EDN DESIGN Ideas

Edited by Bill Travis \& Anne Watson Swager

Circuit translates A law to μ law

Rolando Herrero, Instituto Tecnológico de Buenos Aires, Argentina

Two common methods exist to compand voice for transmission through a PCM channel. In Europe, A law involves converting a 12 -bit input signal to an 8 -bit encoded output. In the US, μ law involves encoding 13 bits to 8 bits. You can use a translator to convert from A law to μ law (Figure 1). The converter is asynchronous and requires only an 8-bit A law input to provide an 8-bit μ law output.

In A law, the input level divides into eight regions in which a uniform 4-bit conversion takes place. Regardless of the region, the output encodes 16 possible values. Each region corresponds to a segment in Figure 2, and the lower values have a better resolution (this figure shows only segments 0 through 5). To encode the input takes 8 bits; 4 bits indicate the uniform converted value in the segment, and the other 4 bits divide to represent the segment value itself (S0 to S7, coded with 3 bits) and whether the signal is positive or negative (1 bit).

Alternatively, with μ law, also included in Figure 2, all but the first segments have a wider dynamic range and thus more spaced quantization levels (for 4 bits) compared with A law. Instead of 12 bits, 13 bits imply a wider dynamic range but a worse resolution for low input levels.

Figure 2 also illustrates the loss of resolution when converting the output A of A law to output A' of μ law. Depending on the law, either 8 bits (A law) or 4 bits (μ law and higher quantization levels) represent the value, therefore, the transitions occur faster around output A than around output A^{\prime}. For the A to A^{\prime} translation, the slope of A law is twice the slope of μ law.

Although information loss occurs during the conversion of value A, the same is not true for B. For B, the A law and μ law slope are the same, and the quantization level is the same. Thus, the difference between B and B^{\prime} involves only a translation and a change of segment (B in S4, B^{\prime} in S 3). A simple comparison shows that the A value suffers a translation and a loss of information but remains in the same segment after conversion.

The design of the encoder must take into account the A law signal's segment and offset value, as does the following algorithm for which the A law input signal is PSD, and the μ law output signal is QRE , for which $\mathrm{P}, \mathrm{Q}=$ polarity (1 bit), $\mathrm{S}, \mathrm{R}=$ segment (3 bits) and $\mathrm{D}, \mathrm{E}=$ value (4 bits):
If $S=0$, then $Q=P, R=S$, and $E=D$.
If $\mathrm{S}=1$, then $\mathrm{Q}=\mathrm{P}, \mathrm{R}=\mathrm{S}$, and $\mathrm{E}=\mathrm{D} / 2$.

This A law-to- μ law translator inputs values of S and D and outputs E and R according to a specific algorithm.

If $\mathrm{S}=2$ and $\mathrm{D}<8$, then $\mathrm{Q}=\mathrm{P}, \mathrm{R}=\mathrm{S}-1$, and $\mathrm{E}=\mathrm{D}+8$.
If $\mathrm{S}=2$ and $\mathrm{D}>7$, then $\mathrm{Q}=\mathrm{P}, \mathrm{R}=\mathrm{S}$, and $\mathrm{E}=(\mathrm{D}-8) / 2$.
If $\mathrm{S}=3$ and $\mathrm{D}<12$, then $\mathrm{Q}=\mathrm{P}, \mathrm{R}=\mathrm{S}-1$, and $\mathrm{E}=\mathrm{D}+4$.
If $\mathrm{S}=3$ and $\mathrm{D}>11$, then $\mathrm{Q}=\mathrm{P}, \mathrm{R}=\mathrm{S}$, and $\mathrm{E}=(\mathrm{D}-12) / 2$.
If $S=4$ and $D<14$, then $Q=P, R=S-1$, and $\mathrm{E}=\mathrm{D}+2$.
If $\mathrm{S}=4$ and $\mathrm{D}>13$, then $\mathrm{Q}=\mathrm{P}, \mathrm{R}=\mathrm{S}$, and $\mathrm{E}=(\mathrm{D}-14) / 2$.
If $\mathrm{S}=5$ and $\mathrm{D}<15$, then $\mathrm{Q}=\mathrm{P}, \mathrm{R}=\mathrm{S}-1$, and $\mathrm{E}=\mathrm{D}+1$.
If $\mathrm{S}=5$ and $\mathrm{D}>14$, then $\mathrm{Q}=\mathrm{P}, \mathrm{R}=\mathrm{S}$, and $\mathrm{E}=(\mathrm{D}-15) / 2$.
If $S=6$, then $Q=P, R=S-1$, and $E=D$.
If $S=7$, then $Q=P, R=S-1$, and $E=D$.
According to this algorithm, the conversion requires both addition and subtraction, depending on S and D. You can express each subtraction as an addition to implement both in the same circuit. Thus, you can express the algorithm as follows, where $\mathrm{CO}=$ Carry out:
If $\mathrm{S}=2$ and $\mathrm{D}<8$, then $\mathrm{Q}=\mathrm{P}, \mathrm{R}=\mathrm{S}-1, \mathrm{Z}=8$, and $\mathrm{E}=\mathrm{D}+\mathrm{Z}(\mathrm{CO}=0)$.
If $\mathrm{S}=2$ and $\mathrm{D}>7$, then $\mathrm{Q}=\mathrm{P}, \mathrm{R}=\mathrm{S}, \mathrm{Z}=8$, and $\mathrm{E}=(\mathrm{D}-8) / 2=$
$(\mathrm{D}-16+\mathrm{Z}) / 2=(\mathrm{D}+\mathrm{Z}) / 2(\mathrm{CO}=1)$.
If $\mathrm{S}=3$ and $\mathrm{D}<12$, then $\mathrm{Q}=\mathrm{P}, \mathrm{R}=\mathrm{S}-1, \mathrm{Z}=4$, and $\mathrm{E}=\mathrm{D}+\mathrm{Z}(\mathrm{CO}=0)$.
If $\mathrm{S}=3$ and $\mathrm{D}>11$, then $\mathrm{Q}=\mathrm{P}, \mathrm{R}=\mathrm{S}, \mathrm{Z}=4$, and $\mathrm{E}=(\mathrm{D}-12=$
$\mathrm{D}-16+\mathrm{Z})=(\mathrm{D}+\mathrm{Z}) / 2(\mathrm{CO}=1)$.
If $\mathrm{S}=4$ and $\mathrm{D}<14$, then $\mathrm{Q}=\mathrm{P}, \mathrm{R}=\mathrm{S}-1, \mathrm{Z}=2$, and $\mathrm{E}=\mathrm{D}+\mathrm{Z}(\mathrm{CO}=0)$. If $\mathrm{S}=4$ and $\mathrm{D}>13$, then $\mathrm{Q}=\mathrm{P}, \mathrm{R}=\mathrm{S}, \mathrm{Z}=2$, and $\mathrm{E}=(\mathrm{D}-14) / 2=$ $(\mathrm{D}-16+\mathrm{Z}) / 2=(\mathrm{D}+\mathrm{Z}) / 2(\mathrm{CO}=1)$.
If $\mathrm{S}=5$ and $\mathrm{D}<15$, then $\mathrm{Q}=\mathrm{P}, \mathrm{R}=\mathrm{S}-1, \mathrm{Z}=1$, and $\mathrm{E}=\mathrm{D}+\mathrm{Z}(\mathrm{CO}=0)$. If $\mathrm{S}=5$ and $\mathrm{D}>14$, then $\mathrm{Q}=\mathrm{P}, \mathrm{R}=\mathrm{S}, \mathrm{Z}=1$, and $\mathrm{E}=(\mathrm{D}-15) / 2=$ $(\mathrm{D}-16+\mathrm{Z}) / 2=(\mathrm{D}+\mathrm{Z}) / 2(\mathrm{CO}=1)$.
The value of Z depends on $S: Z=2^{5-5}$. Once you define Z, the algorithm performs the same $\mathrm{D}+\mathrm{Z}$ operation for each S . The carry-out (CO) signal determines whether R is equal to S or S-1. Therefore, this implementation simultaneously solves

Converting output A of A law to A^{\prime} of μ law incurs a loss of information. However, no information loss occurs when converting from B to B^{\prime}, because the slopes of the two curves are the same at that point.
two problems. Furthermore, the same technique applies for $\mathrm{S}=6$ and $\mathrm{S}=7$, when $\mathrm{Z}=0$.

In Figure 1, a 3×8 decoder, IC_{1}, converts S to Z , which IC_{2} adds to D . If the CO is a $1, \mathrm{E}$ is $(\mathrm{D}+\mathrm{Z}) / 2$; otherwise, R is $\mathrm{S}-1$. To choose between both options, the circuit uses the CO signal to control data selectors IC_{4} and IC_{5}. These devices select between two possible outputs: S or $\mathrm{S}-1$ and $\mathrm{D}+\mathrm{Z}$ or $(\mathrm{D}+\mathrm{Z}) / 2$, respectively. A second adder, IC_{3}, implements $\mathrm{S}-1$ by summing the S inputs with 15 . The circuit derives $(\mathrm{D}+\mathrm{Z}) / 2$ by shifting $\mathrm{D}+\mathrm{Z}$ into the inputs of data selector IC_{5}. Additional logic ensures that no conversion occurs when $\mathrm{S}=0$ and that $\mathrm{E}=\mathrm{D} / 2$ when $\mathrm{S}=1$.

The 8 -bit input is $\mathrm{P} 0 / \mathrm{S} 2 / \mathrm{S} 1 / \mathrm{S} 0 / \mathrm{D} 3 / \mathrm{D} 2 / \mathrm{D} 1 / \mathrm{D} 0$, and the 8 bit output is P0/R2/R1/R0/E3/E2/E1/E0. The schematic doesn't show P0 because this parameter's value doesn't change. The circuit was tested with a Motorola (www.mot.com) MC145554 μ law PCM codec-filter and an 8TR641 (AT\&T, www.att.com) E1 multiplexer. (DI \#2192)

To Vote For This Design, Circle No. 412

