


Digital Keyboard Controller

P. Williams

This circuit was designed to overcome all the problems associated with resistor ladders and analogue memories normally found in synthesisers. The key depressions cause a diode matrix to set up binary patterns which are memorised on a bank of flip-flops.

The main advantages of this method are infinite memory hold; more accurate output since there are only six main tuning resistors (it is economical to make them variable). If more than one key is depressed at a time, no "out of tune" notes will be

produced because of a multiple key depression detector. Only one set of single make contacts is required for the keyboard. Octave transpose and portamento is included.

When a key is depressed, the binary code set up by the diodes is clocked into the flip-tlop (IC2-IC4) by the monostable (IC6). IC7 along with its associated resistors forms a D/A converter. The 33K resistors along with Q1 form the circuit which inhibits further data being clocked into the

flip-flops if more than one key edge to trigger envelope shapers.

Up to 63 semitones (over five octaves) can be catered for using six data bits as shown, although more bits can be added.

RV1 to RV6 should be adjusted so that each successive bit causes twice as much change in the output voltage. RV7 adjusts the voltage/frequency relationship. RV8-10 adjust the starting voltage; they should be set to give the required octave shifts on the transpose control.

Tech-Tips is an ideas forum and is not aimed at the beginner. We regret we cannot answer queries on these items.

ETI is prepared to consider circuits or ideas submitted by readers for this page. All items used will be paid for. Drawings should be as clear as possible and the text should preferably be typed. Circuits must not be subject to copyright. Items for consideration should be sent to ETI TECH-TIPS, Electronics Today International, 25-27 Oxford St., London W1R 1RF.