RADIO-ELECTRONICS

-]
&

DRAWING
BOARD

Automatic data sequencing

IN OUR LAST DISCUSSION OF MEMO-
ries, we mapped out the design
criteria for our demonstration cir-
cuit. We've taken care of keyboard
data entry with the binary key-
board encoder that we've already
built. This time, we’ll see what
must be added to that circuit to
make it do something useful. After
all, what good is the encoder with-
out having some way of storing
and/or manipulating its output
data. '

Since one of the design criteria
is automatic sequencing of the ad-
dress and data, we’ll need some-
thing in the circuit that automat-
ically does one thing after another.
The problem of data sequencing
was addressed when we built the
binary keyboard encoder, which
was designed to continuously
scan a series of switches in search
of a depressed key.

Automatic sequencing scheme
Since we'll be sequencing both
address and data, we also need

KEYBOARD
STROGE gt
SEQUENCE
o CONTROL
HIGH-ORDER
HALF OSIZ
ADDRE
1 STARAGE o
|
LOW-0ORDER
KEY30ARD HALF OF
DATA STORAGE ADDRESS
O 2 QO
£ TToRhne CEESDAS

FIG. 1

lRS
c2 Cox.
T AAA~

I¢

4y - +V RS

Icq
4017 3
ENARLE GND b |z
12 ls 3 z |4

- |zT I; 2

41 GPbis ST |5
P Q)

s
o 7
P2 Jogee 92 L ien
p3 Hz Q> ORDER
1} P i
pa 4508 o,

KEYB0ARD 141 Loex
STROBE

J-J

GNID -

[+ RN

A

4V CLk

124l
(s B [
pi 0I5 574 1L

@
KEJBIARI 171 NP2 R Y
DATA 4= DI 4y A

| o D4 4508 @+

Lows
? ORPER
ADORESS

J;coé

Clk
—T73

12 {312

4 oo T 1S
- [ZF] -

D2 Q2
p3 Iclj"z"’“ o3
o4 4508 @4

DATA

o (&

§ 484

4V CLK
iza 1L

IlS i4-

[17
D VIS STQI
1815, a2 5l
20 2]

D3 I1Ce-b Q3
22 2 23

(%sce
Text)

d &6d &

04 4508 Q4

Lk

FIG. 2

some way to let the circuit know
which is which. The easiest way to
keep track of what's stored where

alook at Fig. 1, a tentative solution
to the problem.
The data coming out of last

is to store the low and high order
halves of the address, plus the data
separately. Given all that, let’s take

month'’s keyboard are fed to a se-
ries of latches, each of which is
four bits wide. Since the 5101 (the

static RAM that we’ll be using for
storage) has eight address pins
and four data inputs, we’ll need
three latches to handle the job.
You can get IC’s that are 4-bit
latches, but a “neater” way is to
use a 4508. It’s a 24-pin IC that is
really two 4-bit hold-and-follow
latches in one package. By using
that IC, we'il only need two 4508’s
and have one latch left over for any
brainstorms we might come up
with in the future.

The easiest way to sequence
things is to use a 4017 binary coun-
ter, an IC you should be really fa-
miliar with by now. We spent some
time discussing that IC in
November and December, 1983.
Now that we have the cast of
characters for this portion of the
circuit, let’s put them together and
see how they fit into our design.

How it works

Figure 2 is a schematic of the
circuit we'll use to sequence the
binary in information from the
keyboard encoder that we built
last month. It consists of a 4017
counter/driver and two 4508 dual
4-bit latches. (If you're wondering
about the parts numbering, I'm
keeping things in line with last
month’s circuit to avoid con-
fusion.)

The action of the 4017 is (or
should be) self explanatory. One
thing that does deserve a bit of
attention, however, is the way the
clocking is being done. The 4017
sequences on the positive going
(ground to +V) half of the incom-
ing clock pulse.

Note that the four data lines
(0-3) of the 4017 are connected to
the sTrRose inputs of the latches.
That is done to sequentially enable
each latch. Also notice that the
pIsABLE pins of each latch is tied to
ground: That means that the out-
puts of the 4508’s are permanently
enabled. However, there is no data
output unless the strobe input is
high.

The 4508 can provide a three-
state output, but there is no need
for it because there's no common
output-bus. Each latch will be used
to control different parts of the
memory and will, therefore, be
connected to different pins. (But
keep the three-state option in
mind because many applications

require that feature, which is not
found on all latches.)

When power is turned on, all
four latches are cleared by the R-C
pulse generated by R3 and C2.
Also at turn-on, pin 3 (output “@”)
of the 4017 goes high and enables
the inputs of the first latch. The
circuit then sits there and waits pa-
tiently for you to press a key on the
keyboard. In other words, any
data presented to the input of IC5-
awill now be transferred to its out-
put.

When a key is pressed, encoded
data enters 1C5-a and is passed on
to its outputs (which is connected
to 4 address inputs on the 5101
CMOS static RAM). At the same
time, the strobe line goes from
high to low and remains in that
state so long as the switch is held
down.

After the key is released, the
strobe line returns to the high
state and the 4017 advances by one
count. That disables the first latch
(1C5-a) and enables IC5-b, the next
latch in the chain. The same action
is repeated for each successive
latch.

When putting the circuit to-
gether (and you should), note that
the 4017 counts on the release of
the switch rather than on the
pressing of the switch. You could
make things happen when the key
is first pressed if you want, but it
would take a bit more hardware
and, quite honestly, | can’t think of
one reason for doing things that
way.

When data comes off the key-
board, they are sequentially
stored in each latch automatically.
Now, automation is a wonderful
thing, but there are times when
you want a little more control. In
our case, automation means that
there’s no way to go back. Put an-
other way, if you hit the wrong key,
there’s no way to correct it. That’s
the penalty you pay for not design-
ing things to work with an “enter”
key.
If you feel that you'd like to be

able to go back, or you want to
actually strobe the data into the
latch separately, all you have to do
is put a clear switch into the cir-
cuit, or clock the 4017 with a sepa-
rate switch. How to go about
doing such things is a good exer-
. cise to see if you really have a clear

understanding of all the things
we’ve done so far. Design it your-
self and try it out. As for me, I'm all
in favor of automation.

When you add extra features to
the circuit, keep in mind all the
design rules we've discussed.
Write everything down, from the
criteria to the actual hardware
you're putting in the circuit. As |
said before, bad habits are hard to
break, and any circuits designed
with bad habits have a way of going
up in smoke!

You'll notice that we have an ex-
tra latch left over. Since all we're
handling is four data-bits and eight
address-bits, the last latch seems
to be an unavoidable waste of
hardware. Why not put in some
brain burning time until next time;
see if you can think of some use for
it? I've already got something slick
in mind—how about you?

Feedback

Before we end this month’s dis-
cussion, there’s a piece of impor-
tant business that requires imme-
diate attention. | thought that I'd
taken care of it some time ago, but
it seems that it needs a little bit of
clearing up and now’s as good a
time as any.

I've received several letters
lately that contain more or less the
same comment. Several of you
have said, “I like what you’re doing
but” (followed by): “I know a way
to do it better;” “l know a way to
do it easier;” “l can do it with
fewer parts;” “My way uses a lot
less power,” and other such state-
ments.

| guess there’s some confusion
about what you're supposed to get
from this column. There are many
schematics of workable circuits
drawn and explained here, but the
point of them isn’t to compile a list
of construction projects or, for that
matter, anything like the sort of
thing you’d see in the many books
dealing with the 555 timer.

If you look over some of our past
discussions, like the ones on the
4018, which began in January, 1984,
you'll realize there’s much more to
it than just figuring out how to
generate sinewaves. After all, our
final circuit only had a handful of
parts and was far short of what is

needed for any really serious au-

dio measurements. Not only that,

