wireless world circard

Set 14: Digital counters

This set was the first in the revised format for Circards. But for this book, we re-set the first three cards so that they would conform to the rest. The four-column presentation allows greater flexibility of layout and we hope you agree that the "unjustified" type-setting makes for greater readability, with its equal word-spacing and jagged right-hand edge. We took this opportunity to up-date the title area and to rename "series" with the more logical "set".
Another excellent summary of the subject precedes this set of circuits. It covers all the essential points about the use of bistable circuits as counters, starting by setting out the different kinds (JK, RS, D and T, discussed in more detail on glossary card 12), defining ripple and parallel counters, design using Karnaugh maps, and concluding with sequence generators. In digital parlance notice that bistable circuits are referred to as flip-flops, whereas originally this term referred to monostable circuits, the words flip and flop indicating an unstable state and a stable state. (Anyone for flip-flip for astables and flop-flop for bistables?) Content of the cards calls for little comment. Card 12 is useful for newcomers, listing various binary codes against decimal number, and in describing the different kinds of "flip-flops". It also shows connections for RS and JK types to give D and T functions.

Basic binary counters 1
One out of n ring counter 2
Johnson counters 3
Reversible counters-I 4
Reversible counters-II 5
Divide by n counters 6
High-power counters 7
High-speed counters 8
Low-power counters 9
Decade counters 10
M-sequence generators 11
Glossary: flip-flops and b.c.d. codes 12

An introduction to digital counters

A digital counter comprises an interconnection of bistable or two-state memory circuits or, colloquially, flip-flops. The counter embraces those circuits which accumulate pulses according to a specific code as they appear at the input, frequency dividers, sequence generators and pulse waveform generators. The application requirement will generally determine how the collection of flip-flops is identified, but in this article the generic name of counter will be used.
The basic flip-flop has one or two control inputs, and two outputs termed Q and $\overline{\mathrm{Q}}$ (not -Q), where $\overline{\mathrm{Q}}$ represents the opposite state of Q . The logic state of these outputs may be termed set or reset, high or low, 1 or 0 , and the change of state may occur on 0 to 1 or 1 to 0 transitions at the input, depending on the type used. The varieties of flip-flops used in counters are normally described by the control inputs and are termed D-type, T-type, RS and JK. The triggering input, called the clock-pulse input, ensures that a change of state will only take place on the occurrence of a pulse at the clock-input. Other facilities that may be available are preset and clear inputs which allow a flip-flop to be set $(\mathrm{Q}=1)$ or reset $(\mathrm{Q}=0)$, independently of the control inputs. Typical symbols for these flip-flops are shown in Fig. 1. Other variations include operation by positive or negative logic,
triggering on positive or negative pulse edges or a combination of these as in master-slave flip-flops.

A basic RS flip-flop using NAND gates is shown in Fig. 2. To represent the dependence of the Q output on the control inputs when a clock pulse occurs, a truthtable is used to demonstrate the state of Q at the nth clock pulse $\left(\mathrm{Q}_{n}\right)$, and after the next clock pulse $\left(Q_{n+1}\right)$-Fig. 3. For example, if S and R are both at logic zero when a clock pulse occurs, the output Q will not change state, but remain as it was before the clock pulse. However, if $S=1$, $\mathrm{R}=0$, then Q becomes logic 1 , i.e. if it was previously logic 0 a change of state occurs, and if it was logic 1 , it remains so.

The indeterminate state of Q for the condition that $\mathbf{R}=\mathbf{S}=1$ exists because of a race condition between gates and is one disadvantage of this flip-flop-such a condition must be avoided. The JK flipflop, however, does not have this disad-vantage-all output conditions are predictable, as shown in Fig. 4. The last combination of $\mathbf{J}=\mathbf{K}=1$ permits a useful toggle action in which the output changes state on the occurrence of every clock pulse.

Counters are generally classified as asynchronous or synchronous. The basic asynchronous circuit is implemented with cascaded toggle flip-flops, where the output of a previous flip-flop is the clock-
input for the next in sequence. Alternatively, the drive inputs may come from Boolean combinations of other outputs. In either case, a disadvantage is that each flip-flop changes state at a different time in a sequence. For each flip-flop a propagation delay exists between the occurrence of a trigger pulse and the next state of the output, and this delay "ripplesthrough" the counter. This restricts the maximum operational speed of the counter, since the maximum ripple-through delay must be less than the time between input pulses.

In integrated circuit technology, these counters have the advantage that each flip-flop operates at half the frequency of the preceding one. This allows a trade-off in high-speed (high-power dissipation) circuits to be used in the first stage, with lower speed (low-power) configurations being used in later stages. The maximum count (including zero) of a counter containing n flip-flops is 2^{n}, feedforward or feedback techniques allowing counts less than this to be achieved. The number of distinguishable states through which the counter cycles is known as the modulus of the counter, and this may be fixed when implemented with individual flip-flops, but some m.s.i. packages are available that permit variation of the modulus by a simple connection change or simple gating. If the outputs of ripple-counters are to be

(a)

(c)

(b)

(d)

Fig. 1. Four basic types of fip-flop.

Fig. 2. Nand-gate RS fip-flop.

Fig. 4. Truth table for JK flip-flop.

S	R	Q_{n+1}
0	0	Q_{n}
1	0	1
0	1	0
1	1	undefined

Fig. 3. Truth table for Fig. 2.

J	K	Q_{n+1}
0	0	Q_{n}
1	0	1
0	1	0
1	1	\bar{Q}_{n}

decoded, care must be taken to ensure that the decoder network is enabled only when it is certain that all intermediate state changes have occurred.
The disadvantage of the asynchronous counter is avoided by the synchronous or parallel counter, in which all flip-flops change state in synchronism with a common clock-pulse. The speed of operation is limited by one flip-flop delay and that of any gating necessary, and these will depend on the type of hardware being used, e.g. c.m.o.s., t.t.l., e.c.l. Recent Schottky synchronous counter packages have internal circuitry which eliminates all external gating, and counting speeds up to 70 MHz are claimed, and e.c.l. packages are available for speeds up to 110 MHz .

Any sequence may be generated using individual JK flip-flops and associated gating. The design is more complicated than the asynchronous types, but one technique simplifies the design problem using Karnaugh maps. ${ }^{1}$
The map is a two-dimensional representation of all possible combinations of a number of variables, where each square is one unique combination and adjacent squares are identical except for one variable. The rows and columns are arranged in accordance with the Gray code representation of decimal numbers, in which only one bit changes as we progress through adjacent numbers (Fig. 5). A Karnaugh map for four variables, A, B, C and D, is shown in Fig. 6, where a 1 in a square means the existence of logical "ANDed" variables, identified by the row and column common to that square.

The 1 squares are connected by the logical OR function, and the Boolean expression represented by Fig. 6 is $\mathbf{F}=$ А.B.C.D + A.B.C.D + A.B.C.D + A.B.C.D. A 0 in a square indicates that this particular combination does not exist. The advantage of the map is that minimization of the Boolean expression is simplified by being able to group adjacent squares in pairs, fours, etc. Two squares can. be combined to eliminate one variable, and these two squares can be combined with another two adjacent squares to eliminate one more variable. The four squares may be looped as shown, because of their adjacency, thus A and C become redundant as both states of each are included in these squares reducing the function to $\mathrm{F}=$ B.D. This can be confirmed by a Boolean minimization. Note that adjacency of squares exists at the extreme ends of horizontal rows, and at the extreme ends of vertical columns.
A design of a modulo- 6 Johnson counter. is considered as an example of the technique. The maximum modulus of an m-stage Johnson counter is $2 m$, hence a minimum of three flip-flops is required. It is assumed that the outputs are taken from the Q output of the flip-flops designated A, B and C, and the map is used to minimize the gating necessary to obtain the prescribed sequence Fig. 8. As all possible combinations of the
variables are not used, the "can't happen" or redundant states are denoted by a combination of one and zero (0) in the state table (Fig. 9) because the states are not specified and may be made 1 or 0 at will. In this case they will be considered as 1s. The state table shows the desired outputs at A, B and C on the occurrence of the numbered clock pulse, where 0 and 6 are equivalent, i.e. the 6th pulse resets the counter to zero. It will be assumed that the counter commences from the zero state.

The design technique requires the pre-
paration of a Karnaugh map for the J and K input of each flip-flop to determine the control levels required at each input for every step of the sequence, by deriving a minimal Boolean expression for each map, though as these are derived independently the circuit may not necessarily be minimal. This then determines the internal gating required.

An excitation table for the JK flip-flop is derived from the JK truth-table shown earlier. This table (Fig. 7) shows the necessary J and K inputs to either hold the flip-flop in a 1 condition or a 0 con-

DECIMAL	GRAY-CODE			
	A	B	C	D
	A	0	0	0
1	0	0	0	1
2	0	0	1	1
$\mathbf{3}$	0	0	1	0
$\mathbf{4}$	0	1	1	0
5	0	1	1	1
6	0	1	0	1
7	0	1	0	0
1				

Fig. 5. Gray code for decimal numbers.

Fig. 6. Karnaugh map for four variables.

Q_{n}	Q_{n+1}	J	K
0	0	0	x
0	1	1	x
1	0	x	1
1	1	x	0

Fig. 7. Excitation table for JK flip-flop.

C	B	A	input pulse no..
0	0	0	0
0	0	1	1
0	1	1	2
1	1	1	3
1	1	0	4
1	0	0	5
0	0	0	6

Fig. 8. Johnson counter sequence.

Fig. 9. State table for Fig. 8.

dition, or to cause a 1 to 0 or 0 to 1 transition, all on the occurrence of an input clock-pulse. The \mathbf{X} indicates that it does not matter what that particular J or K state is, provided the other control input is in the correct state.

For example, if it is assumed that $Q=1$, and a transition to logic 0 is required on the occurrence of a clockpulse, then from the truth-table either $\mathrm{J}=0, \mathrm{~K}=1$, or $\mathrm{J}=1, \mathrm{~K}=1$ will cause this change, i.e. provided $K=1$, J may be either 0 or 1. As each input pulse occurs, the flip-flops should change in accordance with the truth-table of Fig. 8. The steps involved in filling the JK maps are as follows.

The can't-happen conditions of the statetable are transferred to equivalent squares on the separate J and K maps. Consider the J_{A} and K_{A} maps. On the occurrence of the first pulse, Q_{A} should hold at logic 1, hence an X is put in the J_{A} map square representing pulse no. 1 , and a 0 in the K_{A} map square. This is repeated for pulse no. 2. At pulse no. 3 a 1 to 0 transition is required, hence an X is put in J_{A} map square for pulse no. 3, and a 1 in K_{A} map. A 0 is maintained for pulse no. 4, hence a \mathbf{O} in J_{A} and X in the K_{A} square for pulse no. 4 is necessary. This is continued until all squares for each map are filled.

As an example of the minimization, notice that symbols 0 or X may be 1 , hence a loop of four adjacent squares is available in the J_{A} map, i.e. the minimal solution for J_{A} is given by C. Similar loops of four are obtained for each of the other maps, the circuit being implemented in Fig. 11. No external gates are required in this circuit, because the complemented
outputs are already available from each flip-flop.

Common arrangements using this technique are b.c.d. counters, decade counters, up-down counters, though some are also available in m.s.i. packages.

The implementation of Fig. 11 has been described as a modulo-6 Johnson ring counter. However, examination of Fig. 8 shows that each output Q_{A}, Q_{B} and Q_{C} has one pulse for every six of the input so that the device could be regarded as a divide-by-six frequency divider. Most frequency dividers, on the other hand, allow one to divide by an arbitrary number so it cannot be regarded as a very good frequency divider.

The device of Fig. 11 can also be regarded as a sequence generator, in that, given an input pulse sequence, one obtains a different output pulse sequenceadmittedly not a very interesting one.

There is an infinite number of sequence generators that one could build but of particular interest are those which produce so-called maximal length binary sequences (M-sequences). Used in many areas, such as data communication system identification and correlation methods, M-sequences are generated by synthronous shift registers with feedback from various stages being used to determine the next state to be fed in. Feedback complexity is not proportional to the register length and very long sequences can be generated by very simple feedback arrangements. Feedback is performed by modulo-2 addition, i.e. via exclusive-OR gates (Fig. 12).

The properties of these sequences depend on the clock rate, f_{c}, and on the number of stages in the shift register, n, but all of
the sequences possess to some degree properties close to those of band-limited white noise. (Hence the name pseudo-random binary sequences or p.r.b.s.) The signal bandwidth is given approximately by $f_{c} / 3$ and the greater the value of n the more closely do the properties resemble those of random noise. The sequences are not in fact random because they are binary in nature and because they are cyclic, the cycle length being $2^{n}-1$ clock periods. The binary nature of the signals is easily removed by passing them through simple first- or second-order filters so that the signal becomes continuous and has a probability density function which is close to Gaussian. The cyclic nature of the signal is in fact one of the advantages of M -sequence and is one of the non-random features one would wish to retain. This is because experiments can be repeated for checking purposes over a cycle length without the statistical difficulties of genuine random noise. From this point of view it is therefore desirable to limit n.

Design is greatly facilitated by tables which indicate what feedback paths are necessary to produce an M -sequence of given length. ${ }^{2}$ The problem comes down to one of choice of f_{c} and of n for the particular application in mind.

wireless world circard

Basic binary counters

Circuit operation

The bistable circuit is a T-type "flip-flop" in which the output changes state for a negativegoing transition at the trigger-input. If the base-drive current is arranged so that Tr_{2} is in saturation, its collector voltage will be about 0.2 V . This is too low to forward-bias the base-emitter junction of Tr_{1}, about 0.7 V , and hence Tr_{1} will be off. This means its collector-emitter voltage is high, depending on R_{1} and R_{3}, and the base-drive current for Tr_{2} flows through \mathbf{R}_{1} and \mathbf{R}_{3}. Hence the terminals identified (arbitrarily) as \mathbf{Q} and \bar{Q} are low and high respectively (0 and 1 for binary coding). When the trigger input is high, the circuit is in a stable state. When the trigger input is driven near ground the negative-going pulse-edge is steered to $\mathbf{T r}_{\mathbf{2}}$ base as D_{2} is forward-biased. The anode of D_{1} is approximately at $V_{\mathrm{CE}_{(s a t)}}$ and because its cathode is connected to a high potential via R_{5} it is reversebiased. Therefore Tr_{2} collector current is reduced, causing a rise in its collector voltage, increasing base-drive current to Tr_{1}. This causes Tr_{1} collector voltage to drop and Tr_{2} base current decreases causing a further increase in Tr_{2} collector voltage. The process continues until the other stable state, Tr_{1} conducting and Tr_{2} off, is sustained. The next negativegoing trigger pulse resets the
circuit to its previous state. It produces one output pulse for every two trigger pulses. The interconnection of these bistable circuits to give a binary ripple counter demands that the Q output of a previous flip-flop is connected to the trigger (or $\mathrm{T}-$) input of the next flip-flop. This gives a natural count of 2^{n} where n is the number of stages, and 2^{n} is the number of states through which the counter progresses.

Circuit modification

Range of $\mathrm{R}_{5}, \mathrm{R}_{6}: 4.7 \mathrm{k}$ to $47 \mathrm{k} \Omega$ Frequency variation: 150 to 30 kHz
Range of $\mathrm{C}_{1}, \mathrm{C}_{2}: 330$ to 3300 pF Frequency variation: 140 to 90 kHz
Increase turn-on speed with capacitors across resistors $\mathbf{R}_{\mathbf{3}}$ and \mathbf{R}_{4} typically 5 to 20% of $\mathrm{C}_{1}, \mathrm{C}_{2}$.
Increased frequency of operation possible with additiona ldiodes connected across R_{5}, R_{6} (anode to collector).
High-speed transistors BSX19, BSX20 permit counting speeds up to 10 MHz .

IC binary counter

The ripple binary counter is commonly implemented with integrated circuits using J-K flip-flops e.g. the SN7493 is a 4-bit binary counter within one package allowing a typical count rate up to 18 MHz for d.c. supply +5 V , and a typical

Typical data
Single bistable
Vcc: +12 V
$\mathrm{Tr}_{1}, \mathrm{Tr}_{2}$: $\mathrm{BC108}$
$\mathrm{R}_{1}, \mathrm{R}_{\mathbf{2}}: 3.3 \mathrm{k} \Omega \pm 10 \%$
$\mathrm{R}_{3}, \mathrm{R}_{4}: 8.2 \mathrm{k} \Omega \pm 10 \%$
$\mathbf{R}_{5}, \mathbf{R}_{6}: 6.8 \mathrm{k} \Omega \pm 10 \%$
$\mathrm{C}_{1}, \mathrm{C}_{2}: 800 \mathrm{pF}$
$\mathrm{D}_{1}, \mathrm{D}_{2}:$ PS 101
Frequency 100 kHz typically
Trigger input $\approx 4 \mathrm{~V}$
Trigger input width $>1 \mu \mathrm{~s}$
load of 400Ω and 15 pF . Synchronous binary counters using dual J-K master-slave flip-flops are shown above. In all cases decouple the power supply-typically $0.01 \mu \mathrm{~F}$ per package.
In Fig M1, since $\mathrm{J}_{\mathrm{A}}=\mathrm{K}_{\mathrm{A}}=1$ (high), the first flip-flop acts as a toggle. The second flip-flop is triggered by alternate clock pulses the third flip-flop is gated by the Q_{A} and Q_{B} outputs and only changes when $\mathrm{Q}_{\mathrm{A}}=\mathrm{Q}_{\mathrm{B}}=1$. Similarly, the last flip-flop only changes state when $Q_{A}=Q_{B}=$ $Q_{c}=1$. This counter has the
disadvantage of long counter chains requiring AND gates with a large fan-in.
The situation is avoided with the counter of Fig. M2 where the fan-in is limited to two per gate. However this is a slower counter because the gatedpulses must propagate down the AND gates before the next clock-pulse arrives. For both these counters, use the SN7473 dual J-K flip-flop package.
Another example (Fig. M3) employs the SN7472 which has effectively 3 -input AND gates for each J and K input, within the package, which eliminate the need for external gates.

Further reading

Electronic Counting, Mullard, 1967.

Designing with TTL Integrated Circuits (Texas), McGraw-Hill 1971.

Counter delay slashed in half with interconnection scheme, Electronic Design 13, 1972.

Cross references

Series 14 , cards $4,6 \& 12$.

One out of \mathbf{n} ring counter

Circuit description

Component IC C_{1} is a 4-bit shift left or right register, comprising master-slave R-S flip-flops, with a parallel-loading capability via the AND-ORNOT gates at terminals U, X, \mathbf{Y} and \mathbf{Z}. This is conditioned by mode-centre terminal MC equal

Clock pulse No. Q_{A}	QB_{B}	Qc_{c}	Qd_{D}	QE_{E}	
1	0	1	1	1	1
2	1	0	1	1	1
3	1	1	0	1	1
4	1	1	1	0	1
5	1	1	1	1	0
6	0	1	1	1	1

to binary one. When $\mathrm{MC}=0$, information transfers serially through the register, the clock-pulses being applied to the commoned right-shift and left-shift inputs (not shown). When used in conjunction with a positive-edge triggered flip-flop, IC_{3}, this arrangement provides a self-starting, self-priming ring-counter for circulating a zero.
When the supply V_{s} is switched on, the clear-input of IC_{1} is pulled down to ground by CR network, setting $\mathrm{Q}_{\mathrm{E}}=0$, and $\mathrm{Q}_{\mathrm{E}}=1$. Hence $\mathrm{MC}=1$, and the counter is in the parallel mode. The left-hand AND gates art inhibited, and the voltage levels at inputs U, X,

Y and Z are transferred to the set inputs, \mathbf{S}_{A} to $\mathbf{S D}_{\mathrm{D}}$, of IC_{1}. In master-slave flip-flops, the binary level at the set terminal is transferred to the Q terminal on the occurrence of the negative-going edge of the clock-pulse.
After the first clock-pulse, $Q_{A}=0, Q_{B}$ to $Q_{D}=1$. Also, Q_{A} is connected to the preset input of IC_{1}, and hence Q_{E} is set to binary one. Hence $\mathbf{Q}_{\mathrm{E}}=0$, and the counter is switched to a serial-mode. The right-hand AND gates are now inhibited. Therefore $S_{A}=1$, the low level of Q_{A} is gated to S_{B}, Q_{B} to S_{c}, and Q_{c} to $\mathbf{S}_{\mathbf{D}}$. After the second clock-pulse, the \mathbf{Q} outputs are as shown in the truth table, the sequence continuing with each clockpulse shifting the zero through the register. At the 5th pulse, Qd changes from 0 to 1 , and this positive-edge triggers IC_{2}. Q_{E} resets to zero, $\mathrm{Q}_{\mathrm{E}}=1$, and the parallel-mode is again entered. The 6th clock-pulse reloads the levels at $\mathbf{U}, \mathbf{X}, \mathbf{Y}$ and Z terminals and the cycle repeats.

Circuit modifications

The number of bits can be extended by cascading IC ${ }_{1}$ packages as in Fig. M1.

Circulate a 1 by inverting the counter outputs with t.t.1. NAND gates (SN7400) or
c.m.o.s. hex buffers (CD4049).

- A 4-bit self-starting and correcting counter (Fig. M2) for circulating 1 uses J-K flip-flops and feedback via an AND gate. The flip-flops are connected as a shift register, where the state of Q_{A} is passed to Q_{B}, and Q_{B} to Q_{c}, etc. with each clock pulse. In general, for self-correcting, and when using J-K flip-flops, J_{A} should be the Boolean product of the complements of all but the first and last stages.

Typical data
$\mathbf{I C}_{1}$: SN7495
IC_{2} : $\frac{1}{2}$ SN7474
$\mathrm{V}_{\mathrm{B}}:+5 \mathrm{~V}$
$\mathrm{R}_{1}: 1 \mathrm{k} \Omega$
$\mathrm{C}_{1}: 47 \mathrm{pF}$

Further reading

Self-correcting ring counter requires no external gates, Electronic Design 9, 1973, p. 138. Malmstadt and Enke, Digital Electronics for Scientists, Benjamin, 1969. Texas Instruments application report CA102, Electronic Counting, Mullard, 1967.

Fig M2

Johnson counters

Typical data

Supply: 4.75 to 5.25 V
$\mathbf{I C}_{1}$, IC $_{2}$: $\frac{1}{\frac{1}{2}}$ SN7400
IC $_{3}$, IC $_{6}: \frac{1}{\frac{1}{2}}$ SN7473
Min. clock width: 20ns
(between 50\% levels)
Typical pulse height: 3.5 to 4.5 V

Circuit description

This counter, also called a switch-tail ring counter, allows $2 n$ counts where n is the number of cascaded flip-flops. It is a synchronous counter in that changes at the Q outputs only take place on the occurrence of a clock-pulse. If $\mathbf{J}=\mathbf{R}$, the \mathbf{J} input condition is transferred to the related Q output on the negative edge of the clock pulse, when the flip-flops are master-slave types. The above circuit has ten different states, the feedback via the AND gate causing self-correction after a few steps, should illegitimate states occur.
Consider all Q outputs to be in the 0 state. Hence $\mathrm{J}_{\mathrm{A}}=1$ because $\mathrm{Q}_{\mathrm{E}}=1$. On the occurrence of the first clock pulse, the counter will load according to the truth-table. At each subsequent pulse, " 1 "s will be fed through the counter from the left until $Q_{D}=Q_{E}=1$. It follows then that since $J_{A}=0, K_{A}=1$, that Q_{A} becomes 0 at the 6th clockpulse. Zeros are subsequently transferred through the register according to the truth-table, until $\mathrm{Q}_{\mathrm{D}}=\mathrm{Q}_{\mathrm{E}}=0$, then $\mathrm{J}_{\mathrm{A}}=1, \mathrm{~K}_{\mathrm{A}}=0$, and the cycle repeats.
In general, when there are n stages in the counter, feedback via an AND gate from the last x stages, where x is the next larger integer to $n / 3$ provides self-correction for n up to 25 . Decoding of each state is obtained using AND gates, as a unique pair exists for each state. These output pairs are indicated in the truth-table, and are applied to the gate inputs (these can be $\frac{1}{2} \times$ SN7400 in series).

Circuit modifications

The same output sequence is obtained from dual D-type flip-flops (SN7474) as Fig. M1. In general, assuming up to eight JK flip-flops are employed, A, B, C, D, E, F, G, H, then the

clock pulse	A	B	C	D	E	decoding outputs
	0	0	0	0	0	
1	1	0	0	0	0	$A E$
2	1	1	0	0	0	$B C$
3	1	1	1	0	0	$C \bar{D}$
4	1	1	1	1	0	$D E$
5	1	1	1	1	1	$A E$
6	0	1	1	1	1	$\overline{A B}$
7	0	0	1	1	1	$\overline{B C}$
0	0	0	0	1	1	$\overline{C D}$
9	0	0	0	0	1	$\overline{D E}$
10	0	0	0	0	0	$\overline{A E}$

feedback functions for an even
cyclic pattern are
$\mathrm{J}_{\mathrm{A}}=\overline{\mathrm{C}}, \mathrm{K}_{\mathrm{A}}=\mathbf{B} . \mathrm{C}$
$\mathrm{J}_{\mathrm{A}}=\overline{\mathrm{D}}, \mathrm{K}_{\mathrm{A}}=\mathbf{C} . \mathrm{D}$

An odd sequence ($2 \mathrm{~N}-1$) counter can be implemented by bypassing the all " 1 "s state of the normal Johnson sequence i.e. the last two bits of the $111 . .10$ state is detected, and the gating arranged to the first flip-flop so that the next state is $011 \ldots 11$. (Texas ref.). Other odd sequence counters can be implemented by J-K flip-flops without extra gating and are shown in Figs. M2 \& 3. Fig. M2 uses feedforward gating and Fig. M3, feedback. In general, any $2 n$ counter can be made $2 n-1$ by obtaining the K input of the first-flop from the second last Q output (cf. Fig. M3).

Further reading

Davies, A. C., Design of feedback shift registers and other synchronous counters, Radio and Electronic Engineer, April 1969.

Texas Instruments application report CA102.
Kohonen, T. Digital circuits and devices, Prentice-Hall, 1972. Malvino, A. P. \& Leach, D. P., Digital principles and
applications, McGraw-Hill, 1969.

Cross references

Series 14, cards 9 \& 12.

Reversible counters-1

Circuit description

Up-down or reversible counters alter their mode of counting under electrical control. The circuits shown are binary up-down counters in which the count direction is controlled by steering logic and either the flip-flop Q outputs are used for toggling subsequent flip-flops (UP) or the Q outputs are used when the \mathbf{Q} outputs are inhibited. Fig. 1 is an asynchronous type and Fig. 2, a synchronous counter. The equation for the output of the selector gate is, for example, $\mathbf{A X}+\overline{\mathbf{A}} \mathbf{X}$, the gating usually being implemented by the NAND gate interconnection of Fig. 3. When a logic 1 is applied to the up-down control line, the gates connected to \mathbf{Q} are inhibited, and the flip-flops change state when their clock inputs undergo a 1 to 0 transition i.e. the \mathbf{Q} outputs will change according to the normal binary sequence. If the control line becomes 0 , the Q outputs will reverse sequence. To avoid a false triggering condition, the count/inhibit line must be 0 when the controlling function is altered from up to down or vice-versa.
In the synchronous counter of Fig. 2 such a condition is avoided. Each flip-flop will change state only if previous \mathbf{Q} outputs are in the 1 state (when $X=1$) i.e. counting up, and for a down count $(\bar{X}=1)$, all the less significant \mathbf{Q} outputs must be at 0 for a flip-fiop to change on a 1 to 0 transition.
IC_{5} (CD4029A) is a presettable synchronous up/down counter providing either a binary or b-c.d. decade sequence with appropriate mode control, i.e.
binary: $B / D=1$
Decade: $\mathbf{B} / \mathbf{D}=\mathbf{0}$
Up: U/D $=1$
Down: U/D $=0$
Preset: PE =1
J 1 to $\mathrm{J} 4=1$ or 0
Parallel clocking allows
cascading (Fig. 4)
Where separate "clock up" and

"clock down" clock pulses are available the circuit of Fig. 5 provides a simple interface to the up/down "clock" inputs.

Cross references

Series 14, cards 5 \& 12.

Reversible counters-2

The AND-OR-NOT gates provide gating control for the up/down mode. The Boolean expression for the P output is $\overline{(U P) Q_{D}+(D W N) Q_{B}}$. If the control line $=0$, then $\mathbf{P}=\mathbf{Q}_{\mathbf{D}}=0$. Hence $\mathrm{J}_{\mathbf{A}}=1$, $K_{A}=0$, and on the occurrence of the first clock pulse $\mathrm{Q}_{\mathrm{A}}=1$. The counter would subsequently count up in Johnson code. However, if for example, the counter state is 1110 and control $=1$, only the S output causes a change to make $\mathbf{Q c}=0$ on the next pulse, and thus count down.
Circuit of Fig. 2 uses a 4-bit parallel adder and four D-type flip-flops. Consider the sum outputs $\Sigma_{4}-\Sigma_{1}$ show 7_{10} i.e. 0111_{2}, where Σ_{1} is the least significant bit, and that the next pulse should cause a decrement, hence control $=1$. Each sum variable (Σ) is transferred to the \mathbf{Q} output on the occurrence of the clock pulse via each D -type flip-flop. Inputs ($B_{1} A_{1}$), ($B_{2} A_{2}$) etc. are added and each produce 0 carry 1 except for $\left(B_{4} A_{4}\right)$ which makes $\Sigma_{4}=1$. When the "carry's" ripple through, the result is 0110 with $\mathrm{C}_{\text {out }}=1$, which can be ignored. (This is 2's complement arithmetic, where negative-one, represented by 1111_{2}, is added to achieve subtraction).
IC_{1} : SN7483 (full adders)
IC_{2} : SN7495 (or $2 \times$ SN7474)
Typical operating frequency \approx 10 MHz
An eight-bit shift register is used to provide a variable modulus counter in which maximum and minimum counts may be detected is shown in Fig. 3 Shorting any one pair of

Fig. 1

external terminals decides the maximum counter loading at which the counter may then be considered to reverse.
Assume a counter cleared and a link at Qc. Then, via gates $X, Y, Z, S_{A}=1, R_{A}=0$. The sequence of Q_{A}, Q_{B}, Q_{c} for the first three clock pulses is 100 , 110,111 and then $S_{A}=0$, $\mathrm{R}_{\mathrm{A}}=1$ and "detect max" goes high. For the next three pulses, the sequence is $011,001,000$, when "detect min"' goes high. IC_{1} : SN74164 (DM8570) IC $\mathbf{I}_{\mathbf{2}}$ SN7400

Further reading

Malmstadt \& Enke, Electronics for Scientists, Benjamin, 1969. High-speed synchronous reversible binary and BCD counters. Texas Instruments application report B40. Baccolini, G., Benetazzo, L., \& Clements, G., Variable dead-zone counter as a maximum value follower, IEEE Trans. vol. ECI-20, Aug. 1973.
Cross references
Series 14, cards 4 \& 12.

Integrated circuits

IC_{1} : $\frac{1}{2}$ SN7473
IC : ${ }_{2}^{2}$ 2SN7451
IC:

Divide by n counters

Counters with N states (modulus N) may comprise a sequence of counters with different moduli, integers n_{1}, n_{2}, n_{3} etc. and $N=n_{1} \times n_{2} \times n_{3} \ldots$ Even numbers are achieved by cascading as in Fig. 2 (modulus 2^{m}, where m is the number of flip-flops).
Synchronous circuits for smaller odd numbers are shown below. Q_{A} is the least significant bit, the natural binary sequence is followed and positive logic assumed.

Components (typical)

$\mathrm{IC}_{1}: \frac{1}{2}$ SN7473. $\mathrm{IC}_{2}: \frac{1}{3}$ SN7410. IC_{3} : $\frac{1}{4}$ SN7400. $\mathrm{IC}_{4}:$ SN7472 (or $\frac{1}{2}$ SN7473 plus 3 input gates).
IC_{5} : SN7493. IC_{6} : 4 S S7408 (or $\frac{1}{2}$ SN7400). IC $_{7}$: $\frac{2}{3}$ SN7410.

Description

For the small prime numbers, it is sufficient to consider Fig. 3 as an example. Q_{A} flip-flop acts as a toggle and will change state on every input pulse while $\mathrm{Q}_{\mathrm{C}}=1\left(\mathrm{Q}_{\mathrm{C}}=0\right) . \mathrm{Q}_{\mathrm{B}}$ changes state whenever Q_{A} goes from 1 to 0 . Q_{c} will only be set to 1 when both Q_{A} and Q_{B} are logic one i.e. on the 4th clock-pulse, because $\mathrm{J}_{1}=\mathrm{J}_{2}=\mathrm{J}_{3}=1$ and the K inputs are 0 . Hence on the 5 th pulse, since Q_{c} is now $0, \mathrm{Q}_{\mathbf{A}}$ will remain at 0 hence Q_{B} is logic zero, and Qc will be reset to 0 , because J_{1} to $J_{3}=0$ and K_{1} to $K_{3}=1$. The sequence then repeats.
Fig. 6 demonstrates an alternative technique. The counter is reset to zero when a negative-going edge is simultaneously applied to the CLEAR inputs. This is obtained from the NAND gate, when the predetermined binary number, 1101 (13), is detected. The minimum duration between input pulses depends on propagation delays of flip-flops, the gate delay, and the reset delay. If the output is to be read, the lines should be gated to avoid transmitting spikes that will appear on some lines depending on the divisor N .

SN7493 connection			
Divisor N	Feedback	Extra gate	
9	A D	-	
10	B D	-	
11	A B D	2 I/P AND	
12	C D	-	
13	A C D	2 I/P AND	
14	B C D 2 I/P AND		
15	A B C D	3 I/P AND	

MSI integrated circuit packages e.g. SN7493 4-bit ripple counter contains a NAND gate for clearing, but additional gating is necessary for certain counts (see Table 1). Fig. 7 is the connection for $N=11_{10}$, the feedback being applied via reset terminals $\mathbf{R}_{0(1)}$ and $\mathbf{R}_{0(2)}$. A useful arrangement for division by large numbers is shown in Fig. 8, where N_{1} and N_{2} must be prime numbers

with respect to each other. The arrangement ($N_{1}=3, N_{2}=7$) provides $N=21$; input pulses are applied simultaneously to each counter, and each cycles through its own modulus until all outputs are l's together, thus enabling AND gates, and resetting to zero via reset terminals.

High-power counters

Component values
$\mathbf{R}_{1}, \mathbf{R}_{2}, \mathbf{R}_{3}, \mathbf{R}_{4}$: 5 to 10Ω
$\mathrm{R}_{5}, \mathrm{R}_{6}, \mathrm{R}_{7}, \mathrm{R}_{8}: 100 \mathrm{k} \Omega$
$\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}: 0.47 \mu \mathrm{~F}$
$\mathrm{D}_{\mathbf{2}}, \mathrm{D}_{\mathbf{4}}, \mathrm{D}_{6}, \mathrm{D}_{8}: 1 \mathrm{~N} 757$
$\mathrm{D}_{1}, \mathrm{D}_{3}, \mathrm{D}_{5}, \mathrm{D}_{7}: 1 \mathrm{~N} 914$
SCRs: 2N1595
$\mathrm{Tr}_{1}, \mathrm{Tr}_{2}: 2 \mathrm{~N} 1420$
$\mathrm{Tr}_{3}: 2 \mathrm{~N} 657 \mathrm{~A}$

Circuit description-1

Circuit shows a four-stage dynamic ring counter with power capabilities per stage of 20W at between 2 and 5A. Consider first the situation where all the s.c.rs are nonconducting. A set pulse applied at the gate of SCR_{1} causes it to conduct freely via the load resistor \mathbf{R}_{1} and this continues in the absence of a set voltage until the supply is removed, which occurs when a trigger pulse is applied as base drive to Tr_{2} is then shunted to ground, removing base drive to Tr_{3}. While the supply is

Circuit description-2

A stepper motor drive is required to rotate a magnetic field pattern in either direction and at variable speed. This can be achieved by supplying the stator coils from an up-down counter with a variable pulse rate (see Card 4). Circuit shows 4 of the drive circuitry for an 8-phase stepper motor with power consumption of 11W which is dissipated in
applied to the counter and SCR_{1} is conducting, point B is at ground voltage and C_{1} charges via D_{3}, so that $\mathrm{V}_{\mathrm{AB}}=\mathrm{V}_{\mathrm{CC}}$. When the supply is removed, C_{1} retains this charge as there is no discharge path (apart from leakage). When the supply is reapplied, SCR_{1} remains non-conducting and point B rises to the supply. Consequently, point A will rise to $2 V_{\mathrm{cc}}$. If D_{4} is chosen so that its breakdown voltage lies between V_{CC} and $2 V_{\mathrm{CC}}$, breakdown occurs and $\mathbf{S C R}_{2}$ conducts so that current flows in the second load, $\mathbf{R}_{\mathbf{2}}$. Further
trigger pulses will cause each succeeding stage to conduct. Resistor R_{8} allows C_{1} to continue discharging below the zener voltage of D_{4}. Diode D_{3} arrests this discharge so that the final condition is zero charge on C_{1}-which is the initial condition of C_{1} prior to SCR_{1} conducting. Continual rotation of a single logic 1 is what has been described so far. Two adjacent logic 1's cannot reliably be rotated by this scheme but there is no reason why any pattern cannot be rotated provided no two logic 1's are

Performance

V_{cc} : 9 V
Trigger amplitude -6 to 9 V width $>200 \mu \mathrm{~s}$
Set pulse: 3V max
Maximum frequency: 1 kHz
Minimum frequency: depends on capacitor losses, s.c.r.
leakage current, and diode leakage current
adjacent. Should more than one logic 1 be rotated then the supply section comprising $\mathrm{Tr}_{1}, \mathrm{Tr}_{2}$ and Tr_{2} will require re-design as the current drawn is $n+$ (current for one stage), n being the number of on stages.
To prevent noise falsely triggering any s.c.r., resistors between gate and ground should be provided.

Further reading

Strangio, High power counter drives 20W loads, Electronics, March 1, 1973

Component values
$\mathrm{R}_{1}, \mathrm{R}_{2}: 33 \Omega, 16 \mathrm{~W}$
$\mathrm{C}_{1}, \mathrm{C}_{2}: 100 \mu \mathrm{~F}, 40 \mathrm{~V}$
$\mathrm{W}_{1}, \mathrm{~W}_{2}: 9 \Omega$ stator coils
$\mathrm{Tr}_{3}, \mathrm{Tr}_{4}$: BSW 66
IC: SN75451P

Performance

Controlled by the torque characteristics of the motor. The coil current was 550 mA and the maximum speed was 6000 steps per second, corresponding to a counter clock frequency of 6000 pulses per sec. A and \bar{A} were normal t.t.l. voltage levels (5 V and 0 V).
only 4 of the phases at any one time. Two of these phases are shown in the diagram in the form of the 9Ω coils, W_{1} and W_{2}. The motor operation requires that current flows in one of these coils at a time and this is achieved as shown. A and \bar{A} are obtained from one stage of a 4-stage Johnson, up-down counter. If A is "high" then T_{1} will not conduct and base drive is
presented to T_{4} and consequently current from the 23 V supply will flow through W_{1}. Likewise no current flows through W_{2} in this condition. However, if $\overline{\mathcal{A}}$ is high the position is reversed. Tr_{4} and Tr_{3} are high current transistors capable of feeding inductive loads. R_{1}, C_{1} and $R_{2}, C_{\mathbf{2}}$ serve to reduce the circuit time constant so that higher speeds may be achieved.

Further reading

Shakaiba, M. A. Digital control system for an 8-phase stepper motor, Project Report, Electrical Engineering Dept, Paisley College of Technology. King, D. S. Stepper motor for digital control systems, Control and Instrumentation, June 1971.

Cross reference

Series 14, card 5.

High-speed counters

Circuit description

In most counting arrangements the decoding of the end of the sequence and the resulting resetting of the counter occur in the same clock period. This can be avoided by using the philosophy of the circuit of Fig. 1 and thereby obtain increased counting speeds, irrespective of the logic family used. Circuit shows a frequency divider in which the second last number to appear on the output of the counters is decoded. This is done by the AND gates A_{1} and A_{2} and occurs on the falling edge of the clock pulse when A_{0} goes to logic 1, corresponding to the number 97. Inputs J^{\prime} and K^{\prime} are then in the logic 1 state and the next clock pulse triggers the flip-flop and also the strobe pulse. The counter remains in this state until the clock pulse at the end of the 99th state toggles the flip-flop back again. The counter is then ready to start up-counting again from the initial state, which is, of course, dictated by the b.c.d. data inputs.
This arrangement allows the reset pulse to be a full clock period wide and unaffected by the counter states. Further, the decoding time and the reset time occur in different clock periods, rather than in the same period as in other methods. Hence the time taken for N to be fed in can be almost a full clock period and as a result higher clock frequencies can be handled.
With the devices quoted counting speeds of over 40 MHz have been achieved. The second stage of the counter need not be such a high speed device (and, consequently, high power consuming device) as clock

Components

Counters: 8290, decade up-counter for which the input data is on output when S is logic 0.
Flip-flop: 74 H 102 (high speed) $\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}: \frac{1}{3} \mathrm{MC} 3006$
frequency to it is $1 / 10$ th of that to the first stage.
Higher frequencies are achievable if one uses faster logic families. Fig. 2 shows an e.c.l. device being used in a fashion similar to that of Fig. 1. In this case the device is a down counter, counting down from the preset state N and giving an output frequency $f \mathrm{cL} / \mathrm{N}$. Clock frequencies in excess of 110 MHz can be handled. Again the second last number in the sequence is decoded, in this case 0100, and this causes the flip-flop to change state on the next clock pulse, thereby resetting the counter to N.

Further reading

Clifford, D. Reset dividers
faster with a single flip-flop,
Electronic Design, Aug. 5, 1971. Balph \& Granden, Boost counting speeds to 110 MHz , Electronic Design, April 1, 1973. Tan, Z. C. New tunnel diode ring counter, Proc. IEEE, April 1973.

Set 14: Digital counters-9

Low-power counters

Circuit description

The counter of Fig. 1 uses a Johnson configuration and obtains speeds in the region of 5 to 7 MHz , each flip-flop operating at only one tenth of the input frequency. The counter is disabled if enable is high, reset to zero being achieved by applying a logic 1 level to reset. The counter sequences on the leading edge of each clock pulse, the Johnson code being maintained by ensuring that the D_{c} input is only high, when either Q_{A} and Q_{B} or Q_{c} and Q_{B} are high, via NOR gates 1 and 2. Additional gating (not shown) provides ten decoded outputs, which sequentially are high for one full clock period.
For count <ten, use quad-NOR i.c. CD4001. In Fig. 2 the cross-coupled pair is a reset latch, to ensure reset when flip-flops have different reset propagation delays. The decimal zero output is low except when counter is cleared, hence when the N output goes high, point $X \rightarrow 0$, and a reset
pulse is generated while the clock is high. When counter resets, zero terminal goes high. This can drive another counter.

Programmable counter

$N=1$ to 10 IC: CD4018 This is a 5 -stage Johnson counter but with the Q outputs buffered with inverters to provide a Johnson BCD output. Counts less than ten achieved by feedback to the DATA input terminal, see Fig. 3. The odd count is obtaining by ANDing the two Q outputs (table) with $\frac{1}{2}$ CD4011. This ensures that the all ' 1 's state of the counter is avoided. The counter may be preset to any combination fed to the J inputs, by pulsing the presetenable input. Voltage levels and speeds are similar to CD4017AE. As a preset counter, counter will advance from preset state to 11110 , where the right-most bit is Q_{5}. The presence of \bar{Q}_{4} and \bar{Q}_{5} should be detected as shown in Fig. 4 to reset the counter.

Ripple counters

CD 4020AE
14 stages but outputs available from stage 1 and stages 4 to 14 inclusive.
Typical speed: 7 MHz at 10 V 2.5 MHz at 5 V

Power dissipation:
typical 1 mW at 1 MHz at 5 V 10 mW at 1 MHz at 15 V

CD 4040AE

12 stages
All 12 buffered outputs available Typical speed: 8 MHz at 10 V .

Up-Down counter CD 4029AE
4 stage: Either BCD decade or

Even count	DATA	N
	Q_{1}	2
	Q_{2}	4
	Q_{3}	6
	Q_{4}	8
	Q_{5}	10

Odd count	DATA	N
	$\mathrm{Q}_{1} \mathrm{Q}_{2}$	3
	$\mathrm{Q}_{2} \mathrm{Q}_{3}$	5
	$\mathrm{Q}_{3} \mathrm{Q}_{4}$	7
	$\mathrm{Q}_{4} \mathrm{Q}_{5}$	9

Package CD 4017AE
Temperature: -40 to $+85^{\circ} \mathrm{C}$
Typical speeds:
5 MHz at 10 V d.c.
1 MHz at 3.5 V
100 kHz at 3.5 V
Approximate power dissipation for the above values are 30 mW , 1 mW and $100 \mu \mathrm{~W}$ respectively, for 15 pF loading.
Minimum pulse width
100 nanoseconds at 10 V .
binary by input control
Typical speed: 5 MHz at 10 V
Dissipation: 30 mW
Load: $\quad 15 \mathrm{pF}$
Typical speed: 100 kHz at 3.5 V
Dissipation: 1 mW
Load: 15 pF

Further reading
RCA Solid State Databook
Series SSD-203A 1973
Cross references
Series 14, cards 4 and 10.
Series 11, card 6.

Fig 3

Fig 4

Decade counters

Circuit description

The four master-slave fip-flops of Figs. 1 and 3 are contained within one i.c. package,
SN7490, and provides separate $\div 5$ and $\div 2$ facilities. A symmetrical decade counter where the period of the output pulse at Q_{A} is ten times the input pulse period with equal mark-to-space ratio is shown in Fig. 1, with the associated waveforms of Fig. 2. The J-K terminals with no inputs are internally connected to be logic 1. Flip-flop C toggles for all 1 to 0 transitions of Qb_{B}, and Q_{D} is set on the 4th pulse, but reset on the 5th pulse ($S=0, R=1$), thus setting Q_{A}. Q_{B} cannot change because $\mathrm{J}_{\mathrm{B}}=0, \mathrm{~K}_{\mathrm{B}}=1$. For the next five pulses, the sequence of flip-flops B, C and D is similar, when Q_{A} is reset on the tenth pulse.
The connections of Fig. 3 allow the counter to sequence in an 8421 b.c.d. code, where flip-flop \mathbf{D} has the maximum weighting: gated direct reset lines (not shown) are provided to inhibit count inputs and return outputs to zero. Typical frequency and power dissipation is up to 18 MHz , and around 160 mW .
Another asynchronous 8421
b.c.d. counter uses J-K
flip-flops in a toggle mode (Fig. 4), has no logical hazards, and may be implemented with two SN7473 and one SN7400.
Fig. 5 is an 8421 b.c.d. synchronous counter, which requires 3-input AND gates or triple input J-K flip-flops. Q_{A} changes state for every clock-pulse (unused J-K inputs
may be eonnected to logic ' 1 '). Q_{B} changes on the 2nd, 4th, 6th, 8th clock pulses, but is inhibited from a 0 to 1 transition on the 10th pulse, since $\mathbf{Q}_{\mathrm{D}}=0$. Flip-flop C is toggled whenever $\mathbf{Q}_{\mathbf{A}}=\mathbf{Q B}_{\mathbf{B}}=1$, and Q_{D} undergoes a 0 to 1 transition when $\mathbf{Q}_{\mathbf{A}}=\mathbf{Q}_{\mathrm{B}}=\mathbf{Q}_{\mathrm{C}}=1$, on the occurrence of the 8th pulse. Q_{D} resets to zero on the 10th pulse, because $\mathrm{J}_{1}=0$ and the K inputs are high.
Implemented with either two SN7473 and three SN7410, or four off SN7472.
Figs. $6 \& 7$ are two other forms of b.c.d. synchronous counters. Fig. 6 counts in 8421 code, Fig. 7 in excess- 3 code. In each case the least significant bit is flip-flop A.

Further reading

T.T.L. Integrated Circuits, Counters and Shift Registers, application report CA102.
Texas Instruments.
Malmstadt and Enke,
Digital Electronics for
Scientists, Benjamin, 1969.
Kohonen, T. Digital Circuits
and Devices, Prentice-Hall, 1972.

Cross references

Series 14, cards 3 \& 9.

M-sequence generators

Description

Maximum length sequences (M-sequences) have many uses in data communications system identification and correlation methods. Some of them have properties very similar to that of band limited white noise, particularly if passed through simple first or second order R-C filters-hence the name pseudo-random-binary sequence (p.r.b.s.). They are produced by a simple synchronous shift register or counter with feedback from various stages determining the state of the first stage on receipt of each clock pulse. The feedback is basically by means of exclusive-OR gates (modulo-two gates). The basic diagram is as shown in Fig. 1, the output being taken from any stage. The sequence produced is cyclic and repeats itself after $2^{n}-1$ pulses, the all-zero state being avoided. The maximum number of states for an n-stage register is 2^{n} but to prevent the all-zero state becoming a permanent
state requires considerable extra logic and, hence, this state is avoided and the length $2^{n}-1$ is described as maximal.
Long sequences can be generated by simple feedback arrangements. The Table indicates the simplest feedback arrangements for all those registers up to length 18 , and all those beyond 18 and up to 33 which require only one exclusive-OR gate. Fig. 2 shows how the characteristic polynomials of the Table are interpreted in terms of hardware for the particular case of $\boldsymbol{n}=8$. If JK flip-flops are used as the register stages some simplification is possible if the polynomial contains D to the power one. Column 3 or the table indicates the logic necessary for the J input and column 4 indicates the K input. If the output of stage 1 is regarded as the output, versions of this sequence delayed by $L \Delta T$, where ΔT is the clock period and $L=0$ to $n-1$, are clearly available from the
remaining stages. Delays of up to $N \Delta T$, where $N=2^{n}-1$ can also be generated by modulotwo addition of several of the output stages (ref. 1).
When the sequence is being used as a noise source the output is arranged so that logic $1=+a$ volts and logic $0=-a$ volts. The r.m.s. value of the waveform is than a^{2} and the mean value is a / N (this would be zero if $N=2^{n}$ rather than $2^{n}-1$). The power spectrum, which is discrete, is where $G(k)$ is the power in (volt) ${ }^{2}$ of the k th harmonic. $G(k)$ is shown in Fig. 3. The small d.c. term is often ignored.
Spacing between the lines of Fig. 3 is $1 / N \Delta T$ and hence the power density spectrum (power per unit bandwidth) is
$G(k) N \Delta T$. The $3-\mathrm{dB}$ point for the power density spectrum occurs at approximately $1 / 3 \Delta T$ so that for systems with bandwidth less than $1 / 3 \Delta T$ the signal appears as white noise. Further, the autocorrelation function for the signal is very similar to that for white noise (ref. 1). The probability distribution of the signal is not at all Gaussian because it consists of two lines at \pm a
respectively. However, when passed through a suitable R-C filter with a break point less than $1 / 3 \Delta T$ the distribution does become close to Gaussian i.e. that for band-limited white noise (ref. 2).

References

1. Davies, W. D. T., Generation and properties of M -sequences, Control, June, July and August 1966.
2. Roberts, P. D. \& Davis,
R. H., Some statistical properties of smoothed M-sequences, Proc. I.E.E. 1966 vol. 113, p. 190.

Further reading

Davies, A. C., Design of feedback shift registers and other synchronous counters, Radio and Electronic Engineer, April 1969.
Peterson, W. W., Error
Correcting Codes, MIT
Technical Press 1961.
Golomb, S. W., Shift Register
Sequences, Holden Day 1967.

$$
G(k)=\frac{a^{2}}{N^{2}}+\sum 2 a^{2} \frac{(N+1)}{N^{2}}\left(\frac{\sin \frac{\pi k}{N}}{\frac{\pi k}{N}}\right)^{2}
$$

Fig 3

Glossary: flip-flops and b.c.d. codes

Integrated circuit flip-flops are usually clocked i.e. the change of state is initiated by a timing pulse called the clock pulse. The outputs are commonly termed \mathbf{Q} and \mathbf{Q}. If $\mathbf{Q}=1$, $\mathbf{Q}=\mathbf{0}$ (and vice versa). These states are dependent on the logical states of the flip-flop (or bistable) inputs and this dependence is shown in each associated TRUTH table, where Q_{n} is the state of the Q output after the nth pulse, and $\mathrm{Q}_{\mathrm{n}+1}$ is the new state after the next pulse.
When Q is made to be logical ' 1 ', the flip-flop is said to have been SET, and when Q is made ' 0 ', the flip-flop has been RESET or CLEARED. Edge-triggered and master-slave types are available. The time for which data must be present before the clock pulse threshold (set-up time) and the time for which data must be maintained after the clock edge (hold time) are normally specified. The transfer of information in the master-slave flip-flop is according to the numbers marked on the pulse shown, and it may be considered that the master and slave flip-fiops are distinct, but isolated or connected by gates.
(1) slave isolated from master
(2) data entered into master
(3) master is isolated from input terminals
(4) data is transferred from master-to-slave

R-S flip-flop

SYMBOL

$\mathbf{R}=\mathbf{S}=1$ must be avoided because the logical value of the Q output is uncertain.

This has two data inputs termed J and K (and may be considered to be similar to S and R of the R-S flip-flop), but no indeterminate state exists for any combination of

Further reading

Walters, D. J. Integrated
Circuit Systems, Iliffe Books, 1971.

Malmstadt \& Elke, Digital
Electronics for Scientists,
W. A. Benjamin, 1969.

Texas Instruments Inc.
Designing with TTL Integrated Circuits.

Cross references

Series 14, card 5.
Series 14, card 3.
the inputs. Multi-input J and K terminals are achieved on some i.cs with internal gating, where the J and K inputs are for example the ANDED inputs $J_{1} J_{2} J_{3}$ and $K_{1} K_{2} K_{2}$. CP is

the clock-pulse terminal, Preset and Clear terminals may also be available. These inputs are maintained normally at logical '1'. A negative edge applied to PRESET, sets $\mathrm{Q}=1$, and if applied to CLEAR, makes $\overline{\mathrm{Q}}=1$. The negative edge triggering can be indicated by the small circle at the terminal as in diagram.

D-type flip-flop

truth table
This has one data input, and may also have both outputs available. In the table, \mathbf{D} is the input before clocking and $\mathrm{Q}_{\mathrm{n}+1}$ is the Q output after clocking.
Note-CMOS flip-flops are cleared by a positive-going edge at the clear input.

T-type flip-flop

truth table
This may be considered as the basic binary or toggle flip-flop. When $T=0$, the Q output will not change state on the occurrence of a clock pulse. If $\mathrm{T}=1, \mathrm{Q}$ takes up the opposite state when the flip-flop is clocked.

Alternative toggle flip-flops

Decimal codes

These are listed with the least significant bit (LSB) rightmost for the weighted codes, i.e.
those in which a decimal numerical weighting is assigned to each bit position.

JOHNSON	$\begin{aligned} & \text { NATURAL } \\ & 8-8 C D \\ & 8-4-2-1 \\ & \hline \end{aligned}$	4-2-2-1	gray	EXCESS-3	¢ecimal
00000	0000	0000	0000	0011	\bigcirc
00001	0001	0001	0001	0100	1
OOO11	0010	0010	0011	0101	2
O O 1111	0011	0011	0010	0110	3
O 111111	0100	1000	011.0	O 1111	4
$\begin{array}{lllllll}1 & 1 & 1 & 1 & 1\end{array}$	0101	01111	- 1111	1000	5
11110	0110	1100	0101	1001	6
11100	01111	1101	0100	1010	7
11000	1000	1110	1100	1011	8
10000	1001	1111	1101	1100	9

1. Control primarily depends on the logic simulation of the CD4048 gate where, if $K_{\mathrm{B}}=K_{\mathrm{C}}=0, K_{\mathrm{A}}=1$, the gate acts like an eight-input AND gate i.e. output is 1 if all inputs are high. Also if $K_{A}=0$, the gate acts like an eight-input NOR gate, and the output is 1 if all inputs are logic 0 . Using exclusive-OR gates between the counter and the CD4048, the counter can then be arranged to cycle between any two symmetrical binary states by programming inputs B to H inclusive, e.g. if BCDEFGH is programmed

to be 0001111, then when the counter reaches 11110000 , the CD4048 will see all logic 1 s at the inputs and provide an output which can be used to clock the D-type flip-flop, i.e. the maximum output is 240_{10}. When the counter then starts to count down, an output is again obtained when the counter reaches 00001111 , where the exclusive-OR gates will provide all 0 s to the gate-inputs and as K_{A} is then 0 . The effective NOR gate senses the 0 s to provide a changeover signal.
2. The odd synchronous counter provides symmetrical high and low output levels although driven from an unsymmetrical clock pulse source. Flip-flop A is driven from an inverted waveform and hence will change state, depending on the D input, at a clock pulse rising edge, one clock pulse width earlier than any changes that occur in flip-flops B and C. Observe at clock pulse marked t_{w}, flip-flop C changes at the leading edge of the clock

pulse and flip-flop edge changes at the trailing, since it is driven via the inverter. The minimum clock pulse allowable depends on the propagation delay of flip-flop C and the data set up time of flip-flop 1. Figures quoted are 45 and 20 ns respectively giving a minimum pulse width of 65 ns .
Reference
Greenberg, M. Ideas for Design, Electronic Design 20, Sept. 27, 1974.
3. This arrangement of a 4-bit comparator and a 4-bit synchronous counter provides a programmable variable modulus counter in the range decimal 2 to 15.
A binary number N is set up at the preset inputs B_{0} to B_{3} (where B_{0} is the least significant bit), i.e. over the range 0001 to 0111 . The clock input causes the counter to reach the number $(N+1)$, where the counter outputs compared with the programmed comparator value will show equality by generating an output pulse at the carry terminal. This is used to reset
the counter to zero, and the sequence repeats. For
initialising the counter, gate G_{2} ensures that the

exponential rise of voltage that will occur across C when the load terminal is driven low at commencement, will provide a fast logic level change at gate G_{3} when the capacitance voltage reaches the threshold level of G_{2}. Cascade connexions of comparators allow an extension of the modulus to 256 for two stages, the carry from the first counter being ANDed with the driving clock pulse.

Reference

Panzitta, J. Ideas for Design, Electronic Design 11, May 24, 1974.

