Mutliplexing technique yields a reduced-pin-count LED display

Saurabh Gupta and Dhananjay V Gadre, Netaji Subhas Institute of Technology, Dwarka, New Delhi, India

"Charlieplexing" as a method of multiplexing LED displays has recently attracted a lot of attention because it allows you, with N I/O lines, to control $N \times (N-1)$ LEDs (references 1 through 5). On the other hand, the standard multiplexing technique manages to control far fewer LEDs. Table 1 lists the number of LEDs that you can control using Charlieplexing and standard multiplexing by splitting the available number of N I/O lines into a suitable

number of rows and columns. Table 1 also shows the duty cycle of the current that flows through the LEDs when they are on.

Clearly, Charlieplexing allows you to control a much larger number of LEDs with a given number of I/O lines. However, the downside of this technique is the reduced duty cycle of the current that flows through the LEDs; thus, to maintain a given brightness, the peak current through the LEDs must increase proportionately. This current can quickly reach the peak-current limit of the LED. Nonetheless, Charlieplexing is a feasible technique for as many as 10 I/O lines, allowing you to control as many as 90 LEDs. To control an equivalent number of LEDs using the standard

Figure 1 "Charlieplexing" with two I/O lines allows you to control two LEDs.

designideas

TABLE 1 NO. OF LEDS AND DUTY CYCLE							
No. of I/O lines	Multiplexing- controlled LEDs	Duty cycle with multi- plexing (%)	Charlieplexing- controlled LEDs	Duty cycle with Charlieplexing (%)			
Two	Two	100	Two	50			
Three	Three	100	Six	16.67			
Four	Four	50	12	8.33			
Five	Six	50	20	5			
Six	Nine	33	30	3.33			
Seven	12	33	42	2.4			
Eight	16	25	56	1.78			
Nine	20	25	72	1.38			
10	25	20	90	1.11			

ABLE 2 OUTPUT VOLTAGE

P ₁	P ₂	Voltage at node PR ₁
0	0	V _{cc}
0	1	V _{cc}
0	Z	V _{cc}
1	0	0
1	1	0
1	Z	0
Z	0	V _{cc} /2
Z	1	V _{cc} /2
Z	Z	V _{cc} /2

Figure 2 "GuGaplexing" with two I/O lines allows you to control four LEDs.

multiplexing technique would require 19 I/O lines.

This Design Idea proposes a modification to the Charlieplexing tech"GuGaplexing," allows $2 \times N \times (N-1)$ LEDs using only N I/O lines and a few additional discrete components (**Figure 1**). To turn on LED D₁ using the Charlieplexing method, set P₁ to logic one and P₂ to logic zero. To turn on

nique that allows you to control twice as many LEDs. Thus, the proposed method,

LED D_2 , set P_1 to logic zero and P_2 to logic one. **Figure 2** shows the proposed GuGaplexing scheme with two I/O lines controlling four LEDs. The

	<mark>3</mark> I/O	LINES	AND	
VOLTA	GE			

P ₁	P ₂	Voltage at node PR ₁	LED that turns on
0	0	V _{cc}	L ₃
0	1	V _{cc}	L ₂
1	0	0	L ₁
1	1	0	L ₄
Ζ	Z	V _{cc} /2	None

GuGaplexing technique exploits the fact that each I/O line has three states: one, zero, and high impedance. Thus, with two I/O lines, states 00, 01, 10, and 11 of eight possible states control the LEDs.

Table 2 lists the voltage at the output of the transistor pair for various states of the two I/O lines, P1 and P₂. The transistor pair comprises a BC547 NPN and a BC557 PNP transistor; matched transistor pairs are recommended. For N I/O lines, the GuGaplexing technique requires N-1 transistor pairs. Table 3 shows the state of the I/O lines P_1 and P_2 and the voltage at node PR, to control the four LEDs. The circuit requires that the LED turn-on voltage should be slightly more than $V_{cc}/2$. Thus, for red LEDs with a turn-on voltage of approximately 1.8V, a suitable supply voltage is 2.4V. Similarly, for blue or white LEDs, you can use a 5V supply voltage. Modern microcontrollers, especially the AVR series of microcontrollers from Atmel (www. atmel.com), operate at a wide variety of supply voltages ranging from 1.8 to

designideas

5.5V, and this design uses a Tiny13 microcontroller to implement the GuGaplexing technique.

Figure 3 plots the voltage at node PR_1 for various supply-voltage values when the input to the transistor pair is floating. The Spice simulation ensures that the circuit would work properly to provide $V_{CC}/2$ at the PR_1 node for wide operating-supply-voltage values when the input is floating.

A 24-LED bar display validates the scheme in a real application (Figure 4). The display is programmable and uses a linear-display scheme for the input analog voltage. The input analog voltage displays in discrete steps on the 24-LED display. Controlling 24 LEDs requires only four I/O lines and three pairs of transistors. The system uses 5-mm, white LEDs in transparent packaging and a 5V supply volt-

age. The GuGaplexing implementation uses an AVR ATTiny13 microcontroller. The analog input voltage connects to Pin 7 of the ADC input of the Tiny13 microcontroller.

The control program for the AT-Tiny13 microcontroller is available with the Web version of this Design Idea at www.edn.com/081016di1. The source code is in C and was compiled using the AVRGCC freeware compiler. You can modify the source code to display only one range of input voltage between 0 and 5V. For example, it is possible to have a linear-display range of 1 to 3V or a logarithmic scale for input voltage of 2 to 3V.EDN

REFERENCES

Lancaster, Don, *Tech Musings*, August 2001, www.tinaja.com/glib/ muse152.pdf. Charlieplexing: Reduced Pin-Count LED Display Multiplexing," Application Note 1880, Maxim, Feb 10, 2003, http://pdfserv.maxim-ic. com/en/an/AN1880.pdf.

Chugh, Anurag, and Dhananjay V Gadre, "Eight-Pin Microcontroller Handles Two-Digit Display With Multiple LEDs," *Electronic Design*, May 24, 2007, http://electronicdesign.com/Articles/ArticleID/15512/15512.html.

Gadre, Dhananjay V, and Anurag Chugh, "Microcontroller drives logarithmic/linear dot/bar 20-LED display," EDN, Jan 18, 2007, pg 83, www.edn. com/article/CA6406730.

Benabadji, Noureddine, "PIC microprocessor drives 20-LED dotor bar-graph display," *EDN*, Sept 1, 2006, pg 71, www.edn.com/article/ CA6363904.