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Counters are cyclic sequential 
circuits which return to their initial 
state after a specified number of 
changes in the input state. The output 
of a counter in its specified code gives 
the number of changes of the input 
signal or the number of input pulses 
received since the circuit was last in 
its initial state. Counters are being 
used extensively in industrial plants 
for such functions as controlling the 
position of a machine tool or for 
packing a specified number of items 
in a box. They are also used in 
laboratory environments for such 
functions as counting frequency, 
recording time, speed and accelera- 
tion. 

Codes 
The most commonly used codes in 
electronic counters are: 

True binary (8- 4 -2 -1) code, 
Gray codes, 
B.c.d. codes and 
Ordered codes, for example the 

excess -3 (XS -3)., 
The true binary code, often referred 

to simply as the "binary code" 
is the simplest because each digit is 
represented in a conventional binary 
system. Gray codes are those in which 
adjacent numbers differ in one bit only, 
eliminating races which arise when two 
or more bits attempt to change simul- 
taneously. The true binary code is 
shown in Table 1, for four binary digits. 

If all the sixteen combinations in the 
sequence in Table 1 are used, the 
counter is called a maximum -length 
counter; if, on the other hand, only the 
first ten combinations are used the 
counter is called a scale -of -ten counter. 

A Gray code in which only one digit 
changes at a time is called a single -step 
code, the best known one being the 
reflected binary codé. This code is 
tabulated in Tables 2(a) and 2(b) for 
both three and four binary digits. 
Examination of Table 2(a) shows that 
reflection of the three least significant 
digits takes place about the centre line 
of the code. All those combinations 
above the centre line have a most 

significant digit of 0 whilst those below 
have a most significant digit of 1. 

Similar comments can be made about 
the three -digit code except that, in this 
case, reflection of the two least signifi- 
cant digits takes place. 

The sequence of the 4 -bit reflected 
binary code is shown plotted on a 
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8 1 o o o 
9 o o 
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15 

1.Unused code 
combination 
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counters 

'fable 1. True binary code, with unused 
combinations for decade counters. 

Karnaugh map in Fig. 1(a). The plot 
shows that, as the code proceeds from 
one combination to the next, only one 
cell boundary is crossed. It is clear that 
any single -step Gray code can be deve- 
loped immediately from a Karnaugh 
map by tracing a single step path 
through the map as shown in Fig. 1(b). 
The code sequence for this example is 
shown in Fig. 1(c). 

In b.c.d. (binary- coded -decimal) 
codes, each of the ten decimal digits 0 to 
9, is represented by a binary code, 
frequently the 8 -4 -2 -1 code. For example 
the b.c.d. (8- 4 -2 -1) representation of 456 
is 0100, 0101, 0110. B.c.d. codes provide a 
useful link between the counting 
systems used by digital machines and 
those used by human beings. 

The codes tabulated in Tables 3(a) 
and 3(b) are examples-of weighted b.c.d. 
codes. 

In a weighted code a weight Wi is 
assigned to the Ph binary digit. For 
example, for the 8 -4 -2 -1 code combina- 
tion 1001, W4 = 8, W3 = 4, W2 = 2 and 
W1 = 1 

Hence, 

¡=4 

Zdec = IVA y_, 

d D C B A d B A 

0 o o o o o o o o 
1 o o o 1 o o 1 

2 o o 1 2 o 1 

3 o o o 3 o o Reflection 

4 o o 4 o 
5 o 5 1 

6 o o 6 o 
7 o o 0 tReflection 7 o o 
8 1 o o 
9 1 o 1 

10 1 1 

11 1 o 
12 o o 
13 o 
14 o o 
15 o o o 

Table 2. Four -bit reflected binary (a) and three -bit (B) reflected binary code. 
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d D C B A d D C B A d D C B A 

o 2 4 2 5 4 2 o o o 
1 o 1 o O o o o O o o O O o O 

1 O O o 1 1 o o o 1 2 o 1 o 
2 o o o 2 O O 1 O 3 o o 

3 o o 1 3 o o 1 
4 o 

4 o 1 o o 4 O O O 5 o o o 

5 O 1 5 o o o 6 1 o o 
6 1 o o 6 O o 7 1 O 1 o 
7 1 o 1 7 o 1 o 8 1 o 1 

8 1 1 o 8 O 9 1 o o 
9 1 9 1 o o 

.Table 3. Weighted codes. 2 -4 -2 -1 code is at 
(a) while (b) shows 5 -4 -2 -1 code. 

where Si is the value of the jth binary 
digit, and 

Zdec=1 x8+0x4+0X2+ 1 x1=9. 

The various code combinations in the 
2 -4 -2 -1 and the 5 -4 -2 -1 codes can be 
evaluated in a similar manner. 

In an ordered code, the various 
combinations are assigned to the differ- 
ent decimal digits by means of a 
mathematical equation. An example of 
this is the XS -3 code. For this code 

j -4 

Zdec -E WjSj - 3, where 
¡ =l 

W4 =8, W3= 4,W2= 2,W1 =1. 

Hence, the code combination 0100 = (0 
x8 +1X4 +OX2 +OX 1) -3 =1. 
The XS3 code is shown tabulated in 
Table 4. 

Codes can be made error -detecting by 
the addition of extra bits, called parity 
bits. In Table 5(a) the 8 -4 -2 -1 code has 
an additional bit in the column headed p 
which establishes odd parity in each 
code combination, i.e., each code com- 
bination contains an odd number of l's. 
Similarly in Table 5(b) a parity bit has 
been added to the same code which, in 
this instance, establishes even parity for 
each code combination. Detection 
equipment is now required at the 
receiving end which, in the case of odd 
parity, is used to determine whether 
each code combination has an odd 
number of l's. 
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Fig. 1. Karnaugh plots of reflected 
binary (a) and Gray code (b). 
Tabulation of Gray code is at (c). 
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Table 4. Excess -3 code (XS -3). 

d D C B A 

o 0 0 0 0 1 

1 0 0 0 1 0 
2 0 0 1 0 0 
3 0 0 1 1 1 

4 0 1 0 0 0 
5 0 1 0 1 1 

6 0 1 1 0 1 

7 0 1 1 1 0 
e 1 0 0 0 0 
9 1 0 0 1 1 

Codes can also be made error -cor- 
recting by the addition of extra bits 
whose function is to detect an error and 
its position. The most important codes 
of this kind are the Hamming codes, in 
which the bit positions are numbered in 
sequence from left to right. Those 
positions numbered as a power of 2 are 
reserved for parity check bits, whilst the 
remaining positions are used for the 
information bits. 

For a seven bit code combination: 
1 2 3 4 5 6 7 

PI P2 x3 P4 X5 X6 X7 
pl, p2 and p4 are the parity bits and x3, x5, 

x6 and x7 are the information bits. The 
parity bits are obtained from the 
information bits as follows: 

pl is selected to establish even parity 
over bits 1,3, 5 and 7 

132 is selected to establish even parity 
overbits 2, 3, 6 and 7 

p4 is selected to establish even parity 
over bits 4, 5, 6 and 7 

The Hamming code combinations for 
the natural n.b.c.d. code are shown 
below in Table 6. 

The correction process for this code is 
carried out on the assumption that only 
one bit is in error and that it is only 
necessary to locate that bit. This is 
achieved by checking for odd parity 
over the same three code combinations 
for which even parity was established at 
the transmitting end. The check is 
carried out with the aid of the exclusi- 
ve-OR function. 

For the exclusive -OR function 
A® B =AB +AB and hence 
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d D C B A p 

o 0 0 0 0 0 
1 0 0 0 1 1 

2 0 0 1 0 1 

3 0 0 1 1 0 
4 0 1 0 0 1 

5 0 1 0 1 0 
6 0 1 1 0 0 
7 0 1 1 1 1 

8 1 0 0 0 1 

9 1 0 0 1 0 

Table 5. Parity. 8 -4 -2 -1 code at (a) has extra 
bit to give odd parity and that at (b) has 
even parity. 

d p1 p2 x3 p4 x5 x6 x7 
o 0 0 0 0 0 0 0 
1 1 1 0 1 0 0 1 

2 0 1 0 1 0 1 0 
3 1 0 0 0 0 1 1 

4 1 0 0 1 1 0 0 
5 0 1 0 0 1 0 1 

6 1 1 0 0 1 1 0 
7 0 0 0 1 1 1 1 

8 1 1 1 0 0 0 0 
9 0 0 1 1 0 0 1 

Table 6. Hamming combinations for n.b.c.d. 
code. 

0 ®0 =0 
0 ®1 =1 
1 ®0 =1 
1 ®1 =0 

The above tabulation shows that the 
value of the exclusive -OR function is 1 

when either A or B are 1, and is 0 when 
both A and B are either 0 or 1. In other 
words the value of the exclusive -OR 
function is 1 when odd parity exists. 

The check functions are: 
cl =p1" ®x3 ®x5 ®X7 
c2= p2 0X3 ®x6 x7 
c4 =p4 ®X5 ®X6 ®X7 

If c1 = 1 there must be an error in p1, x3, 
x5 or x7. The bit in error, E, may be 
obtained from the table below 

c4 0 0 0 0 1 1 1 1. 

c2 00 1 1 00 1 1 

cl 0 1 0 1 0 1 0 1 

E 0 1 2 3 4 5 6 7 

For example, suppose the code combin- 
ation received is 1101101. Then c1 =1, 
c2 =0 and c4= 1. Hence the 5th bit is in 
error and the code combination should 
read 1101001. 

Synchronous counters 
The design steps for synchronous 
counters are (1) draw a state diagram, 
(2) code the states with the selected 
counting code, ánd (3) derive the input 
equations for the counter flip -flops. 
Binary counters (maximum length). For 
the sake of consistency, variable A is 
assigned to the 2" bit, B to the 2' bit, C 

www.americanradiohistory.com

www.americanradiohistory.com


46 

to the 22 bit and so on. In deriving the 
general form of maximum -length bin- 
ary counters, use will be made of the 
fact that the addition of higher order 
counting stages does not affect the 
lower order counting stages. This, of 
course, is also the case in conventional 
decimal counts - for example, the 
"units" and "tens" of a car odometer 
change at the end of every one and ten 
miles travelled, irrespective of the 
number of stages in the odometer. 
Scale -of -2 'up' counter. Figure 2(a) 
shows the state diagram and codes. 
The flip -flop equations are: 
SA =So =A, therefore, JA =1 
RB = Si =A, therefore, KA =1 
The corresponding circuit is shown in 
Fig. 2(b) 

Scale -of-4 'up' counter. JA= KA =1, as 
for a scale -of -2 counter. The state 
diagram and codes are in Fig. 3(a). The 
flip -flop equations are: 
SB= SI + (S2) = AB, therefore, JB =A 
RB= S3 +(So) =AB, therefore, KB =A 
The corresponding circuit is shown in 
Fig. 3(b). 

Scale -of -8 'up' counter. JA= KA= 1 and 
JB= KB= A, as for the scale -of -4 counter. 
The state diagram and codes are in Fig. 
4(a) and the flip -flop equations_ are; 
Sc= S3 +(S4) +(S5 +(S6) =ABC, there- 
fore, Je = AB 
Rc= S7 +(S0) +(SO+(S2)= ABC,there- 
fore, Kc =AB 
The corresponding circuit is shown in 
Fig. 4(b). 

Scale -of -2" 'up' counter. By observa- 
tion, the flip -flop equations are; 
JA=KA=1 
JB =KB =A 
Jc= Kc= AB =BJB 
Jo =Ko= ABC =CJc 
JE= KE= ABCD= DJ, and so on. 
If speed is essential, large input gates 
must be used to implement directly the 
functions in the third column. 

(a) 

Fig. 4. State diagram (a) and circuit (b) 
of three -stage (scale -of- eight) counter. 
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A=0 

A=1 

JA 

KA 
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2° Synchronous 'down' binary counters 
(maximum length) can be designed in 

A precisely the same manner and the 
following flip -flop equations are 
obtained. 

C ? 

(a) (b) 

Fig. 2. State diagram for one -stage 
(scale -of -two) counter (a) and its 
circuit realization (b). 

so 

_FL 

s, 

AB 
00 

10 

52 01 

53 11 

_FL 

Á JA =KA =1 
JB =KB =A_ 
Je =Kc= 4B =BJ. 
J° =Ko= ABC =CJc and so on 

Note that in the case of binary 
counters it is possible to use an 'up' 
counter to count down by utilizing the 
complementary flip -flop outputs as 
shown 'n Tab e 7. 

Fig. 3. Two -stage (scale -of -four) 
counter state diagram and codes (a) 
and circuit embodiment (b). 

JA 

h. A 

2° 
A 

-4111-11111-111-0. JIB 

B A 

0 0 0 0 7 1 1 1 

1 0 0 1 6 1 1 0 
2 0 1 0 5 1 0 1 

3 0 1 1 4 1 0 0 
4 1 0 0 3 Cl 1 1 

5 1 0 1 2 0 1 0 
6 1 1 0 1' 0 0 1 

7 1 1 1 o 0 0 0 

Table 7 Using the complementary outputs 
of a chain of flip -flops to count down. 

The next part of this article will continue 
the treatment of counters, going on to 
discuss Gray code types, up -down 
counters and their control and ripple - 
through counters. 
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