Set 19: Monostable circuits

Monostable circuits, often referred to as multivibrators. can take various forms. The term multivibrator seems to have been used for Abraham and Blochs astable two-triode circuit of 1918, and the related bistable Eccles-Jordan circuit of 1919. Flip-flop or monostable circuits were developed a few years later, for example the 1926 transitron of van der Pol. Many of the early circuits used two timing capacitors, being derived from the a.c.-coupled multivibrator, but all of the monostables described in this set of cards use one timing capacitor. The most well-known arrangement (card 1) can be thought of as derived from the crosscoupled bistable circuit, with one resistive coupling replaced by the timing capacitor. Recovery time is often too long with this straightforward circuit. Cards 1 & 2 show a complementary arrangement that has short recovery time $(RC|\beta)$, but a possible disadvantage is that both transistors conduct in the quiescent state. Other methods are shown in the article, e.g. use of a diverting diode to prevent saturation (Fig. 3), addition of an emitter follower as shown in Fig. 4, and a circuit in which the on and off transistors are transposed, Fig. 6 (see also card 10). Emitter-coupled circuits, card 6, have the advantage of isolating the output point from the remainder of the circuit. As with the astable circuits of set 8 this collection includes t.t.l. circuits (card 4), op-amp circuits' (card 3) and circuits using c.m.o.s. devices (cards 5 & 8). Long delay circuits use the D-type flip-flop or unijunction transistors (card 8) and improved duty cycle is obtained with the circuits of card 10. A voltage-variable delay is

provided by the circuits of card 7 of around 7 to 90μ s

Basic discrete-component circuits 1 Complementary circuits 2 Op-amp/comparator circuits 3 Monostable using t.t.l. gates 4 Compensated c.m.o.s. circuits 5 Emitter-coupled circuits 6 Voltage-controlled monostables 7 Long-delay circuits using c.m.o.s. and unijunction devices 8 Dual monstable applications using 555 timer 9 High duty-cycle monostable 10

and 40 to 200ms.

The monostable . . . doth give us pause

Not quite the words of Hamlet, but delay is one outstanding property of the monostable circuit. De Bono, in The Mechanism of Mind, could be describing another function of the circuit when he writes, "a short-term memory is just a way of extending the influence of an event beyond the real time of its occurrence along the dimension of time", e.g. a monostable will accept a transition at its input and respond with an output pulse, but for a finite time. A more formal description of the monostable (sometimes called a one-shot) is a circuit having one stable state in which it remains until triggered by an external signal into a quasi-stable state, where it remains for a time determined by circuit parameters and subsequently returns to its stable state. This basic action allows the monostable to be used for a variety of purposes such as lengthening, delaying and regenerating pulses, sequential timing and delay applications and frequency division.

The nature of the monostable circuits can be widely different because they can be designed using n-p-n and p-n-p bipolar transistors (in cross-coupled emittercoupled and complementary modes), fieldeffect transistors, operational amplifiers, discrete and integrated-circuit logic gates, as well as purpose-designed monostable integrated circuits.

A very common type of monostable uses a cross-coupled configuration which can be thought of as being a modification of a symmetrical bistable where one resistive coupling is replaced by a capacitive coupling. Two possibilities are available; the timing capacitor can either be connected between the collector of a normally-off transistor to the base of a normally-on transistor, or between the collector of a normally-on transistor and the base of a normally-off transistor. Fig. 1 shows a circuit of the first type and Fig. 2 the associated current and voltage waveforms.

Transistor Tr_2 is in a stable on state, until triggered, due to the base drive supplied through R_2 . Transistor Tr_1 is held in a stable off state as R_4 is connected to Tr_2 collector which is at the low saturation value of v_{ce2} and R_3 is returned to the negative V_{BB} rail. When a positive-going trigger pulse is applied to Tr_1 base via C_1 this transistor turns on causing its collector voltage to fall to almost zero.

Because the charge on C_2 cannot change instantaneously, this negative-going transition is passed to Tr_2 base which switches off. The transistors remain in these states while the charge on C_2 changes via R_2 causing v_{be2} to rise exponentially towards $+ V_{CC}$. When v_{be2} passes through zero and rises positively to a value depending on the type of transistor used, which causes base current to flow in Tr_2 , this transistor begins

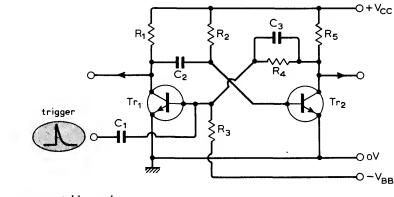
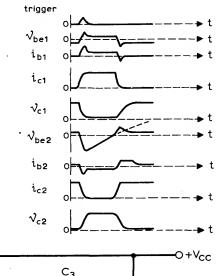
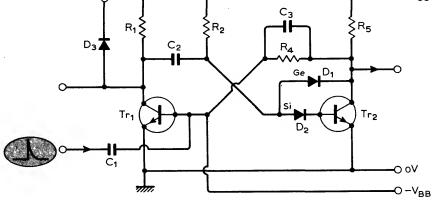




Fig. 1. A common monostable can be thought of as a bistable circuit with one resistive coupling replaced by a capacitative coupling. Two can be connected as shown.

Fig. 2. Waveforms associated with circuit of Fig. 1.

Fig. 3. Switching speed of Fig. 1 circuit is improved by preventing saturation with diodes D_1 and D_2 . Clamping diode D_3 reduces recovery time by connection to a supply less than V_{cc} .

to turn on. The resulting fall in v_{c_2} is coupled to Tr_i base via C_3 , Tr_i beginning to turn off; the regenerative feedback via C_2 and C_3 causes the circuit to return to its stable state of Tr_i off and Tr_2 on, the capacitor C_2 recharging through R_i .

The switching speed of this kind of circuit can be improved by using higher speed switching transistors in a non-saturating circuit. To prevent saturation, germanium diode D_1 and silicon diode D_2 can be added as shown in Fig. 3. When Tr_2 begins to turn on, to return the circuit to its stable state, D_1 will be reverse-biased until v_{c2} falls below $(v_{be2} + v_{D2})$ causing the excessive base drive current, which would otherwise saturate Tr_2 , to be diverted through D_1 . Two series-connected germanium diodes can be used in place of the silicon diode D_2 The waveform at Tr_1 collector can have a slow recovery time, especially when driving capacitive loads, and this can be reduced by the addition of the clamping diode D_3 returned to a supply $V_A < V_{CC}$. The output voltage v_{CI} attempts to rise towards a higher value with D_3 present but becomes clamped at $(V_A + V_{D3})$ when D_3 conducts.

Another method of reducing the recovery time is to include an emitter follower between R_1 and C_2 of Fig. 1, as shown in Fig. 4. As C_2 is charged to almost the supply rail voltage, the emitter of Tr_3 is normally close to $+V_{CC}$. The input trigger pulse switches the circuit to its quasi-stable state and as the charge on C_2 changes, the emitter voltage of Tr_3 rises above its base yoltage (v_{CI} on) cutting the transistor off. When Tr_2 again begins to conduct, the circuit returns to its stable state with C_2 being rapidly recharged by the emitter current of Tr_3 .

The output from Tr_i collector can be made to more closely approach a rectangular pulse by the inclusion of an isolation diode D_4 as shown in Fig. 5. When Tr_1 is on the collector current flows through R_1 and R_7 in parallel and a faster recovery time is achieved by making $R_7 < R_1$ so that when Tr_1 switches off D_4 is reverse biased and C_2 recharges more rapidly, through R_7 , than in the circuit shown in Fig. 1. Other methods of triggering this type of monostable include negative pulses to either Tr_{i} collector or Tr_2 base or positive pulses to the base of another transistor having its collector and emitter respectively connected to Tr_1 collector and emitter.

Another form of the cross-coupled monostable is shown in Fig. 6, the major difference compared with the foregoing circuits being that Tr_1 is on and Tr_2 is off in the stable state. This is achieved by correct choice of the potential-dividing chain and by D_2 being forward-biased via R_4 , holding the base-emitter junction of Tr_2 reverse-biased. A negative-going input trigger pulse causes Tr_i to switch off and hence Tr_2 to switch on and to remain in that state as C_2 charges, part of the charging current being base drive to Tr_2 . Diode D_2 is reverse-biased in this quasi-stable state which ends when the base drive to Tr_2 has fallen to a level which will not maintain conduction. Transistor Tr₂ then switches off causing Tr_i to return to the stable on state.

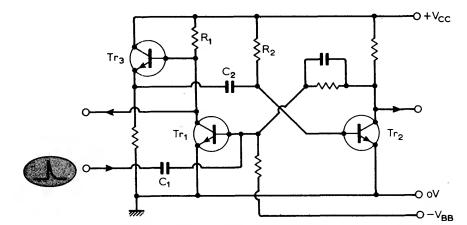


Fig. 4. Recovery time can also be reduced with an emitter follower between R_1 and C_2 of Fig. 1.

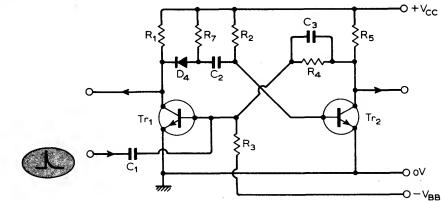


Fig. 5. Output from Tr_1 is made more rectangular by isolation diode D_4 and by making $R_7 < R_1$.

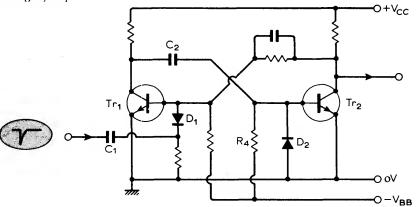


Fig. 6. In this variant of the cross-coupled monostable, Tr_1 is normally on and Tr_2 normally off. Note trigger is of opposite polarity. Circuit has much faster recovery time.

No output is taken from Tr_1 collector as a load at that point significantly changes the off time of Tr_2 . This circuit has a much faster recovery time than the previous ones discussed.

A cross-coupled monostable which besides producing a time-constant-dependent output pulse may provide one due to the input pulse duration is shown in Fig. 7. In the stable state Tr_1 is on and Tr_2 is off, so when a short-duration trigger pulse is applied via D_1 the circuit remains in its quasi-stable state for a time determined largely by C_1R_3 . However, when a long input pulse is applied, Tr_1 will remain off until the input is removed even if C_1 completes its discharge during that interval.

Fig. 8 shows an emitter-coupled monostable where Tr_2 is on and Tr_1 is off in the stable state. Compared with the cross-

coupled circuits, this type has the advantages of only using a single supply and providing an output which is taken from a point having no internal coupling. When a negative-going trigger pulse is applied to Tr_1 collector via C_1 it is coupled to the base of Tr_2 , which switches off. The emitter voltage falls allowing Tr_i to switch on for a time determined by that required for C_2 to discharge sufficiently to allow Tr_2 to begin to conduct. The emitter voltage then rises, causing Tr_1 to begin to switch off, and the resulting rise in Tr_1 collector voltage is coupled to Tr_2 base which switches on, and Tr_{j} switches off to regain the stable state. Due to the presence of R_4 , the output voltage swing does not approach V_{cc} and the recovery time is not very fast, as R_3 should be greater than R_6 to ensure the correct switching action.

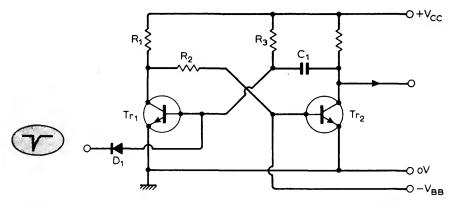
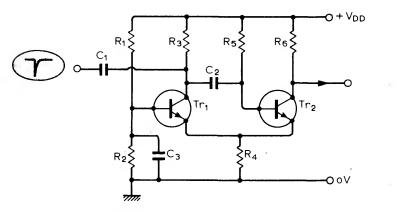
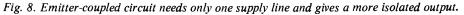
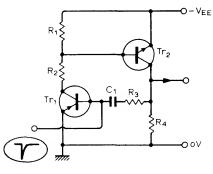
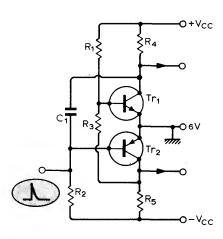
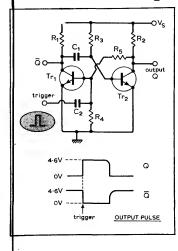





Fig. 7. This circuit produces an output pulse dependent on input pulse duration.



Complementary transistors enable both transistors to be normally off (Fig. 9, above) or normally on (Fig. 10, right). Opposite-polarity outputs are available from Fig. 10.

Recovery time can be improved by the addition of an emitter follower as was done in Fig. 4.


A monostable using a complementary pair of transistors, having both transistors off in the stable state, is shown in Fig. 9. A negative-going trigger pulse applied to Tr, base causes this p-n-p transistor to switch on, its collector current in R_1 and R_2 causing the base of Tr_2 to go positive causing this n-p-n transistor to switch on also. The resulting collector current in R_4 causes the output voltage to go negative and this change is coupled to Tr_i base through C_1 causing Tr_1 and hence Tr_2 to be switched hard on. In this quasi-stable state C_1 charges through R_3 and Tr_2 towards $-V_{EE}$ and when the charging current is insufficient to maintain conduction

in Tr_1 this transistor switches off, as does Tr_2 and the circuit returns to its stable state.

Fig. 10 shows a complementary monostable in which both transistors are on in the stable state, and which provides a pair of opposite-polarity outputs simultaneously. A positive-going trigger pulse applied to Tr_2 base turns both transistors off and after C_1 charges sufficiently, through R_2 and R_4 , both transistors return to the stable on state regeneratively.

Basic discrete-component circuits

Circuit description

In the quiescent state with the trigger at 0V, Tr₂ is held on due to base drive via R₃. Point **b** is therefore at zero volts and hence Tr_1 is off, its base being at OV. In receipt of the trigger bulse the base of Tr_1 is forced positive, Tr_1 conducts and its collector voltage drops. This is ransmitted via C_1 to the base of Tr₂ and hence Tr₂ is forced off, raising its collector voltage. By potential division via R_5 and \mathbf{R}_4 , the base of \mathbf{Tr}_1 is forced positive, thus forcing Tr₁ urther into conduction. This ositive feedback action forces a rapid change in state of both Tr_1 and Tr_2 . C_1 then has one side at 0V, point Q, and the other side connected via R₃ to V_s. It thus commences to charge towards V_s. This continues until the potential at the base of Tr₂ reaches a value which causes Tr₂ to start conducting. Point Q then starts to fall in potential causing the base of Tr_1 to fall. This causes $\bar{\mathbf{Q}}$ to rise, forcing the base of Tr₂ even higher and rapidly the two transistors change back to the quiescent state. Length of the output pulse depends on C₁R₃. See graph. The original quiescent state is

not reached until C_1 has returned to its original uncharged state. The discharge path is via R_1 and the base-emitter junction of Tr_2 . Discharge time is what accounts for the recovery time, t_r minus the minimum time after the output pulse trailing edge at $Tr_{1}, Tr_{2}: BC125 R_{1}, R_{2}: 1k\Omega R_{3}: 22k\Omega R_{4}: 4.7k\Omega R_{5}: 10k\Omega C_{2}: 100pF V_{8}: 5V$

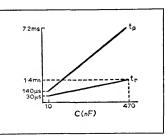
Typical performance

Min. trigger pulse width 0.5μ s Trigger pulse height in range 1.4 to 3.6V

Output pulse width t_p depends on C_1R_3 —see graph Recovery time t_r depends on C_1R_1 —see graph

Output pulse height 4.6V

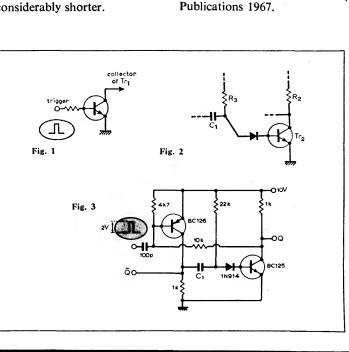
which a further trigger pulse will give correct operation; see graph above.


Maximum trigger pulse height is fixed by the negative-going voltage applied to the base of Tr_1 on receipt of the trailing edge of the trigger pulse. If this is greater than the bias set by R_4 and R_5 then Tr_1 is switched off immediately and monostable action is prevented. Minimum trigger pulse height depends on C_2 and on the pulse rise time.

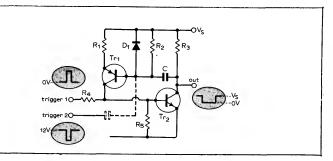
Circuit modifications

• Both of the above restrictions on the trigger pulse height may be reduced by applying the trigger pulse as shown Fig. 1. If this arrangement is used the min. pulse height should be about 0.7V and the maximum should be the breakdown voltage of the triggering transistor.

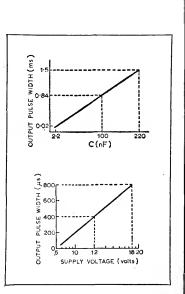
• A general-purpose diode e.g. 1N914 should be inserted in the base line of Tr_2 as shown Fig. 2, if the supply voltage used is above 6V or so which is the base-emitter breakdown voltage of most planar transistors. If this is not done the linearity of t_p with respect to C is lost.


• If short recovery times are required between consecutive output pulses the circuit of Fig. 3 may be used. In the quiescent state both transistors are conducting, Q is low and \overline{Q} is high. On receipt of the trigger pulse the p-n-p transistor (BC126) is switched off causing

the base of the BC125 to fall in potential, thereby raising the voltage of Q and, via the $10k\Omega$ resistor, the base of the BC126. The circuit thus latches into a condition where both transistors are off. Capacitor C₁ then charges via the 22k and $1k\Omega$ resistors toward the supply and eventually turnsthe BC125 on and with it the BC126. Discharge of C₁ occurs more quickly in this case because the discharge path is through the collector-emitter junction of the BC126 and the base-emitter junction of the BC125. No external resistors are involved in this path as occurred previously. Hence, the circuit recovery time is considerably shorter.


Set 19: Monostable circuits—1

Further reading SGS Fairchild. Industrial Circuit Handbook 1967. Hemingway, T. K., Electronic Designer's Handbook. Business



Set 19: Monostable circuits—2

Complementary circuits

Typical performance Tr₁: BC126, Tr₂: BC125 $R_1, R_2: 33k\Omega$ R_3 : 1.2k Ω , R_4 , R_5 : 10k Ω **D**₁: 1N914 With $V_s = 12V$, trigger frequency 500Hz, trigger pulse width and height 10µs. and 2V respectively, graph opposite of output pulse width against C was obtained. With C = 47 nF and pulse width of $10\mu s$, minimum trigger pulse height about 1.3V. With pulse height at 2V, minimum pulse width about $2\mu s$. Output pulse height about 12V; maximum mark-space ratio is 10:1 at this frequency.

(Fig. 3). A diode may be inserted in the emitter lead or in the base lead. The last-mentioned is generally preferred in that it will not affect the output pulse levels.

References

- 1 Electronic Circuit Design Handbook, Tab. p.174.
- 2 Electronic Circuit Design Handbook, Tab. p.85.

Cross references Set 18, card 1 Set 10, card 4

Circuit description

Monostable circuits using complementary transistors allow one to trigger either with respect to the positive supply line.

In the circuit shown both transistors are non-conducting in the quiescent state. On receipt of a positive-going pulse at trigger point 1, Tr₂ starts to conduct, dropping its collector voltage. This drop is transmitted via C to the base of Tr₁ and hence Tr₁ starts to conduct. This produces further base drive to Tr_2 and pushes it further into conduction. Very quickly both transistors are fully conducting and the output, initially at Vs drops to 0V approximately.

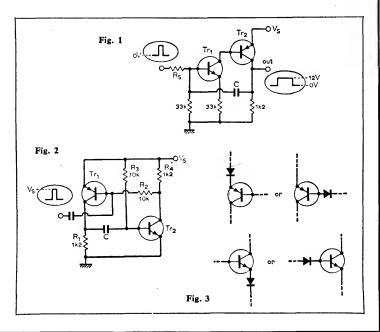
Capacitor C, uncharged in the quiescent state, then begins to charge towards V_s via R_2 and Tr_2 . When it reaches $V_s - V_{be}$, Tr_1 is cut off, Tr_2 is cut off and the capacitor discharges via D_1 and R_3 principally. Insertion of D_1 provides a low resistance discharge path giving a fast recovery time.

When Tr_2 is cut off the output swings back to V_s so the output pulse period is determined by the charging time of the capacitor.

With the basic monostable circuit (card 1) the capacitor is, in the quiescent state, charged in one direction and this direction is reversed when triggered. Ignoring V_{be} effects, the capacitor during charging

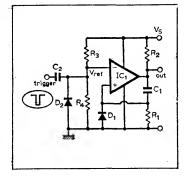
is going from $+V_s$ to $-V_s$ and the 0V or 50% point is sensed to bring the circuit back to quiescence. Because one is sensing a particular percentage of the attempted swing, the time taken is not supply voltage dependent. This is not the case here since a particular voltage is being sensed; the graph over shows the variation of pulse width with supply voltage. This could conceivably be used to produce a voltagedependent monostable action.

Component changes


Increasing the pulse height allows a reduced pulse width (trigger pulse). Reducing R_1 to $4.7k\Omega$ allows operation down to 6V and 0.1μ s trigger pulse width. Value of R_2 is not critical; R_3 depends on Tr_2 ; R_4 and R_5 not critical.

Similar circuits

• The circuit of Fig. 1 will have zero stand-by power consumption but in this case has a positive-going output pulse. Again the output pulse width will depend on Vs, since in the quiescent state C is uncharged. In addition the V_{CEsat} of Tr₂ will affect the height of the pulse which should be $V_{\rm s} - V_{\rm CEsat}$. The 0V level should be well defined. In the circuit over the VCEsat affects the OV level but not the peak value (ref. 1). The circuit of Fig. 2 has a pulse width given by


 $t_p=0.69(R_1+R_3)C$ and a recovery time given by $t_r=R_3C/\beta$. As recharging current is supplied by Tr_1 , this recovery time is short. Pulse width is not supply dependent but since both transistors conduct in the quiescent state the standby power is large. Two outputs are available, at the collector of both transistors. They are the complement of one another (ref. 2).

• Diodes are frequently included in monostable circuits to prevent too large a reverse voltage being applied to the base-emitter junction of a non-conducting transistor

142

Op-amp/comparator circuits

Circuit description

This comparator features an open-collector output, and may be used with pull-up resistor R₂ and a separate supply to give a wide switching range. Resistors R_3 and R_4 set the reference voltage equal to $V_s/2$, but also determine the trigger pulse level necessary for switching. Resistor R₁ should be much greater than R₂ to avoid loading the output. With $V_{\rm ref} = V_{\rm s}/2$ and the noninverting input near 0V, the output transistor of the comparator is conducting and the output is at VCEsat. A negative trigger pulse at the input causes this transistor to switch off and hence the voltage at the output rises to almost Vs. Capacitor C_1 now charges at a rate mainly determined by R₁ and C_1 , which also control the width of the output pulse. The potential of the non-inverting input now falls exponentially from V_s and the comparator switches to its original condition when the noninverting comes below $V_{\rm s}/2$. Diodes D_1 and D_2 prevent the inputs from being driven below zero volts, and D_1 also provides a low impedance discharge path for C_1 .

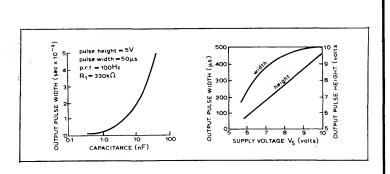
Typical performance IC₁: $\frac{1}{4}$ LM139 V_s: +10V C₁: 1nF C₂: 470pF R₁: 330k Ω R₂: 10k Ω R₃, R₄: 1M Ω D₁, D₂: 1N914 Trigger pulse width: 30 μ s Trigger pulse level: 6V Output pulse width: 190 μ s Output pulse level: 9V

Component changes IC₁: $\frac{1}{4} \times MC$ 3302P Useful range of C₁: 220p to 22nF

Useful range of R_1 : 47k to 470k Ω

Minimum trigger pulse width: 5μ s

Minimum trigger pulse height: $5V(\text{for } V_s = +10V)$ Range of V_s: up to 28V. • Increasing trigger pulse


height to 8V decreases pulse width by 150 to 200µs.
Variation of pulse width with capacitance shown, for

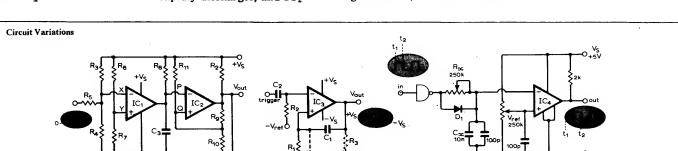
Output pulse 5V.
 Output pulse is supply dependent, see graph above.
 (For C = 1nF, R = 330k O

(For $C_1 = 1$ nF, $R_1 = 330k\Omega$, p.w. is 50μ s.)

Circuit variations

• Circuit shown left gives a pulse width that is supply independent, and is capable of a high duty cycle. Capacitor C_3 is initially charged to $+V_{cc}$ and V_{out} is at almost zero volts. Potentials at X and Y are defined by associated divider chains. A positive input trigger pulse to make $V_X > V_Y$ causes IC_1 to switch (output driven low). Capacitor C_3 rapidly discharges, and IC_2

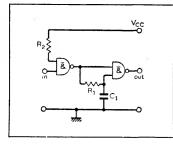
will switch when the voltage across C_3 falls below V_Q , defined by R₁₁, R₁₀. Output voltage is now equal to Vee, which is fed back bia R_7 to IC_1 which again switches to off condition. Hence C₃ now charges up via R₈. Output pulse width is defined by the time for the voltage across C_3 to just exceed that of point Q; IC₂ then reverts to its on, or low-output state. IC1, IC2 $\frac{1}{4}$ LM139, R₅, R₄ 100k Ω , $R_6 1M\Omega$, $R_7 62k\Omega$, R_8 , R_9 10M Ω , R₁₀ 220k Ω , R₁₁ 560k Ω , C₃ 0.1nF.


Note that retriggering is not possible while IC₂ output is high-a useful lock-out feature. Circuit centre, using an . op-amp, has a similar action to the comparator network. A negative reference voltage on the inverting input, with the non-inverting input tied to ground, gives a stable condition where $V_{out} = + V_s$. A positive input trigger sufficient to cause the differential input polarity to change, the output switches to $-V_{\rm s}$. At this instant the potential of R_1 with respect to ground is $-2V_s$. As C₁ charges, the potential across R1 rises towards $-V_{ref}$, when switching again occurs, and circuit resets

to initial condition. Component values: IC_3 MC1530/1531, C_2 23pF, R_2 100 Ω , C_1 10nF, R_1 10k Ω , $V_{ret} = 2V$. Pulse width typically 125 μ s. Diode and R_3 allow faster discharge of C_1 , permitting an increase in p.r.f. • Circuit right is a useful

• Critchi right is a discriting interface for delaying logic signals. When logic level is 1, capacitor charges quickly via diode, discharges via R_x when logic level is 0, allowing V_{out} to rise when $V_{Cx} \rightarrow +1V$. Using LM311, claimed delay is typically 0.04 to 370ms.

Cross reference Set 17, card 8.


V_{ref} = + 1V

Set 19: Monostable circuits—3

Set 19: Monostable circuits—4

Monostable using t.t.l. gates

Circuit description

The circuit above uses two of the four NAND gates available in the integrated circuit package. Positive trigger pulses are applied to the first gate which is connected as an inverter, the unused input being taken to the positive supply rail (logic 1 state) via a 1-k Ω resistor to prevent the gate being damaged by a supply line transient. With the trigger input in the logic 0 state (0V), the output of the first gate is at 1, as are both the inputs to the second gate in the steady state, causing its output to be at logic 0. A positive trigger pulse causes the output of the first gate to go to its logic 0 level. One of the two inputs to the second gate immediately goes to the logic 0 level but its other input receives the voltage across C_1 which cannot change its charge instantaneously. The inputs to this gate are thus at logic 0 and 1 respectively. causing its output to switch to 1 where it remains until the trigger pulse returns to the 0-volt level. During this interval, capacitor C₁ discharges towards 0 volt through R1 and the output impedance of the first gate and is recharged to the 1 level after the trigger pulse has returned to the 0-volt level.

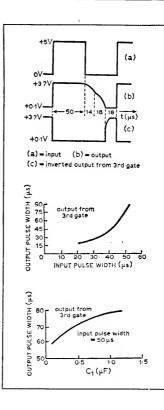
Circuit changes

Useful range of V_{cc} : +4.5V to +5.5V Maximum useful R₁: 470 Ω Maximum useful C₁: 1.5 μ F Minimum trigger pulse amplitude: +3V

Minimum trigger pulse width: $40\mu s$

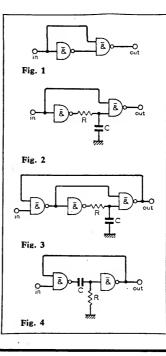
Output pulse shape improved by cascading a third gate (see waveform and graphs above).

Typical performance


Logic gates: $\frac{1}{4} \times 7400$ Supplies: +5V; 8mA R₁: 100 Ω , R₂: 1k Ω , C₁: 1 μ F Input pulses: amplitude +5VWidth: 50 μ s, p.r.f. about 10 kHz Output pulse width about 74 μ s

Cascading the fourth gate in the package provides a pair of complementary outputs.

Circuit modifications


• The simple two-gate circuit shown in Fig. 1 has positive trigger pulses fed simultaneously to one input of each gate. These pulses appear at the output of the first gate inverted and delayed by the propagation time of the gate. Both of the inputs to the second gate are therefore at the 1 level for a short period, providing a narrow negativegoing output pulse, delayed by the propagation time of one gate. This circuit has two defects: the output pulse is very narrow and non-adjustable and the trigger pulse must be wider than the output pulse.

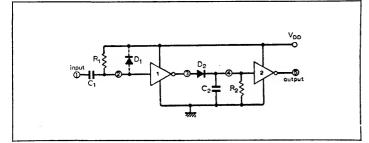
The circuit shown in Fig. 2 . overcomes the first defect but still requires a trigger pulse wider than the output pulse. When the trigger input is at logic 0 the output of the first gate is at 1. Inputs to the second gate are at logic 0 and 1 since C is charged from the first gate, hence the output is at 1. When the trigger pulse goes to 1 the output of the second gate switches to the 0 state for an interval determined by the time constant, as C discharges through R, and the output impedance of the first gate. When C has discharged to a level where its voltage crosses the switching threshold of the 1 to 0 transition the output from the second gate switches back to its 1 level. Trigger pulse width must still be greater than the output pulse width, as the output of the second gate will always

return to the 1 state whenever the trigger pulse returns to 0 volt.

• To overcome this problem the trigger pulses can be fed to the monstable via a third gate which has an output logic state determined by the monstable output, as shown in Fig. 3. Addition of this gate causes

the monostable to be triggered when the input transition is from the 1 to the 0 state and the width of the input pulses is only that required to cause the input and output gates to change state. Since the same time constant controls the charge and discharge rates of C both circuits have relatively low maximum duty cycles, typically around 25%.

• Circuit of Fig. 4 uses only two gates but has a very similar mode of operation, the output pulses controlling the state of the input gate. This gate will normally have a 0 output since both its inputs will be at 1 until the trigger pulse goes to 0 volt. This causes the output to switch states for a time determined by that required for the CR network to cross the logic threshold.


Further reading

Malmstadt, H. V. and Enke, C. G., Digital Electronics for Scientists, Banjamin 1969, pp. 213-5. Wilke, W., Operating a logic gate as a flip-flop, *Electronics*, 21 March 1974, pp.120/1. Kaniel, A., Digital delay circuit for one-shot controls timing interval in programmable integer steps, *Electronic Design*, 18 Jan. 1974, p.94.

Cross reference Set 11, card 3.

Set 19: Monostable circuits—5

Compensated c.m.o.s. circuits

Circuit description

Complementary m.o.s. monostables using one time constant suffer from the fact that the transfer voltage (V_{tr}) of i.cs can vary by as much as $\pm 33\%$ so that replacement of an i.c. by another can result in a considerable change in the output pulse width. This defect can be removed by using two identical time constants with two inverters on the same chip. In this case the transfer voltage of both inverters is almost identical and the effect is cancellation of the variation in transfer voltage. This is taken advantage of in the circuit shown.

In the quiescent state with the input pulse low (ground), point 2 is high (V_{DD}) , points 3, 4 and 5 are therefore low, low and high respectively. Capacitor C_1 is therefore in a charged state. On receipt of the input pulse this charge is removed rapidly via the source resistance and D_1 which is an internal protection device to prevent the input rising beyond V_{DD}. On the negative-going edge of the input pulse point 2 is taken down to ground and C_1 commences to charge towards V_{DD} via R_1 . Point 3 will go high and remain in this state until C_1 passes through the transfer voltage of inverter 1. When point 3 goes low C_2 will commence to discharge via R_2 , D_2 acting to prevent discharge into inverter 1. When point 4 passes through the transfer voltage of inverter 2 point 5 will go high and the operation is complete. The graphs show that there are two possible outputs-at points 3 and 5. The output at point 5 is the only one in which there is compensation

for transfer voltage variation. Due to lack of feedback in the circuit the risetime of the output is decidedly long (see performance data) but this is acceptable if the circuit is supplying further c.m.o.s. circuitry.

Despite the protection of D₁ the fact that the circuit is being fed via a capacitor makes it advisable to ensure that the input pulse height is close to V_{DD}. This can be done if the pulse is fed via further c.m.o.s. supplied from V_{DD} . This circuit can be re-triggered, i.e. the output 5 can be maintained in its low state by feeding in a succession of pulses, provided each pulse occurs before point 2 reaches the transfer voltage of the first inverter.

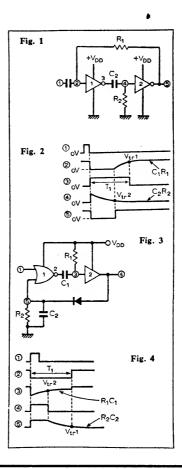
Circuit modifications

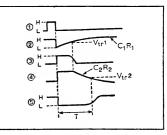
A positive-going output • pulse, again triggered by the negative-going edge of the input is obtainable with the circuit shown top. In this case the output is obtained at the output of the first inverter viz point 3. This output is compensated, whereas that at 5 is not. Relevant waveforms are shown in Fig. 2. In this case re-triggering is not possible because any positivegoing trigger pulse would reduce T_1 no matter the state of point 5.

• A negative-going pulse triggered on the positive-going edge of the input pulse is obtainable from the circuit shown in Fig. 3. For compensation, the output is taken from point 2 in this diagram. Relevant waveforms are as in Fig. 4. With this circuit re-triggering is also

Components

 D_2 : general-purpose diode Inverter 1 and 2: $\frac{1}{3} \times CD4007AE$

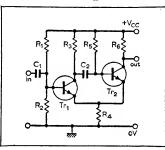

Performance


 $R_1C_1 = R_2C_2 = RC$ $T \approx 1.4RC$; tested in range $10\mu s < T < 1ms$ With clock rate of 1kHz and pulse width 400 μ s, T remains within 4% of the nominal value over supply range 5V to

impossible because point 2 will stay low so long as point 5 is high, the trigger signal having no effect due to the normal NOR gate action.

Further reading

RCA applications note ICAN6267. Murphy, C. Simple reconnection reduces rise time of CMOS delay circuit. *Electronic Design*, 4 Jan. 1974.



10V. With T of 330μ s fall time is minimal but rise time is 120μ s.

Set 19: Monostable circuits—6

OUTPUT PULSEWIDTH (µs)

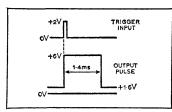
Emitter-coupled circuits

Circuit description

In the stable state Tr₂ is on and saturated due to the base drive via R5. The emitter current of Tr₂ causes the common emitter voltage to be at approximately 1.5V. Thus Tr_1 is held off by the R_1 , R_2 potential divider which maintains its base at about 1.3V, slightly reverse-biasing the base-emitter junction. Output voltage at Tr₂ collector is at approximately 1.6V in this stable state. The C₁, R₁, R₂ network differentiates the input trigger pulses and, if these have a positive-going transition large enough to exceed the emitter voltage by V_{BE} , Tr_1 will switch on and saturate. The collector voltage of Tr₁ falls by about 4.5V and this negative-going transition passes to Tr_2 base through C_2 so this transistor switches off. Output voltage rises to $+V_{cc}$ and Tr_2 remains in the off state while C2 charges via R5, Tr1 and R4. As C₂ charges, the base voltage of Tr₂ rises exponentially towards $+V_{cc}$ but when it exceeds the emitter voltage, Tr₂ rapidly turns on and saturates. Current in R4 increases, producing a corresponding rise in the emitter voltage which reversebiases the base-emitter junction of Tr_1 , which switches off, and the circuit returns to its stable state.

Circuit changes

Minimum trigger pulse width 0.5μ s. Output pulse width could be varied by R_5 but this would also change the d.c. conditions. Larger supply voltages may be used but then a silicon diode should be included in series with Tr_2 base


Typical performance Supply: +6V, 4mA Tr₁, Tr₂: BC125 R₁: $6.8k\Omega$ R₃: $1.8k\Omega$ R₃: $2.7k\Omega$, R₄: 330Ω R₅: $22k\Omega$, R₆: $1k\Omega$ C₁: 100pF, C₂: 100nFInput pulse amplitude: +2VInput pulse width: 1μ s p.r.f.: 1kHz

to prevent reverse breakdown of its base-emitter junction by the switch-off transient.

Circuit modifications

• Adding an emitter-follower to the original circuit, as shown in the top left diagram, allows the output pulses to be obtained from a low-impedance source and to be referred to ground. By adjustment of the supply voltage these pulses may be made compatible with t.t.l. logic circuitry.

• A p-n-p common-emitter stage may be added, as shown top right, to use the output pulses for driving a groundconnected load. For example, the load could be in the form of a filament lamp for alarm or monitoring purposes and as collector currents of at least Output pulse—see waveform below

50mA may be obtained, the load could be a relay coil to provide control of some other circuitry. The inductive load provided by the relay coil should be shunted with a protective diode.

The original circuit may be modified to be triggered by negative-going pulses as shown in the circuit shown bottom left. In this arrangement the trigger pulses are applied to the collector of Tr_1 via the small coupling capacitor C_3 . The negative-going trigger pulse edge is passed to Tr₂ base through C_2 switching this transistor off. Tr_1 turns on and the remaining cycle of operations are as described previously. The circuit will function with C_1 omitted but the transition to the quasi-stable state will be more rapid when it is included in the circuit.

10 C₂ (nF)

 $R_5 = 22k\Omega$

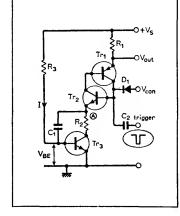
• In all of the circuits discussed the output point was isolated from any internal coupling. If, see bottom right, R_1 of the original circuit is taken to Tr_2 collector instead of the $+V_{CC}$ rail this is no longer the case and changes in emitter voltage may be very small. The simplest way to provide

faster switching is to prevent Tr_1 and Tr_2 from saturating by increasing R_4 .

Further reading

SGS-Fairchild, Industrial Circuit Handbook, 1967, pp.51/2. Budinsky, J., Techniques of Transistor Switching Circuits, Iliffe 1968, pp.486-91.

2


Cross references

Set 18, cards 1 and 7.

Set 19: Monostable circuits—7

Voltage-controlled monostables

Circuit description

Transistors Tr₁, Tr₂ form a complementary-pair positive feedback switch, and are either both off or both on. In the rest state, this switch is closed, Tr_3 is on, D_1 is non-conducting, and C_1 is charged. A negative trigger pulse applied at the trigger terminal causes the regenerative switch (Tr_1, Tr_2) to open. Collector current of Tr₃ is now αI , where α is common base current gain and $I = (V_{\rm S} - V_{\rm BE})/R_3$. Hence C₁ discharges at a constant rate giving a run-down linear sweep at point A. This sweep continues until the potential of point A is less than $V_{\text{control}} - V_{\text{D}_1} - V_{\text{BE}(\text{Tr}_2)}$, when the complementary switch again conducts. The switch also acts as a comparator, besides providing a low impedance path for recharging capacitor C₁. Notice that the sweep termination depends on the level of the control voltage, which therefore controls the width of the output pulse.

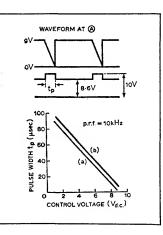
Component changes

Tr₂, Tr₃: BSX28, Tr₁: BSX29 Useful range of C_1 : 1 to 47nFUseful range of R₃: 10k to $100k\Omega$

Useful range of control voltage is in the range 10% to 90% of $+V_{s}$.

To minimize inductive and stray capacitive effects, this circuit was constructed on a p.c.b. to obtain above measurements.

Rise and fall times of output

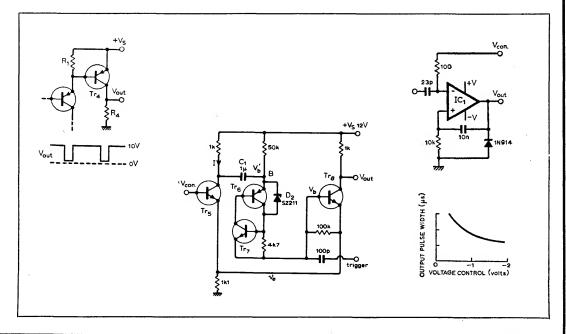

Typical performance Tr₁: BC126 Tr_{2} , Tr_{3} : BC125 R_1 : 22 Ω , R_2 : 1.2 $k\Omega$ R₃: 10kΩ C₁: 1nF, C₂: 100pF $+V_{s}:+10V$ D₁: 1N914 Trigger pulse magnitude: -13V Trigger pulse width: 0.1μ s Vcontrol: 8V Output pulse duration: $7\mu s$ Waveforms and timing graph shown opposite, curve (a)

pulses less than $0.5\mu s$. Control voltage may be obtained from potential divider connected across supply.

Circuit modifications

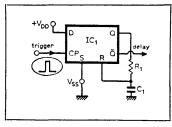
Connect additional buffer stage Tr₄ (BC126) and R₄ (390 Ω) for increased output pulse amplitude (below). Trigger pulse amplitude is 7V, when coupling capacitor C₂ increased to 1nF; provides timing graph shown above a (b).

Circuit (centre) is basically an emitter-coupled monostable circuit. Time duration may be extended by the inclusion of a complementary pair (Tr₆, Tr₇) with breakdown fixed by zener diode D_2 . This effectively increases the cut-in voltage,


V_b, of Tr₈. Tr₈ is normally on. Trigger pulses cause Tr₅ to conduct (Tr₈ off), and circuit returns to its stable state when the voltage at B brings the regenerative switch into conduction. Pulse duration depends on I, which is controlled by voltage applied to base of transistor Tr₅. Output pulse duration typically in the range 40 to 200ms for a control voltage of 3 to 6V.

Operational amplifier IC, • (MC1530/MC1531), shown right, can provide variable delays by controlling the voltage at the inverting input. Diode clamps the negative amplitude of the output to about -0.7V. Positive output will approach +V.

Further reading


Rakovich, B. D. & Djurdjevich, B. Z., Wide-range voltage-to-time converter, IEEE Transactions vol. IM-22, no. 2, June 1973, p.162. Time delay circuit for SCR control, Electronic Eng. June 1974, p.14. Motorola application note AN-258.

Cross references Set 18, card 3, 6.

Set 19: Monostable circuits—

Long-delay circuits using c.m.o.s. and unijunction devices

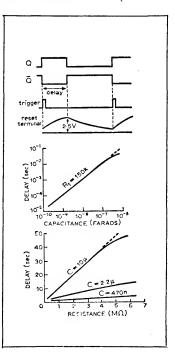
Circuit description

The high input impedance of c.m.o.s. integrated circuits offers a low leakage path for capacitor C_1 , and thus allows a wide range of delays from this D-type flip-flop configuration. The D-input is permanently connected to the positive supply rail, hence Q goes high when a positive trigger pulse is applied at the clock input. A positive voltage approximately $50\% (V_{DD} - V_{SS})$ at terminal R will reset Q to its initial condition of 0V. On the occurrence of a trigger pulse, the reset threshold will be reached in a time defined by C_1 and R_1 , which in turn defines the delay available at Q. This circuit is fairly insensitive to supply voltage change, because the threshold level for reset will alter pro-rata. However it should be noted that this level is not well defined, and hence the accuracy of time delays will depend on specific measurement with the components used. Unused inputs should be tied down to ground.

Component changes

Useful range of R_1 : 100k to 10M Ω Useful range of C_1 : 47pF to 32 μ F (For long time delays, lowleakage capacitors must be used) Supply voltage range: $(V_{DD} - V_{SS})$ 3 to 15V Minimum pulse width: 0.1 μ s Minimum pulse height: 2 to 4V Alternative IC: MM74C74

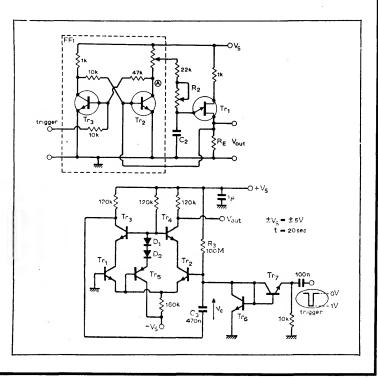
UJT transistor monostable


The circuit shown right (top). employs a discrete transistor flip-flop, with the timing controlled by the firing of the unijunction transistor Tr_1 . Typical performance IC₁: $\frac{1}{2} \times CD$ 4013AE V_{DD}: +5V, V_{SS}: 0V R₁: 470k Ω , C₁: 10 μ F Trigger pulse width: 1 μ s Trigger pulse height: 4V Delay: 9s Typical waveforms and delays shown opposite.

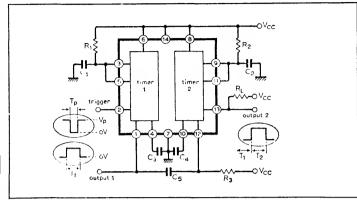
The normal rest condition of bistable FF1 is Tr_3 off and Tr_2 conducting. Hence the available voltage at point A is approximately V_{CESat} of Tr_2 . This is much less than the firing voltage V_P of the unijunction transistor which therefore is non-conducting, and the output voltage is at zero volts.

A positive pulse applied at the trigger input brings Tr₃ into conduction, and due to positive feedback Tr₂ is rapidly switched off. Hence the potential of point A rises. Voltage across C_2 now rises exponentially toward $+V_s$. When it reaches V_P in a time determined by R_2C_2 , Tr₁ will conduct and discharge C2 via the emitter and the resistor R_E. The output pulse developed across RE is applied to the base of Tr₂ to turn it on again and hence reset the bistable, and turn off Tr₁. Well-defined output pulses are also available at the collectors of Tr₂ and Tr₃. $R_2 1M\Omega$, $C_2 1\mu$ F, $R_E 27\Omega$, Tr₁ 2N4853, Tr₂/Tr₃ 2N4123, $V_{s} + 10$ to +30V.

An advantage is that the initial voltage across C_2 is always the same at the start of a period no matter the pulse repetition frequency. It is claimed that with the supply voltage variation noted above, pulse duration changes are $2\%_0$. \bullet Circuit (bottom) uses the transistor array CA3095E. Diodes D. D. and Tr. act as a


Diodes D_1 , D_2 and Tr_5 act as a voltage-limiting network. Quiescent condition is with transistors Tr_1 and Tr_3 off, Tr_2 and Tr_4 on. A negative-going pulse at the trigger-input terminal is coupled to the base of Tr_2 via diode-connected transistor Tr_7 . Hence Tr_2 (and Tr_4) cut off and V_{out} rises to $+V_8$. Because Tr_2 and Tr_1 are

emitter-coupled, Tr_1 can now conduct when Tr_2 is off, therefore the voltage across C_3 i.e. V_L is near ground. Capacitor C_3 now charges via R_3 . When the base potential of Tr_2 is high enough to bring it into conduction, Tr_1 again goes off and V_{out} drops to its normal value of about 1.8V. Time duration is $t \approx 0.47R_3C_3$. Cross references Set 18, cards 5, 9.


Further reading

Unijunction Transistor Timers and Oscillators. Motorola application note AN-294.

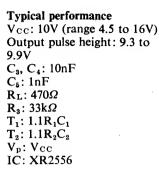
Set 19: Monostable circuits—9

Dual monostable applications using 555 timer

Circuit description

The i.c. shown is a dual 555-type timer (internal details of which are shown in cross references 1 and 2). In this application the output of the first timer is capacitively coupled via C5 to the input of the second. Both timers are triggered when the input to each drops below $\frac{1}{3}V_{\rm CC}$. In this case the trigger pulse operates timer 1 and the output of timer 1 triggers timer 2. Both timers are connected in their monostable mode. Formulae for T_1 and T_2 quoted are valid for all conditions and are fixed entirely by the external R_1 , C_1 and R_1 , C_2 . Any succeeding trigger pulses are ignored. Both T_1 and T_2 can be anywhere in the range 10μ s to 100s with two provisos: T₁ cannot be reduced below T_p , but since T_p can be less than 3μ s this is not serious. Secondly low values of T_1 and T₂ should not be obtained by reducing R₁ and R₂ to a level at which current drain from the supply is serious. A minimum value of $1k\Omega$ is recommended for both R₁ and R₂.

The only restriction on RL is that it must not be so low as to exceed the current rating (200mA) of the i.c. Typical waveforms are shown above. These are suitable for sequential timing circuits. Note that trigger pulses occurring during the period set by R_1 , C_1 and R_2 , C_2 are ignored.

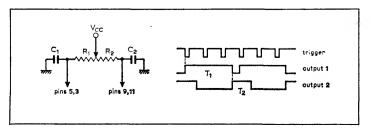

Circuit modifications

Obviously the i.c. may be used as two separate timers or monostables by omitting C₅ and R_3 and by applying the trigger pulses directly to pins 2 and 12.

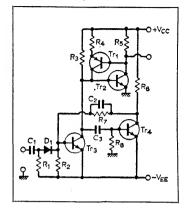
Referring to the main diagram, control over the total period $(T_1 + T_2)$ can be achieved by connecting the arm of a potentiometer to Vcc and the ends to pins 3 and 9, R_1 and R_2 being now the two segments of the potentiometer shown above. If $C_1 = C_2 = C$ then $(T_1 + T_2) = C(R_1 + R_2)$ which is constant no matter the individual T_1 and T_2 .

Each individual timer can • be regarded as a frequency divider in its own right. For example, in the waveforms shown over, the lower two graphs indicate that output 1 is running at half the trigger pulse frequency and output 2 is running at half the frequency of output 1. By correct choice of T₁ one can make output 1 run at any submultiple frequency of the trigger and likewise with correct choice of T_2 output 2 can run at any submultiple frequency of output 1.

A combined frequency divider and pulse width controller can be achieved by setting T_1 so that it is greater



than the trigger period and by ensuring that $T_{2} < T_{1}$. The value of T_1 sets the frequency division and the value of T_2 sets the pulse width, the output being output 2. Furthermore, the "phase" of the output with respect to the trigger can be controlled since, for example, frequency division by 3 allows T_1 to lie anywhere between two and three trigger periods. See waveforms above.


Further reading

XR-2556 Dual Timing Circuit. data sheet/application note, Exar Integrated Systems Inc.

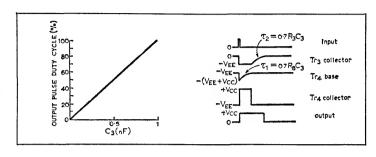
Cross references Set 3, card 9 Set 13, cards 3 and 5

High duty-cycle monostable

Circuit description

In this circuit the timing capacitor Ca not only determines the width of the output pulse obtained from Tr₂ collector but also delays the setting-up of the circuit in readiness for the next cycle of operations. This prevents an early trigger pulse from producing an output pulse having too short a duration. Because the circuit may be re-triggered immediately after completing its cycle, an output-pulse duty cycle approaching 100% may be obtained. The conventional "cross-coupled" monostable allows only about 95% duty cycle, even when its timing capacitor is rapidly recharged from a low-resistance source. In the stable state, Tr₃ is biased off and Tr_1 , Tr_2 and Tr_4 are on. Input trigger pulses are differentiated by $C_1 R_1$, the positive component passing to Tr_3 base via D_1 . If of sufficient amplitude, these overcome the reverse bias on Tr₃, which switches on, Tr_1 , Tr_2 and Tr_4 switching off. Transistor Tr₄ remains off for approximately $0.7\tau_1$ as its base potential rises under the control of C₃. When Tr_4 turns on again, Tr_3 collector potential rises as C_3 recharges with time constant $\tau_2 = C_3 R_3$ until it exceeds approximately 0 V. Transistor Tr, and hence Tr_1 then switch on regeneratively and the circuit returns to its stable state and may be re-triggered immediately.

Component changes


Minimum useful supplies $\pm 2 V$ Useful range of R₁: 1k to 100k Ω Useful range of R₂: 1k to 470k Ω **Typical performance** Vcc: +6V, 6 to 18mA*, V_{EE} -6V, 6 to 12mA* Tr₁: BC126, Tr₂, Tr₃, Tr₄ BC125 R₁: 10k Ω , R₂, R₇: 56k Ω R₃, R₈: 47k Ω , R₄: 1.8k Ω R₅, R₆: 1.2k Ω , C₁, C₂: 100pF C₃: see graph opposite; D₁ PS101 Input: 4V positive pulses, pulse width 1 μ s, p.r.f. about 10kHz Output rise time: 0.5 μ s Output fall time: 0.2 μ s *depending on value of C₃.

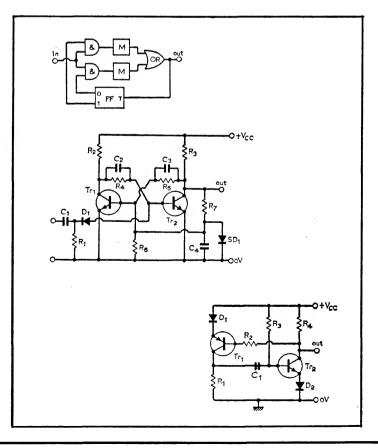
Minimum trigger pulse amplitude approximately 2.5 V Minimum trigger pulse width less than about 0.1μ s Maximum useful p.r.f.: 200kHz.

Circuit modification

The circuit shown top is a logical representation of a high duty-cycle monostable which may be realised with logic gates or discrete transistor circuitry. A pair of pulse-steering AND gates and a flip-flop used as a toggle cause the positive-going input trigger pulses to be alternately applied to the pair of monostables (M). The monostable outputs are combined in the OR gate to provide the output pulse and to toggle the flip-flop which changes state when the output pulse is completed. Hence, the start of the next output is only delayed by the time taken for the flip-flop to change its state, which can be a small percentage of the output pulse duration. A discrete version produced 700ms pulses every 705ms.

Circuit shown next uses a . flip-flop in conjunction with a Shockley diode (SD1) to achieve a high duty cycle. An input pulse causes the flip-flop to change its state producing an exponential voltage rise across C_4 . When this voltage reaches a critical value the diode breaks down rapidly discharging C4 and producing a negative pulse to reset the flip-flop via C_a in readiness for the next input pulse. Pulses of 2μ s duration may be produced after only a 250ns recovery time.

Typically, R_1 , $R_6 \quad 1M\Omega$, R_2 , R_3 10k Ω , R_4 , $R_5 \quad 150k\Omega$, R_7 , 2.2M Ω , C_1 , C_2 , $C_3 \quad 20pF$, C_4 500nF, $D_1 \quad 1N914$, SD1 4E20-8, with Vcc +25V.

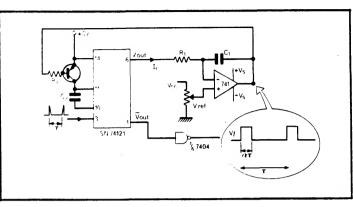

• Circuit shown bottom can provide a recovery time of only 1% of its period and may be triggered by positive pulses at Tr_1 base or negative pulses at Tr_2 base causing both transistors to switch from their on to off states. Transistor Tr_1 can recharge C_1 with a large collector current to rapidly regain its initial voltage. Diode D_1 and D_2 may be omitted if Tr_1 and Tr_2 have a large reverse $V_{\rm BE}$ rating.

Further reading

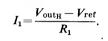
Shagena, J. L. & Mall, A. Single-shot multivibrator has zero recovery time, *Electronics*, 27 Nov., 1967, p. 83. Electronic Circuit Design Handbook, 4th edition, Tab, 1971, pp. 85, 96, 342/3.

Cross reference

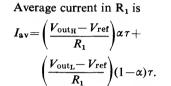
Set 19, card 9.


Set 19: Monostable circuits—10

Set 19: Monostable circuits Up-date


Disadvantages of monostables in digital circuits caused by their sensitivity to noise on the output line or transients in the power supply are avoided by using integrated-circuit monostables such as the SN74121. Two applications are considered.

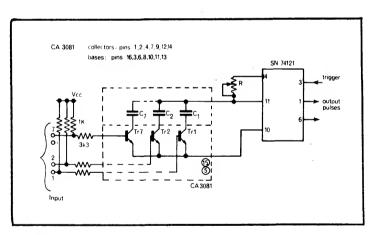
1. The normal timing resistor for the monostable connected between pins 14 and 11 is replaced by the impedance of a transistor. The input trigger pulses to pin 3 provide predetermined pulse width at the output of the monostable depending on C_2 and the effective resistance provided by the transistor which is changed by the feedback loop to maintain the duty cycle. The output pulse defines the time for which


2. Integrated-circuit CA3081 contains seven n-p-n transistors with the emitters commoned. The control of pulse width from the integrated-circuit monostable is achieved by the **R-C** combination across pins 14, 11, 10. Hence by driving the base of one of the transistors Tr_1 to Tr_7 , a different capacitor is switched across pins 10, 11. The absolute value of capacitor depends on which of the input terminals are taken high or low respectively, and this may be

current I_1 flows into C_1 . For V_{out} high,

For V_{out} low $I_1 = \frac{V_{\text{out}L} - V_{\text{ref}}}{R}.$

In steady-state operation, the


average current to the capacitor is zero, when α has reached the correct value. The above expression for I_{av} is then zero and

$$\alpha = \frac{V_{\rm ref} - V_{\rm outL}}{(V_{\rm outH} - V_{\rm outL})}$$

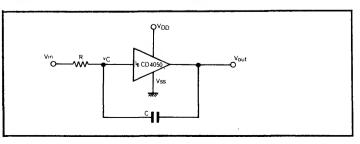
To avoid loading the monostable output and thus possibly varying V_{out_H} and V_{out_L} , an alternative output is taken from pin 1 via an inverter. Variable base drive due to V_I can cause the transistor impedance to vary between 500 Ω and 500k Ω , allowing a pulse repetition frequency range of the order of 1000:1.

Reference

Langon, H. P. D. *Electronics*, July 24, 1975, p. 93.

controlled sequentially, as in the specific application of the reference, using a read-only memory package. It is suggested that temperature compensation for the pulse width might be achieved by including a thermistor as part of the tuning resistor network R.

Reference Pulford, I. P. & Risk, R. J. Applied Ideas: *Electronic Engineering*, Sept. 1974.


3. The input impedance of c.m.o.s. gates is very high and therefore provide a useful means of obtaining long delays with relatively small capacitance values. This circuit provides a means of eliminating the slow rise of capacitor voltage, when it is normally connected between gate-input and the $V_{\rm SS}$ rail. When $V_{\rm C}$ reaches the lower threshold value, then $V_{\rm out}$ begins to go positive. As the charge on the capacitor

cannot change instantaneously, V_C follows the output at a rate determined only by the c.m.o.s. gate. A similar regenerative effect will occur

on a negative transition.

Reference

Electronic Design 1, January 4, 1974.

