

Application Note AN2358

Manchester Decoder Using PSoC®

Author: Philippe Larcher
Associated Project: Yes

Associated Part Family: All
Software Version: PSoC Designer 4.2

Associated Application Notes: AN2281, AN2325

Abstract
A Manchester Decoder can be built with two PSoC device digital blocks and some combinatorial
logic. Once initialized, the decoder requires no firmware intervention. Clock and serial data
recovered by the receiver can serve as inputs for a number of serial data communications
methods including SPI and pattern recognition circuits.

Introduction
Manchester code is widely used in
communications systems for reason of simplicity:
a single signal conveys data and clock
information, without the need for high-level
protocol. Additional benefits include self-
synchronization, zero DC components and
independence from transmission media. A
Manchester link consists of a transmitter
(Manchester encoder) and a receiver
(Manchester decoder).

Manchester encoding implementations have
been described in previous Application Notes,
particularly AN2281, “Manchester Encoder Using
PSoC.”

Manchester decoding is more complex, since it
requires extracting clock and data information
from a single signal. Application Note AN2325,
“Serial Bit Receiver with Hardware Manchester
Decoder” describes a method based on analog
reconstruction of the clock signal. In contrast, this
Application Note describes a Manchester
Decoder based on digital reconstruction;
implemented with only two PSoC digital blocks, it
is portable to any PSoC sub-family.

Decoding speed is programmable and can easily
achieve 200 kbps or more.

Manchester Code Principle
Manchester code embeds clock information with
data in a very simple way: each bit is transmitted
with a transition in the middle of bit time. For a ‘0’,
transition is 0 to 1, for a ‘1’, transition is 1 to 0
(Figure 1).

0 1

bit-time

Figure 1. Manchester Coding for Bit Values 0 and 1

When transmitting successive bits, additional
transitions are inserted between bits to satisfy the
mid-bit transition rule, as represented in Figure 2.

0 1 1 0 0 1 0 0

Figure 2. Transmitting Multiple Bits

5/19/2006 Revision A - 1 -

AN2358

Manchester Decoder, The Digital
Way
The method described hereafter is not so much
based on the direction of mid-bit edge, but on the
fact that the bit value is present during the first
half of bit time, before the transition edge. If a
delay of three-fourths bit time is triggered by the
incoming mid-bit transition, the value captured at
the end of the delay will tell the next bit value
(Figure 3).

3/4 bit-time

0 1 1 0

1 1 0

Serial Manchester
Data

Figure 3. Capturing the Next Bit Value

It is important to note that if the next bit value is
‘1’, the receiver sets a signal to invert the input bit
stream polarity, so the next signal transition
appears as a low-to-high transition (Figure 4). If
the next bit value is ‘0’, the receiver resets the
inverted signal.

0 1 1 0 0

3/4 bit-time 3/4 bit-time 3/4 bit-time

Serial Data In

Polarity_invert

Serial Data In
Xor

Polarity_invert

3/4 bit-time

Figure 4. Inverting Mid-Bit Transition

I can hear you saying, “Okay, this is fine, but
what’s next?” Well, now simply rename
“Polarity_invert” to “Serial Data Out” and “Serial
Data In xor Polarity_invert” to “Serial Clock Out”
and your Manchester receiver is done (Figure 5)!

Some considerations are still required for the first
transition versus the idle state of Serial Data In,
and will be treated at the end of this Application
Note, after the description of implementation.

0 1 1 0 0

3/4 bit-time 3/4 bit-time 3/4 bit-time

Serial Data In

Serial Data Out

Serial Clock Out

3/4 bit-time

0 1 1 0 0
Figure 5. Manchester Receiver Outputs

PSoC Implementation
The previous description translates into the
following block diagram.

Serial Data In Serial Clock Out

Serial Data Out
FF

Delay

Trig

Clk

Figure 6. Manchester Receiver Block Diagram

As can be seen from the block diagram, the
following three functions are required:

o A XOR gate to generate the Serial Clock
Out.

o A D Flip-Flop to register the state of
Serial Data In when the delay expires.

o A counter to generate a three-fourths bit
time delay, triggered by the XOR-gate
output (always a 0-to-1 transition).

Let’s have a look at the PSoC implementation for
these functions.

XOR Gate
This function is easily implemented with one of
the look-up tables (LUT) placed on output rows,
and does not require further explanation.

D Flip-Flop
There is no D Flip-Flop function directly available
in the PSoC architecture. However, it is possible
to implement a “conditional T Flip-Flop” with a
digital block configured as a counter. If the
counter period is set to ‘1’ and the compare value
to ‘less than or equal 0’, then the compare out
signal will toggle upon each clock cycle when
enable is high.

5/19/2006 Revision A - 2 -

AN2358

With this arrangement we just need to connect
the enable signal to the XOR gate output, and the
Polarity_invert signal only toggles when there is a
change (0 to 1 or 1 to 0) in the input bit value, as
seen in Figure 7.

End_of_delay

SDin

XOR Out
(Counter En.)

SDout
(Pol_invert)

End_of_delay

0 1 1 1 0

XOR Out
SDin

Pol_invert

SDout

SCKout

En.

CompOut

TCout

En.

CompOut

TCout

CNTR8

(Period=1,
Compare=0)

Figure 7. Emulation of D Flip-Flop with Counter and Enable

Delay Counter
The XOR gate output can be used as an enable
signal to start counting. However, its duration
may be only one-half bit time wide, which is
insufficient to cover a three-fourths bit time
counting period.

The problem is solved by OR-ing the initial
enable signal with a counter compare out signal,
thus extending the enable duration over the
whole delay period, as shown in Figure 8. The
combinatorial OR gate is implemented with a row
LUT.

0 1 1 0

Serial Data In

XOR Out

Counter Enable

Comp_Out

End_of_Delay

3/4 bit-time

XOR Out
SDin

CNTR8

VC3 End_of_delay

SCKout

En.

CompOut

TCout

En.

CompOut

TCout

Delay

Figure 8. Three-Fourths Bit Time Delay Generation

Note that the polarity control is updated on the
rising edge of TCout, causing the XOR out
enable signal to be reset one clock cycle before
CompOut, thus obviating any edge crossing.

VC3 (counter clock frequency) counts three
fourths of bit time; this requires a VC3 clock at
least four times the bit rate. However, tolerance
must be added to cope with intrinsic precision
and jitter of the transmitter and receiver.

Selecting a x16 oversampling rate gives more
than 10% frequency tolerance on each side and
is the retained value for the design.

For example, if the transmission bit rate is 100
kbps, then the clock frequency for the delay
counter is 1.6 MHz, i.e. VC3 = SysClk/15.

5/19/2006 Revision A - 3 -

AN2358

Figure 9 shows the adequate value of period and
compare out for a three-fourths bit time delay.
These values depend only on the selected
oversampling rate and do not need to be
changed when changing the transmission speed
through VC3.

Serial Data In
(100Kbps)

VC3
(1.6MHz)

Comp_Out

10uS

End_of_delay
(TCout)

3/4

1 0 125 4 3 29 8 7 612 11 10Period counter

Figure 9. Period and Compare Out Values for Delay Counter

Place and Route
Figure 10a represents the whole Manchester
receiver function. The PSoC device offers several
possibilities to internally route back block output
signals to block input (as required, for example,
for XOR Out). However, internal feedbacks may
create placement or pinout constraints if the
receiver is imported into an existing design. For
this reason, external feedbacks are
recommended, at the cost of three additional
input pins, as shown in Figure 10b. Figure 10c is
a screen shot of the user module placement and
routing in the associated PSoC Designer™
project.

XOR Out
SDin

CNTR8

VC3 End_of_delay

Pol_invert

SDout

SCKout

En.

CompOut

TCout

En.

CompOut

TCout

En.

CompOut

TCout

En.

CompOut

TCout

CNTR8

Delay
Figure 10a. Manchester Receiver Final

5/19/2006 Revision A - 4 -

AN2358

XOR Out
SDin

CNTR8

VC3 End_of_delay

Pol_invert

SDout

SCKout

En.

CompOut

TCout

En.

CompOut

TCout

En.

CompOut

TCout

En.

CompOut

TCout

CNTR8

Delay

external feedback

external
feedback

SCKout_fb

en_dly

en_dly_fb

Figure 10b. Manchester Receiver for Flexible Place and Route

Figure 10c. Manchester Receiver, Device Editor Interconnect View

Porting the Manchester Decoder
The project associated with this Application Note
can be used standalone or plugged into a larger
application. The setup is simple.

Hardware

o Externally connect SCKout and
SCKout_fb, en_dly and en_dly_fb.

o Set VC3 frequency to 16 times the serial
bit rate.

Firmware Initialization

o Start the Delay counter and the
Pol_invert counter.

o Re-adjust the Pol_invert counter period
to ‘1’ (correct startup requires initial
period to be ‘0’).

Synchronizing on the Right Edge
Up until now, the Manchester receiver behavior
analysis assumed that the first detected edge
was at mid-bit transition. However, there are
cases where the first transition seen by the
receiver is an inter-bit transition. For example,
this occurs if the idle state of the line is low and
the first received bit is a ‘1’ (or inversely), or, if
the receiver is randomly enabled in the middle of
a packet transmission. Such initial conditions
translate into synchronization aliasing. However,
a worthy receiver should be able to dynamically
recover from this situation without manual
intervention.

Initial State and First Bit Mismatch
Figure 11 shows a situation where the idle state
of the serial input is low, and the first bit sent by
the transmitter is a ‘1’. In good faith, the receiver
will consider the first transition to be a mid-bit
transition, and start extracting the serial data from
this point.

5/19/2006 Revision A - 5 -

AN2358

Figure 11 shows that the faulty synchronization
will cease as soon as a ‘0’ is received. This will
cause the receiver to re-synchronize correctly
and definitely, with the reason being that a ‘1-
then-0’ bit sequence (and ‘0-then-1’) only exhibit
mid-bit transitions and no inter-bit transitions,
forcing receiver re-alignment on the right edge.

1 1 0 1

SDin

SDout

SCKout

0 0 0 1
receiver synchronized on wrong edge receiver is resynchronized

Figure 11. Idle State Low and First Received Bit is ‘1’

The same story happens when the idle state of
the line is high and the first received bit is a ‘0’,
see Figure 12. In this case, the correct
synchronization will start with the first ‘1’ that is
received.

0 0 1 0

SDin

SDout

SCKout

1 1 1 0
receiver synchronized on wrong edge receiver is resynchronized

Figure 12. Idle State High and First Received Bit is ‘0’

Synchronization errors due to hazardous
enabling of the receiver during packet
transmission create the same situations as
described above, and are auto-recovered in the
same way.

Auto-Synchronization
As can be seen above, the condition for correct
synchronization is simple, and is up to the
transmitter as follows:

o Either make sure that the first bit sent is
compliant with the idle state of the line,
e.g., always start messages with a ‘0’ bit
when the idle state is low.

o Or, send a 0 to 1 (or 1 to 0) preamble to
guarantee a correct synchronization in
any situation. Of course, the preamble
can extend beyond these two bits to add
other benefits such as speed
synchronization, pattern recognition, etc.

5/19/2006 Revision A - 6 -

AN2358

Conclusion
A robust Manchester Decoder has been
implemented using two PSoC digital blocks.
Recovered serial clock and serial data can feed a
number of serial data communications methods
including SPI and pattern recognition circuits.

About the Author
Name: Philippe Larcher

Title: Field Application Engineer,
Cypress France

Background: 25 years of activity in computer
and electronic system design.
Authored several application
notes, articles, and the book
"VHDL, Introduction à la
Synthèse Logique."

Contact: ppl@cypress.com

 Cypress Semiconductor

2700 162nd Street SW, Building D
Lynnwood, WA 98087
Phone: 800.669.0557

Fax: 425.787.4641
http://www.cypress.com/

Copyright © 2006 Cypress Semiconductor Corporation. All rights reserved.
PSoC is a registered trademark of Cypress Semiconductor Corp.

"Programmable System-on-Chip," PSoC Designer and PSoC Express are trademarks of Cypress Semiconductor Corp.
All other trademarks or registered trademarks referenced herein are the property of their respective owners.

The information contained herein is subject to change without notice. Made in the U.S.A.

5/19/2006 Revision A - 7 -

mailto:ppl@cypress.com
http://www.cypress.com/

	Application Note
	AN2358
	Manchester Decoder Using PSoC®
	Introduction
	Manchester Code Principle
	Manchester Decoder, The Digital Way
	PSoC Implementation
	Place and Route
	Porting the Manchester Decoder
	Synchronizing on the Right Edge
	Initial State and First Bit Mismatch
	Auto-Synchronization

	Conclusion
	About the Author

