Bird Sound Generator with Timer

Most people have heard parrot bell or bird bell It produces sound as that of parrot repeatedly The circut described here uses a umer along with the 'parrot' circuit to produce a very pleasing sound, as that of parrot or bird Repetition rate of sound is automatically varied due to the timer circuit Ihis circuit will cost about Rs 50 only Power consumption for this circuit is 15 mA at 6 volts.

Pin 2 of IC 555 is connected to relay RLI's terminal A. Terminal B of the relay is connected to ground, and relay termingls K and L are connected to two opposite terminals of the driver transformer XI.

As soon as switch Sl is pressed, relay operates for particular ume interval. This opens the opposite two terminals of the driver transformer and changes repetition rate of sound of the parrot bell After one to three seconds, the relay will be in off state and thus short the two terminals of driver transformer and again change the repetition rate of sound of the parrot bell carcuit. Preset VRI may be adjusted for a variathon in the sound.

Repetition rate can be changed as per choice by replacing capacitor C3 with another value. The effect of using center terminal of driver tratssormer should also be obwerved
(During nuakation of the curcuit in EFY Lab, it was observed that changing the value of C 3 to $100 \mu \mathrm{~F}$ and conmeoting a 68-olimy resintor in series with the speaker produced a "reail parat sompd. And repettion rate of the sound duaphei wiath utisht veriation in DC supply voltage.)

TRUTH TABLE

INPUT	OUTPUT OF IC1									OUTPUT OFIC2						
DCBA	1	2	3	4	5	6			1011	3		5	5		7	9
L L L L	L	H	H	H	H	H			H H	H	H					
LLL H	H	L	H	H	H	H	H	H	H H	H	H		H		H	
L L HL	H	H	L.	H	H	H	H	H	H H	H	H	H	H	H	H	H
L L HH	H	H	H	L	H	H	H	H	H H	H	H	H	H		H	H
L HLL	H	H	H	H	L	H	H	+	HH	H	H		H	H	H	H
LHLH	H	H	H	H	H	L	H	H	H H	H	H		H		H	H
L. HHL	H	H	H	H	H	H	1	H	H H	H	H	H	H	H	H	H
LHHH	H	H	H	H	H	H	H	L	H H	H	H	H	H	H	H	H
$H L L$	H	H	H	H	H	H	H	H	L H	H	H	H	H		H	H
HLL H	H	H	H	H	H	H	H	H	H 6	H	H	H	H		H	H
$H \perp H L$	H	H	H	H	H	H	H	H	H H				H		H	H
H 1 HH	H	H	H	H	H	H	H		M H	H			H		H	H
HHLL	H	H	H	H	H	H			HH	H			L		H	H
HHLH	H	H	H	H	H	H			H H	H			H		H	H
H, M H	H	H	H	H	H	H			H H	H		H	H		L	H
HHHH	H	H	H	H	H	H			H H	H		1	H		H	L

74IS4. IC 744 and IC 7442 are 4 -line to 10 -line decoders. IC 7454 if a 4 thace wo 16 -line decoder/multuplexer
Whenever the design needs 4 -line to 16 -line decoding, the experimetater is forced to une IC74154 as there is no other IC avilitible in the market. The cost of IC 74154 is Rs 60 to 70 , which is ratber hugh companed to the cost of normally used

4Cs. Hence it is well justified to use a low-cost circuit for 4 -line to 16 -line decoding in the place of IC 74154.
F^{*} The circuit described here uses three TTL ICs. Though a Wit more of wring effort is involved, the saving in terms of Reost is considerable. The circuit should cost about Rs 25 "only. (Rs 20 for two numbers of IC 7442 and Rs 5 for IC " 7409).

Circuit shows the wiring of two IC 7442 to obtain 4-lne to " 16 -line decoding function. 1 Cl decodes the 4 -bit input in the conventional manner- -from 0 to 9 . For inputs beyond 9 , all the outputs of IC'I remain high. All the outputs of IC2 remain high for inputs from 0 to 9 . Inputs beyond 9 are decoded by IC2 giving outputs (LOW) from 10 to 15 on pins 3 to 7 and 9 . The drive logic for IC2 is provided by IC3. The truth table for the circuit is also shown.
T.K. LOKABHIRAM

Digital Combination Lock

There are several types of combination locks available but most of thent are mechanical. Here is a digital electronic combination lock which is much more reliable than the readily avalable mechanıcal combination locks. One can open a mechanical combination lock by trying again and again. But this electronic combination lock gives only one
chance to open it as it includes an alartay and han auto-ext-off system.

One has to close four switches in a definite sequence to open the lock. (In the cincuit shown here, the switch closing sequence has been pre-set as $\mathbf{S 1}, \mathbf{S 2}, \mathbf{S 3}$ and $\mathbf{S 4}$ respectively.) In case a wrong switch is closed, i.e, if this sequence is not
tRUTH TABLE

	INPUT		OUTPUT	
A	B	C	D	
0	0	0	0	
0	0	0	1	1
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	1
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	1
1	1	1	0	0
1	1	1	1	1
			1	

