Analog switch converts 555 timer into pulse-width modulator

Jordan Dimitrov, Tradeport Electronics, Vaughan, ON, Canada

\triangleThis Design Idea describes a new approach to producing a variable-duty-cycle waveform from a 555-based free-running oscillator. The circuit's wide modulation range, highly linear control over a wide range of duty-cycle values, and excellent linearity make it ideal for PWM (pulse-width-modulation)-based control applications. Figure 1 shows the basic circuit, which works as follows: When IC_{1} 's output goes high, switch S_{1} closes, and IC_{1} 's internal discharge, switch S_{2}, opens. Capacitor C_{1} charges through R_{1} and R_{2}. When IC_{1} 's output goes low, S_{1} opens, and S_{2} closes, discharging C_{1} through R_{2} and R_{3}.
The generic configuration works well for producing a fixed-value duty cycle.
(continued on pg 86)

Figure 1 An external analog switch and a 555 timer provide a free-running oscillator with a fixed duty cycle.

Figure 2 Add a potentiometer, R_{4}, to produce an output pulse that has a manually variable duty cycle.

Figure 3 To obtain fixed-duty-cycle values for linearity evaluation, you can replace the potentiometer with a rotary switch and a series-connected string of precision resistors.

designideas

To obtain a continuously variable duty cycle, Figure 2 shows how to connect potentiometer R_{4} to the common junction of R_{1}, R_{2}, and R_{3}. The output waveform's duty cycle, $\mathrm{D}_{\mathrm{T}} \mathrm{C}$, follows the equation: $\mathrm{D}_{\mathrm{T}} \mathrm{C}=\left(\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{\mathrm{VAR}}\right) /$ $\left(R_{1}+2 R_{2}+R_{3}+R_{\mathrm{POT}}\right)$, where $\mathrm{R}_{\mathrm{POT}}$ is the potentiometer's end-to-end resistance, and $R_{V A R}$ is the fraction of $R_{P O T}$ between the rotor and R_{1}. As the equation shows, $\mathrm{D}_{\mathrm{T}} \mathrm{C}$ depends linearly on $\mathrm{R}_{\mathrm{VAR}}$. Switch S_{1} comprises one section of a 4066 CMOS quad bilateral SPST switch, IC_{2}.

You can use the circuit in Figure 3
to evaluate duty-cycle linearity. A rotary switch and a tapped series string of $16-\mathrm{k} \Omega$ resistors provide a $10-\mathrm{kHz}$ signal with nine discrete, equally spaced duty-cycle values ranging from 2 to 98%. For accurate results, use a $51 / 2$ digit multimeter to match the values of resistors R_{4} through R_{11} and a Tektronix 3012 oscilloscope or equivalent to gather $\mathrm{D}_{\mathrm{T}} \mathrm{C}$ data.

Microsoft's (www.microsoft.com) Excel-spreadsheet software includes a linearity analysis that returns the following trend line for the dutycycle measurements: $\mathrm{D}_{\mathrm{T}} \mathrm{C}=0.7565 \times$
$\mathrm{R}_{\mathrm{VAR}}+2.1548 ; \mathrm{R}^{2}=1$. The value of 1 for R^{2} as Excel calculates shows that the transfer function is perfectly linear. Switch S_{1} 's on-resistance and particularly its leakage current slightly affect the $\mathrm{D}_{\mathrm{T}} \mathrm{C}$-versus- $\mathrm{R}_{\text {VAR }}$ equation's slope and intercept, but the equation remains strictly linear. Using only one of IC_{2} 's four switches eliminates leakage effects and crosstalk that would occur if other circuits used the remaining switches. In addition, using moderately low values for the resistor network further reduces leakage-current effects on circuit performance.EDN

