CKE=0; CKP=1, sample end,
// prescale 1:64 (250KHz)

SPI1STATbits.SPIEN = 0;
// disable SPI for configuration

SPI1CON1 = 0x027c;
SPI1CON2 = 0x0000;

// No buffer, no frame mode
SPI1STAT = 0x8000;

// enable
}

uint8_t SD_InitMedia(void)
/**
* Discover the type and version of the
* installed SD card. This routine will find
* any SD or SDHC card and properly set it up.
*
* PRECONDITION: none
* INPUTS: none
* OUTPUTS: none
* RETURNS: 0 if successful, some other
* error if not.
*/
{

uint16_t n;
uint8_t res = 0;
// // If we get that far...

uint32_t timer;
uint8_t cmd;
uint8_t db[16];

// when we get data back to look at

if (sdcard.cardInit == 1) {
return(0);

// done, don’t do it again.
}

// 1. start with the card not selected
SD_Disable();
// 2. send 80 clock cycles so card can
// init registers
for (n=0; n<10; n++)

SD_Clock();
// 3. now select the card
SD_Enable();

// 4. send a reset command and look for
// “IDLE”
res = SD_SendCmd(RESET, 0); SD_Disable();
if (res != 1) {

SD_Disable();
return(LOG_FAIL);

// card did not respond with “idle”
}

// 5. Check card voltage (type) for SD 1.0
// or SD 2.0
res = SD_SendCmd(SEND_IF_COND, 0x000001AA);
// didn’t respond or responded with an
// “illegal cmd”
if ((res == 0xFF) || (res == 0x05)) {

sdcard.cardVer = 1;
// means it’s an SD 1.0 or MMC card

// 6. send INIT until receive a 0 or
// 300ms passes
timer = t_1ms + 300;
while(timer > t_1ms) {

res = SD_SendCmd(INIT,0);
SD_Disable();
// SendSDCmd() enables SD card
if (!res) {

break;
// The card is ready
}

}
if (res != 0) {

return(LOG_FAIL);
// failed to reset.

}
SD_Disable();

// remember to disable the card
}

else { // need to pick up 4 bytes for v2
card voltage description

sdcard.cardVer = 2;
// SD version 2.0 card
for (n=0; n<4; n++) {

db[n] = SD_Read();
}
// but we’ll ignore these bytes
SD_Disable();

// 6. send INIT or SEND_APP_OP
// repeatedly until receive a 0
cmd = SEND_APP_OP;
timer = t_1ms + 300;
// wait up to .3 seconds for life
// will still be in idle mode (0x01)
// after this
res = SD_SendCmd(APP_CMD, 0);
SD_Disable();
while (timer > t_1ms) {
res = SD_SendCmd(cmd, 0x40000000);
SD_Disable();
// ACMD41 not recognized, use CMD1 Cont.

MrRoboto - Sep 11.qxd 7/28/2011 5:49 PM Page 17

don’t like “magic numbers” in my
code, so I use defined constants. This
procedure will identify both SD and
SDHC cards. I have not tested it with
SDXC cards, however, since I don’t
have any of them.

Whew! Another Mr. Roboto has
come to an end. There were many

obstacles that got in my way to get
here, but “where there is a will ...” If
you have any questions for Mr. Roboto,
please send them to roboto@servo
magazine.com. I love to hear from
you and will do my best to answer
your questions. Until then, keep on
working on those robots! SV

18 SERVO 09.2011

if ((res &0x0F) ==
0x05) {

cmd = INIT;
}
else {

cmd = SEND_APP_OP;
}

if (!res) {
break;

}
}
if (res != 0) {

return(LOG_FAIL);
// failed to reset.

}

// 7. Check for
// capacity of the card
res = SD_SendCmd
(READ_OCR,0);
if (res != 0) {

return(LOG_FAIL);
// error, bad thing.

}
for (n=0; n<4; n++) {

db[n] = SD_Read();
}
SD_Disable();
// check CCS bit (bit 30),
// PoweredUp (bit 31) set
// if ready.
if (((db[0] & 0x40)
== 0x40) && (db[0] !=
0xFF)) {

sdcard.cardCap = 1;
// card is high capacity
}
else{

sdcard.cardCap = 0;
// card is low capacity
}

}

sdcard.cardInit = 1;
// successfully initialized

// Get the CSD register to
// find the size of the card
res = SD_SendCmd(SEND_CSD,0);
if (res != 0) {

return(LOG_FAIL);
}
timer = t_1ms + 300;

// wait for a response
while(timer > t_1ms) {

res = SD_Read();
if (res == DATA_START) {

break;
}

}
if (res == DATA_START) {

// no timeout, read data
for (n=0; n< 16; n++) {

db[n] = SD_Read();
// read the received value
}
// ignore CRC (for now)

SD_Read();
SD_Read();
SD_Disable();

}
else {

return(LOG_FAIL);
}
if (sdcard.cardCap == 1) {

// Uses SDHC capacity
// calculation
sdcard.cardSize =
db[9] + 1;
sdcard.cardSize +=
(uint32_t)(db[8] << 8);
sdcard.cardSize +=
(uint32_t)(db[7] &
0x0F)<<12;
sdcard.cardSize *=
524288;
// multiply by 512KB
// (C_SIZE + 1)
// * 512 * 1024
sdcard.cardNumBlocks =
sdcard.cardSize/sdcard
.cardBlock;

}
else {

// Uses SD capacity
// calculation

sdcard.cardSize =
(uint16_t)((db[6] &
0x03)<<10) | (uint16_t)
(db[7]<<2) | (uint16_t)
((db[8] & 0xC0)>>6)) + 1;
sdcard.cardSize =
sdcard.cardSize <<((
(uint16_t)((db[9] &
0x03)<<1) | (uint16_t)
((db[10] & 0x80)>>7)) +2);
sdcard.cardSize =
sdcard.cardSize <<(
(uint16_t)(db[5] & 0x0F));
// (C_SIZE +1) <<(C_SIZE_
// MULT + 2) <<(READ_BL_LEN)
sdcard.cardNumBlocks =
sdcard.cardSize/
sdcard.cardBlock;

// Set block size to 512 bytes
res = SD_SendCmd(
SET_WBLEN,0x00000200);
SD_Disable();

}

// Now kick to full speed
// 8MHz mode. disable SPI for
// configuration
SPI1STATbits.SPIEN = 0;
// Master, CKE=0; CKP=1,
// sample end, prescale 1:2
// (8MHz) all works
SPI1CON1 = 0x027b;
// re-enable SPI after
// configuration
SPI1STATbits.SPIEN = 1;
return(res);

}

MrRoboto - Sep 11.qxd 7/29/2011 10:07 AM Page 18

mailto:roboto@servomagazine.com
http://www.firgelli.com
http://www.firgelli.com
mailto:roboto@servomagazine.com

