
18 ElEctronics ProjEcts vol. 26

Microcontrollers are being
extensively used in many
industrial and household

applications. Here, we’ve used an
AVR microcontroller (AT90S8515)
from Atmel Corp. for controlling four
5x7 dot-matrix displays. The micro-
controller is based on true reduced
instruction set computer (RISC) ar-
chitecture. Any message entered by
the user through the keyboard of a PC

scrolls elegantly through the displays
even after disconnection of the circuit
from the PC.

This display can be used in public
places such as railway stations and
restaurants to convey messages to
the public. The microcontroller is in-
terfaced to the PC keyboard through
its serial port. The embedded system
software is written in ‘C.’

The circuit has the following fea-
tures:

1. It accepts any message entered
through the keyboard of the PC for
display.

2. User interface is provided
through the PC’s RS-232 serial port
(COM port).

3. The circuit derives power from
230V AC mains, which is converted

 ShubhiKa taneja, deepa
chawla

Standalone Scrolling
diSplay uSing at90S8515 aVr

into regulated 5V DC.
4. The string of characters entered

through the keyboard is stored in the
EEPROM. The stored message can be
displayed on the dot-matrix display
just by clicking the scud button on the
terminal program while it is connected
to the PC.

5. Any message entered from the
PC’s keyboard gets stored in the EE-
PROM of the AVR and can be scrolled
at any time without the use of a PC, i.e.
you just need to switch on the embed-
ded system.

6. RXD and TXD pins of the mi-
crocontroller are used to communi-
cate with the PC through MAX-232
IC and TX and RX pins of COM port.
All the four ports (ports A, B, C and
D) of the AVR are programmed as
output ports.

Fig. 1 shows the block diagram
of the AT90S8515-based standalone
scrolling display system. It consists of
an AVR microcontroller, row display
drivers, column display drivers, four
5x7 dot-matrix displays and power
supply section. The AVR compiler, in-
system programmer (ISP) and terminal
program are installed in the computer.
The display control program, written
in ‘C’ using AVR C compiler, is loaded
into the microcontroller by using paral-
lelport pins of the PC.

Circuit description
Fig. 2 shows the circuit of AVR
AT90S8515-based scrolling display
system.

AT90S8515 AVR microcontroller.
AT90S8515 is a 40-pin, 8-bit microcon-
troller from Atmel. It has 512 bytes of
SRAM, 512 bytes of EEPROM and 8kB
Flash with 32 programmable input/
output (I/O) lines. AVR microcon-
trollers are in-system programmable
through RS-232C serial port (COM
port) of the PC. The programmable
Flash memory and EEPROM of the
AVR can be programmed using a
simple software and just four wires
from parallel port of the PC to your
target board containing AVR. Easy
in-circuit programmability combined
with Flash memory makes it easy to
update the code during development.
Since we require a minimum of 27
output pins (20 columns and 7 rows),

Fig. 1: Block diagram of standalone scrolling display using AT90S8515 AVR

Parts LIst
Semiconductors:
IC1 - AT90S8515 AVR micro-

controller
IC2-IC6 - ULN2803A Darlington

array LED driver
IC7 - MAX232 RS-232 serial

interface
T1-T7 - SK100B pnp transistor
Resistors (all ¼-watt, ±5% carbon):
R1 - 220-ohm
R2-R8 - 1-kilo-ohm
R9-R15 - 220-ohm
R16 - 620-ohm
Capacitors:
C1 - 100μF, 16V electrolytic

capacitor
C2, C3 - 22pF ceramic capacitor
C4 - 0.1μF ceramic capacitor
C5-C9 - 1μF, 16V electrolytic

capacitor
Miscellaneous:
XTAL - 8MHz crystal
DIS1-DIS4 - 5×7 dot-matrix (column

common cathode) display
LED1 - Red power indicator
S1 - SPST on/off switch
S2, S3 - Tactile switch

19ElEctronics ProjEcts vol. 26

AT90S8515 suits this application as it
has 32 programmable I/O lines. Pin
details of this AVR are shown in Fig. 4.
The AVR marked on the IC with 8PI or

8PC indicates the value of the crystal
to be used, which in this case is 8 MHz.
The baud rate in the communication
software should be selected as per the

following relationship:

Baud rate =
16(VBRR+1)

fCLK

where fCLK is crystal
frequency and VBRR is the
value of contents of the
UART baud rate register.

Serial interface. The
serial interface comprises
9-pin D-type female con-
nector, IC MAX-232, five
1μF electrolytic capaci-
tors and 3-core cable as
shown in Fig. 3.

D i s p l a y d r i v e r s .
Seven SK100B transis-
tors along with 220-ohm
(output current limitor)
and 1k-ohm resistors
(base current limiter) are
used for controlling the
rows of LED array, and
five ULN2803 ICs (IC2
through IC6) are used for
controlling the columns
of dot-matrix displays.

Dot-matrix displays.
Four 5x7 dot-matrix
LEDs (with common
cathodes as the columns)
such as KLP2057 from
Kwality Electronics (In-
dia) are used for the dis-
play. The displays need
seven row drivers and
20 column drivers. These
displays are identical,
with cathodes shorted
along the column and
anodes shorted along the
row (refer Fig. 5).

Since the human eye
cannot perceive changes
carried out at frequen-
cies greater than 20 Hz,
each column must be
refreshed at a minimum
rate of 20 Hz. Here, we
have set the refresh rate
(the rate at which the
display from one column
to the next) at about 400
Hz. In case only one LED
glows in a particular col-Fi

g.
 2

: C
irc

ui
t f

or
 s

ta
nd

al
on

e
sc

ro
lli

ng
 d

is
pl

ay
 u

si
ng

 A
T9

0S
85

15

20 ElEctronics ProjEcts vol. 26

umn, that particular data line will have
to handle 20mA current.

Since there are 20 LEDs in a row,
400mA current could flow through
a particular column at a particular
instant. The circuit has to be designed
keeping the value of this peak current
in mind. Since 400mA current cannot
be sourced by the port pin of AVR
(maximum current sourced or sinked
by the AVR’s I/O ports is 20 mA), the
display cannot be directly connected
to the AVR port. We thus use SK100B
pnp transistors along with 220-ohm
current-limiting resistors.

For obvious reason, we’ve used five
ULN2803 ICs to increase the current
sinking capacity. These ICs are con-
nected to the columns of the displays.
Each IC has eight Darlington pairs.
Pairs of input and output pins of ULN

2803 are connected
in parallel to increase
the current sinking
capability. The tran-
sistors are turned
on by the TTL volt-
ages applied by the
input/output ports
of the AVR to their
bases through 1-kilo-
ohm resistors.

Power source.
A 5V DC regulated
power supply is used
in this circuit, which
has to be supplied

externally.

Connecting the AVR to the
PC's serial port
The microcontroller needs to com-
municate with the PC’s RS-232 port to
scroll the string entered through the
keyboard of the PC. AT90S8515 has
a built-in serial port. The processor
takes care of serialising and shifting
out of the data on the output pin
and assembling of the incoming data
into a byte. Since the RS-232 signals
are bipolar in nature, they cannot
be fed directly to the controller. We
have used a very popular RS-232 line
driver and receiver MAX232 (IC7) for
converting the PC’s RS-232 compat-
ible signals into TTL levels for AVR
and vice versa. TIN (TTLinput) and
TOUT (TTL output) pins of MAX232
are connected to the transmitter (TXD)

and receiver (RXD) pins of the AVR,
respectively.

The transmitter (TX) and receiver
(RX) pins of the PC’s Com port are con-
nected to the RIN (RS-232 input) and
ROUT (RS-232 output) pins of MAX232,
respectively. A 9-pin D-type male con-
nector is attached to the PCB board,
whose pins 2, 3 and 5 are soldered to
ROUT, RIN and ground of IC7, respec-
tively.

Two 9-pin D-type female con-
nectors are required for connection
between the PCB board and the PC’s
serial port. The communication be-
tween the PC and the circuit board
for display is done through a terminal
program software such as ‘Terminal
v1.9b,’ which can be downloaded for
free from the Website ‘bray.velenje.
cx/avr/terminal.’ Using this software,
up to 130 characters can be typed in at
a time for transmission to the display
circuit for the scrolling display.

Programming the AVR
Getting started with the AVR requires
nothing more than the free assembler/
compiler, a simple programmer such
as the one by Jerry Meng (available
on ‘www.qsl.net/ba1fb/’) and a tar-
get board. The target board can be as
simple as a few parts since the AVR
is highly integrated. Since it is easy
to reprogram the flash memory, you
can develop code and test without the
need for an expensive in-circuit emula-
tor. This is done by a built-in interface
in the AVR chip, which enables you
to write and read the contents of the
programmed Flash and the built-in-
EEPROM. This interface works serially
and needs mainly three signal lines
from the AVR to PC’s printer port for
programming:

1. SCK: A clock signal that shifts
the bits to be written to the memory
into an internal shift register, and that
shifts out the bits to be read from an-
other internal shift register.

2. MOSI: The data signal that sends
the bits to be written to the AVR.

3. MISO: The data signal that re-
ceives the bits read from the AVR.

The connections for program-

Fig. 3: RS-232 interface circuit

Fig. 4: Pin details of AT90

Fig. 5: Column common cathode

21ElEctronics ProjEcts vol. 26

ming are simple but there are various
standards adopted by the industry.
In this project, the ISP10 standard
is used on the STK200 programmer
board (from KANDA Systems) for
programming. The STK200 board
consists of the zif socket for the
AVR and a 10-pin header box. The
dongle is used to connect the port
of the PC to the 10- in header con-
nector on the STK200 board. Along
with this STK200 board, you need a
compiler/assembler such as AVREdit
3.5 and Atmel AVR ISP 2.65 software
to be installed into your system
for programming the AVR chip.
The required software tools can be
downloaded from the Website ‘www.
avrfreaks.net.’ The STK200 dongle is
available on the Website ‘elm-chan.
org/works/avrx/report_e.html.’

EFY note. A simple dongle circuit
used in EFY Lab for programming
the AVR will be published in the

next issue.

Software Program
The software has the following fea-
tures:

1. Initially waits for 17 seconds for
the user to enter the string.

2. Receives data from UART sent
through the serial port of the PC con-
nected to MAX232 by a 9-pin connec-
tor.

3. Stores the string entered by the
user. Else, retrieves the previously
stored string from the EEPROM.

4. Stores the byte-patterns of char-
acters ‘A’ through ‘Z,’ ‘a’ through ‘z’
and ‘0’ through ‘9’ in the 16-bit pro-
grammable flash memory.

5. Initialises the interrupts for re-
fresh rate and scroll rate.

6. Maps the byte pattern of each
character from the program memory
as a function of the scroll parameter
and then sends the values to the ports.

The flow-chart of the program is
shown in Fig. 6.

The 8-bit timer/counter of the AVR
is used to implement refreshing of the
display. As the minimum refresh rate
for flicker-free view is 20 Hz, we have
chosen prescale as Clk/64, thus giving
us the refresh rate in kilohertz, where
‘Clk’ is the oscillator clock frequency of
the crystal used.

Wait interrupt has been imple-
mented by the 16-bit timer/counter
with clk/1024 as the pre-scaler and
output-compare register (OCR). This
gives us an initial wait period of 17
seconds.

Sub-modules of the code. During
the 17-second waiting period, the
program waits for the user to send
data through the UART. Hence, the
program waits in while loop ‘While
(! (USR&(1<<RXC))&& (q! =0));’ and
keeps checking the RXC bit (UART
Receiver Complete) of the UART sta-
tus register (USR) until either the user
enters a data byte (RXC bit will be set)
or the 16-bit timer/counter output
compare interrupt is generated and
the while loop terminates. The 16-bit
timer/ counter is initialised as ‘TC-
CR1B=5; OCR1AH=10;’ which defines
the prescaler of ‘clk/64.’

To receive data from UART
sent from the serial port of the
PC, first the UART baud rate and
UART control register (UCR)
are set to enable the receiver and
the transmitter as ‘UBRR=25;
UCR=(1<<RXEN)|(1<<TXEN);’ where
UBRR is the UART baud rate register.

If the user sends a new string, it
will first be received from the UART
data register (UDR) and stored in
SRAM, then it will be written into the
EEPROM, which, in turn, overwrites
the previously stored string. The fol-
lowing lines enable storing of the
string in SRAM:
While ((count1<100) && (str1 [k]! = 63))

{

if(USR & (1<<RXC))

flag=1;

If the string entered is in the cor-
rect format, the flag is set to ‘1.’ Else,
the flag remains ‘0’ and the previously

Fig. 6: Flow-chart of the program

22 ElEctronics ProjEcts vol. 26

stored string will be displayed. To
store the string in EEPROM, the string
is written character-by-character in
the EEPROM starting from location
‘0x0001.’

If the previously stored string is to
be scrolled, the same routine is execut-
ed, except that data is only ‘read from’
instead of ‘written to’ the EEPROM.
The following program lines perform
these actions:
address = 0x0001;

EEREAD(address, str+x);

EEWRITE(address,str1[x]);

//Store the string

in EEPROM

To store the byte patterns of char-
acters ‘a’ and ‘b’ in the 16-bit program-
mable flash memory, an extract from
the program is reproduced below:
typedef unsigned char u08;

u08 __attribute__ ((progmem)) leds[]={

0xe0, 0xd7, 0xb7, 0xd7, 0xe0, //a

0x80, 0xb6, 0xb6, 0xb6, 0xc9, //b

The program lines “t = str[i]; addr
= (t-’A’)*5;” are used to retrieve the
starting address of the byte-pattern
of any character, where ‘A’ is the base
address.

Initialisation of interrupts for re-
fresh rate and scroll rate is as follows:
TCNT0 = 200;

TIMSK |= 1<<TOIE0 ;

TCCR0=3;//Timer/Counter Control Register

An 8-bit timer/counter (TCNT0) is
used in the program, whose value can
be changed to increase the intensity of
the display. The scroll rate has been
taken as a multiple of refresh rate. This
multiple is taken as ‘2000.’ When the
string to be scrolled is known, first the
input/output ports are set by the fol-
lowing instructions:
outp(0xff,DDRA);

outp(0xff,DDRB);

outp(0xff,DDRC);

outp(0xff,DDRD);

To map the byte pattern of each
character of the string from the pro-
gram memory as a function of the
scroll parameter (named as offset
here) and then send the values to the
ports, the following section of the
program is a critical section. As we
don’t want the interrupts to occur Fig. 7: Combined actual-size, single-side PCB layout for Figs 2 and 3

23ElEctronics ProjEcts vol. 26

during their execution, we use cli ()
and sei ():
“cli();//disable interrupt in

critical section

if(j == 2000

t = str[i];

if(t>=65&& t<=91);// Characters

between A

and Z

addr=(t-’A’)*5;//i is being

incremented in interrupt

else if(t>=97&& t<=‘122);

// Characters between a and z

else if(t>=48&& t<=57);

// Characters between 0 and 9

curr_col_temp=(curr_col<5)?

curr_col:curr_col%5;

m = offset + curr_col_temp;

if(m>=5) m=m-5;

addr = addr + m;

value = PRG_RDB(&leds[addr]);

outp(value, PORTC);

setcol(curr_col);

sei();//enable interrupt”

The function ‘setcol(int col)’ is
called to send appropriate values to the
ports to drive the column LEDs.

Construction
The circuit can be constructed on any
general-purpose PCB. A 3-core serial ca-
ble is used for communication with the
PC’s keyboard. The 9-pin male connec-
tor is soldered on the PCB to interface
with the cable. 5V DC regulated power
supply is required for the circuit as well
as programming the circuit, which can
be constructed on a separate PCB.

An actual-size, solder-side com-
bined PCB layout for the display
and interface circuits (Figs 2 and 3)
is shown in Fig. 7 and its component
layout in Fig. 8.

Testing procedure
After having mounted all the compo-
nents, except AVR on the PCB, you
have to perform the initial test (option-
al) to check the connections of the 5x7
dot-matrix displays. The ‘check.c’ pro-
gram given below can be programmed
into the AVR for this checking. The
various steps involved are:

1. Download the ‘AvrEdit3.5’
software and Atmel AVR ISP and Fig. 8: Component layout for the PCB

24 ElEctronics ProjEcts vol. 26

load the ‘Check.
Rom’ file from
the ‘AvrEdit’
folder.

6. From ‘Pro-
gram’ menu bar
of the ISP, select
‘Program De-
vice’ to program
the AVR.

Remove the
p r o g r a m m e d
AVR from the
STK200 board.
The AVR, when
inserted into the
populated PCB,

will light up all the LEDs in the display
devices if the circuit connections are
correct.

Now, to program the main pro-
gram ‘ScrollD.c’ into the AVR chip,
create a folder, say, ‘Scroll’ under the
‘AvrEdit’ folder. Copy ‘ScrollD.c’ into
the ‘Scroll’ folder, run ‘AvrEdit’ and
follow steps 2 through 6 as mentioned
above. After programming the AVR,
remove it from the STK200 board and
insert into the main circuit.

7. Connect the 9-pin D-type female
connector from the main circuit to the
COM port of your PC.

8. Download the ‘Terminalv1.9b’
communication software and install
it in your PC. An application file icon
named ‘Terminal’ will be created on
the desktop.

9. Switch on the power to the
circuit and run ‘Terminal’ from the
desktop. Choose the baud rate of this
application as 9600 and parity bit as
none (refer to the screenshot).

10. Click ‘Connect’ button and type
‘*New Year 2005?’ in the transmit box.
Note that the message should always
be enclosed between ‘*’ and ‘?’ before
transmission.

11. Click ‘Send’ button to transmit
the characters for display on the dot-
matrix displays.

12. To enter new characters for
display, click ‘Disconnect’ button,
press reset switch S2 and type new
message in the transmit/edit box.
Click ‘Connect’ button followed by
‘Send’ button.

13. If a particular string is to be
scrolled again and again, disconnect
the circuit from the PC. Whenever
the circuit is switched on, the display
system will wait for 17 seconds and the
previous string stored in the EEPROM
will scroll on the displays without the
need of serial cable, Terminal program
and PC. This feature makes this em-
bedded system a standalone system.

EFY note. 1. It was observed that
a momentary low pulse is required
to be provided at pin 10 (RXD) of the
AVR through switch S3 to initiate the
display without PC.

Download source code: http://
www.efymag.com/admin/issuepdf/
SCROLL%20DISPLAY.zip

Screenshot of terminal program

install in your system. The ‘AvrEdit’
and ‘Avrtools’ folders automati-
cally get created in the respective
software.

2. Create another folder, say, ‘Dis-
check,’ under the ‘AvrEdit’ folder and
copy the ‘check.c’ file into the ‘Dis-
check’ folder.

3. Run ‘AvrEdit’ from the desktop,
open the ‘check.c’ program and click
‘Run’ in the menu bar for compilation.
After compilation, the ‘Check.Rom’ file
is automatically generated under the
‘Discheck’ folder.

4. Now, connect the STK200 (don-
gle) to the parallel port of the PC and
insert the AVR into the zip socket of
the STK200 board.

5. Run the Atmel AVR ISP from
the desktop, select ‘New Project’ to

scrolld.c
// Code for AVR PROJECT of Scrolling Dis-

play
#include <eeprom.h>
// Offset b/w 0 and 4
#include <io.h>
#include <progmem.h>
#include<interrupt.h>
#include<sig-avr.h>
#include<ina90.h>
//offset is the beginnig pointer
// global varables
int curr_col,i=0,j=0,offset=0,temp=0,q=1;
unsigned char str[100], str1[100];
int count=0, address,x,x1 ;
void EEWRITE(int address,char value);
void EEREAD(int address,char *val);
void setcol(int col);
SIGNAL(SIG_OUTPUT_COMPARE1A)
{q=0;}
SIGNAL(SIG_OVERFLOW0)
{
int k;
 setcol(-1);
curr_col++;

j++;
if (curr_col==20)
{
curr_col=0;
if(offset ==0)
 {
 if(i>=3) i=i-3;
 else i=i+count-3;
//offset++;
 }
else
if(offset==4 && j== 2000)
{i=temp+1;
temp=i;
}
 else
 { i--;
 k = 20 - offset;
 while(k>=5){ k=k-5; i--; if(i<0) i=i+count; }
 }
}

else
{

int x = (curr_col<5)? curr_col: curr_col%5 ;
if((x!=0&&(x+offset)%5==0) ||(offset==0 && (

curr_col==5 || curr_col==10 ||curr_col==15 ||
curr_col==20)))
i++;//char shift
if(i==count) i=0;
}
if(i==count)//added now
i=0;
TCNT0 = 230;
}

typedef unsigned char u08;
u08 __attribute__ ((progmem)) leds[]={
0xe0, 0xd7, 0xb7, 0xd7, 0xe0,
0x80, 0xb6, 0xb6, 0xb6, 0xc9, //b
0xc1, 0xbe ,0xbe, 0xbe, 0xdd, //c
0x80, 0xbe ,0xbe, 0xbe, 0xc1, //d
0x80, 0xb6, 0xb6, 0xb6, 0xbe, //e
0x80, 0xb7, 0xb7, 0xb7, 0xbf, //f
0xc1, 0xbe, 0xba, 0xba, 0xd9, //g
0x80, 0xf7, 0xf7, 0xf7, 0x80, //h
0xbe, 0xbe, 0x80, 0xbe, 0xbe, //i

25ElEctronics ProjEcts vol. 26

0xb9, 0xbe, 0xbf, 0x81, 0xbf, //j
0x80, 0xf7, 0xeb, 0xdd, 0xbe, //k
0x00, 0xfe, 0xfe, 0xfe, 0xfe, //l
0x80, 0xdf, 0xe7, 0xdf, 0x80, //m
0x80, 0xef, 0xf7, 0xfb, 0x80, //n
0xc1, 0xbe, 0xbe, 0xbe, 0xc1, //o
0x80, 0xb7, 0xb7, 0xb7, 0xcf, //p
0xc1, 0xbe, 0xba, 0xbc, 0xc0, //q
0x80, 0xb7, 0xb3, 0xb5, 0xce, //r
0xce, 0xb6, 0xb6, 0xb6, 0xd9, //s
0xbf, 0xbf, 0x80, 0xbf, 0xbf, //t
0x81, 0xfe, 0xfe, 0xfe, 0x81, //u
0x83, 0xfd, 0xfe, 0xfd, 0x83, //v
0x00, 0xfd, 0xfb, 0xfd, 0x00, //w
0x1c, 0x6b, 0x77, 0x6b, 0x1c, //x
0xbf, 0xdf, 0xe0, 0xdf, 0xbf, //y
0xbc, 0xba, 0xb6, 0xae, 0x9e,
0xf0,0xee,0xee,0xf1,0xfe,//a
0x00,0xf6,0xf6,0xf6,0xf6,//b
0xf1,0xee,0xee,0xee,0xff,//c
0xf0,0xf6,0xf6,0xf6,0x00,//d
0xe1,0xd6,0xd6,0xd6,0xe6,//e
0xf7,0x00,0x37,0x37,0xdf,//
0xcf,0x37,0x31,0x36,0xc0,//g
0xff,0x00,0xf7,0xf7,0xf8,//h
0xff,0xff,0xd0,0xff,0xff,//i
0xfd,0xfa,0x20,0xff,0xff,//j
0xff,0x00,0xfb,0xf5,0xee,//k
0xfb,0x00,0x2e,0xdd,0xff,//l
0xf0,0xef,0xf0,0xef,0xf0,//m
0x6f ,0x70 ,0x6f ,0x6f ,0x70,//n
0xf9,0xf6,0xf6,0xf6,0xf9,//o
0x00, 0x6d, 0x6b, 0x77, 0x7f,//p
0x4f, 0x37, 0x37 ,0x00 ,0x7b,//q
0xf7 ,0xf4 ,0xfa ,0xf4 ,0xf7,//r
0xf5 ,0xea ,0xea ,0xf4 ,0xff,//s
0xf7 ,0xf7, 0x00, 0xf6, 0xf5,//t
0xf1, 0xfe ,0xfe, 0xfe, 0xf1,//u
0xef ,0xf1 ,0xfe ,0xf1 ,0xef,//v
0xe1, 0xfe, 0xf9 ,0xfe, 0xe1,//w
0xee, 0xed ,0xf3 ,0xed, 0xee,//x
0xcf ,0xf7, 0xf5, 0xf2, 0xc0,//y
0xee ,0xec ,0xea ,0xe6 ,0xee,//z
0x00,0x3e,0x3e,0x3e,0x00,//0
0xff,0xff,0x00,0xff,0xff,//1
0xb0,0xb6,0xb6,0xb6,0x86,//2
0xb6,0xb6,0xb6,0xb6,0x00,//3
0x87,0xf7,0xf7,0xf7,0x80,//4
0x06, 0x36 ,0x36 ,0x36 ,0x30,//5
0xf1, 0xee, 0xd6 ,0xb8, 0x7f,//6
 0xbd, 0xbb ,0xb7 ,0xaf ,0x9f,//7
0xc9 ,0xb6 ,0xb6 ,0xb6 ,0xc9,//8
 0xcd ,0xb6, 0xb6, 0xb6, 0xc1//9

 };

/* interrupts 1. refresh rate 2. scroll rate */
/* End of interrupts */
int main(void)
{
unsigned char first_byte,count1,k=0,flag=0;
count1=0;
UBRR=25;
UCR= (1<<RXEN)|(1<<TXEN);
TIFR=TIFR;
TIMSK=1<<OCIE1A;
TCCR1B=5;
OCR1AH=10;
// OCR1AL=0;
_SEI();
while(!(USR&(1<<RXC))&& (q!=0));//timer1

will count till 2^16-1
first_byte=UDR;
if(first_byte == 42) //is *

 {
 while((count1<100) && (str1[k] != 63)) //

enter not pressed
 {
 if(USR & (1<<RXC))
 {
 str1[count1]=UDR;
 k=count1;
 count1++;

 }
 }
flag=1;//if string entered in correct format ok

else flag remains 0 & prevoiusly stored string will
be displayed
}
if(str1[k] == 63)
str1[k]=’\0’;
address = 0x0001;
x=0;
if(flag==1)
{do
{
EEWRITE(address,str1[x]);
EEREAD(address, str+x);
address++;
x1=x;
x++;
}
while(str1[x1] !=’\0’);
count = x;
}//end of if flag==1

if(flag==0)
{do
{EEREAD(address, str+x);
address++;
x1=x;
x++;
}
while(str[x1]!=’\0’);
count = x;
}//end of flag==0

TIFR = TIFR;
TCNT0 = 230;
TIMSK |= 1<<TOIE0 ;
TCCR0 = 3;

 int addr, curr_col_temp,m;
 u08 value;
 outp(0xff,DDRA);
 outp(0xff,DDRB);
 outp(0xff,DDRC);
 outp(0xff,DDRD);
 char t;
 curr_col=0;
 setcol(-1);
while(1)
{
 cli();
if(j == 2000)
{
//if(offset == 4) temp= offset;
offset++;
 j=0;
}//multiple of refresh(19),make para 1900 or 2000

if(offset >=5)
{offset=0;
// temp++;
if(temp>=count)
temp=0;
}

 t = str[i];
 if(t>=65 && t<=91)
 addr = (t-’A’)*5;//i is being incremented in

interrupt
 else
if(t>=97 && t<=122) // c b/w a and z
 addr = (t-71)*5;
else
 if(t>=48 && t<=57) // c b/w 0 and 9
 addr = (t-48+52)*5;

else
addr = -325;
curr_col_temp=(curr_col<5)?curr_col:curr_col%5;
 m = offset + curr_col_temp;
 if(m>=5) m=m-5;
 addr = addr + m;
 value = PRG_RDB(&leds[addr]);
 outp(value, PORTC);
 // curr_col = curr_col+1;
 setcol(curr_col);
 sei();
}
}

void setcol(int col)
{

//initially switch off all coloumns
switch (col)
{
case -1: PORTA=0x00;PORTB=0x00;PORTC=0xF

F;PORTD=0x00;break;
case 0: PORTA = 0x01; break;
case 1: PORTA = 0x02; break;
case 2: PORTA = 0x04; break;
case 3: PORTA = 0x08; break;
case 4: PORTA = 0x10; break;
case 5: PORTB = 0x01; break;
case 6: PORTB = 0x02; break;
case 7: PORTB = 0x04; break;
case 8: PORTB = 0x08; break;
case 9: PORTB = 0x10; break;
case 10: PORTD = 0x04; break;
case 11: PORTD = 0x08; break;
case 12: PORTD = 0x10; break;
case 13: PORTD = 0x20; break;
case 14: PORTD = 0x40; break;
case 15: PORTA = 0x80; break;
case 16: PORTA = 0x40; break;
case 17: PORTA = 0x20; break;
case 18: PORTB = 0x40; break;
case 19: PORTB = 0x20; break;
default : break;
}
}

void EEWRITE(int address, char value)
{
while(EECR&(1<<EEWE));
eeprom_wb(address, value);
 EECR |=(1<<EEMWE);
 EECR|=(1<<EEWE);
}

void EEREAD (int address,char *val)
{
 while(EECR&(1<<EEWE));
 EEAR=address;
 EECR=(1<<EERE);
*val= EEDR;
}

chEck.c
// Program for checking Dot matrix Display //
#include<io.h>
#include<sig-avr.h>
#include<ina90.h>
int main(void)
{

DDRA=0xFF;
DDRB=0xFF;
DDRC=0XFF;
DDRD=0xFF;
PORTA=0XFF;
PORTB=0XFF;

PORTD=0XFF;
PORTC=0X00;
for(; ;)
{
}
} 

