Mutliplexing technique yields a reduced-pin-count LED display

Saurabh Gupta and Dhananjay V Gadre, Netaji Subhas Institute of Technology, Dwarka, New Delhi, India

\otimes
"Charlieplexing" as a method of multiplexing LED displays has recently attracted a lot of attention because it allows you, with NI I O lines, to control $\mathrm{N} \times(\mathrm{N}-1)$ LEDs (references 1 through 5). On the other hand, the standard multiplexing technique manages to control far fewer LEDs. Table 1 lists the number of LEDs that you can control using Charlieplexing and standard multiplexing by splitting the available number of $\mathrm{N} \mathrm{I/O}$ lines into a suitable
number of rows and columns. Table 1 also shows the duty cycle of the current that flows through the LEDs when they are on.
Clearly, Charlieplexing allows you to control a much larger number of LEDs with a given number of I/O lines. However, the downside of this technique is the reduced duty cycle of the current that flows through the LEDs; thus, to maintain a given brightness, the peak current through the LEDs must increase proportion-
ately. This current can quickly reach the peak-current limit of the LED. Nonetheless, Charlieplexing is a feasible technique for as many as $10 \mathrm{I} / \mathrm{O}$ lines, allowing you to control as many as 90 LEDs. To control an equivalent number of LEDs using the standard

Figure 1 "Charlieplexing" with two I/O lines allows you to control two LEDs.

designideas

No. of I/O lines	Multiplexing- controlled LEDs	Duty cycle with multi- plexing (\%)	Charlieplexing- controlled LEDs	Duty cycle with Charlieplexing (\%)
Two	Two	100	Two	50
Three	Three	100	Six	16.67
Four	Four	50	12	8.33
Five	Six	50	20	5
Six	Nine	33	30	3.33
Seven	12	33	42	2.4
Eight	16	25	56	1.78
Nine	20	25	72	1.38
10	25	20	90	1.11

Figure 2 "GuGaplexing" with two I/O lines allows you to control four LEDs.
multiplexing technique would require 19 I/O lines.
This Design Idea proposes a modification to the Charlieplexing tech-

LED D_{2}, set P to logic zero and P to logic one. Figure 2 shows the proposed GuGaplexing scheme with two I/O lines controlling four LEDs. The

Figure 3 This graph plots the voltage at node PR_{1} for various supply-voltage values when the input to the transistor pair is floating.

OUTPUT VOLTAGE		
P_{1}	P_{2}	Voltage at node P_{R}
0	0	$V_{c c}$
0	1	$V_{c c}$
0	Z	$V_{c c}$
1	0	0
1	1	0
1	Z	0
Z	0	$V_{c c} / 2$
Z	1	$V_{c c} / 2$
Z	Z	$V_{c c} / 2$

I/O LINES AND PR, VOLTAGE

P_{1}	P_{2}	Voltage at node P_{1}	LED that turns on
0	0	$\mathrm{~V}_{\mathrm{cc}}$	L_{3}
0	1	$\mathrm{~V}_{\mathrm{cc}}$	L_{2}
1	0	0	$\mathrm{~L}_{1}$
1	1	0	$\mathrm{~L}_{4}$
Z	Z	$\mathrm{V}_{\mathrm{cc}} / 2$	None

GuGaplexing technique exploits the fact that each I/O line has three states: one, zero, and high impedance. Thus, with two I/O lines, states $00,01,10$, and 11 of eight possible states control the LEDs.
Table 2 lists the voltage at the output of the transistor pair for various states of the two I/O lines, P_{1} and P_{2}. The transistor pair comprises a BC547 NPN and a BC557 PNP transistor; matched transistor pairs are recommended. For N I/O lines, the GuGaplexing technique requires $\mathrm{N}-1$ transistor pairs. Table 3 shows the state of the I / O lines P_{1} and P_{2} and the voltage at node PR_{1} to control the four LEDs. The circuit requires that the LED turn-on voltage should be slightly more than $\mathrm{V}_{\mathrm{cd}} / 2$. Thus, for red LEDs with a turn-on voltage of approximately 1.8 V , a suitable supply voltage is 2.4 V . Similarly, for blue or white LEDs, you can use a 5 V supply voltage. Modern microcontrollers, especially the AVR series of microcontrollers from Atmel (www. atmel.com), operate at a wide variety of supply voltages ranging from 1.8 to

designideas

Figure 4 With the GuGaplexing technique, controlling 24 LEDs requires only four I/O lines and three sets of transistors.
5.5 V , and this design uses a Tiny13 microcontroller to implement the GuGaplexing technique.
Figure 3 plots the voltage at node PR_{1} for various supply-voltage values when the input to the transistor pair is floating. The Spice simulation ensures that the circuit would work properly to provide $\mathrm{V}_{\mathrm{Cd}} / 2$ at the PR_{1} node for wide operating-supply-voltage values when the input is floating.
A 24-LED bar display validates the scheme in a real application (Figure 4). The display is programmable and uses a linear-display scheme for the input analog voltage. The input analog voltage displays in discrete steps on the 24-LED display. Controlling 24 LEDs requires only four I/O lines and three pairs of transistors. The system uses $5-\mathrm{mm}$, white LEDs in transparent packaging and a 5 V supply volt-
age. The GuGaplexing implementation uses an AVR ATTiny 13 microcontroller. The analog input voltage connects to Pin 7 of the ADC input of the Tiny 13 microcontroller.
The control program for the ATTiny 13 microcontroller is available with the Web version of this Design Idea at www.edn.com/081016dil. The source code is in C and was compiled using the AVRGCC freeware compiler. You can modify the source code to display only one range of input voltage between 0 and 5 V . For example, it is possible to have a linear-display range of 1 to 3 V or a logarithmic scale for input voltage of 2 to 3 V .EDN

REFERENCES

Lancaster, Don, Tech Musings, August 2001, www.tinaja.com/glib/ muse152.pdf.
2. "Charlieplexing: Reduced PinCount LED Display Multiplexing," Application Note 1880, Maxim, Feb 10, 2003, http://pdfserv.maxim-ic. com/en/an/AN1880.pdf.
s. Chugh, Anurag, and Dhananjay V Gadre, "Eight-Pin Microcontroller Handles Two-Digit Display With Multiple LEDs," Electronic Design, May 24, 2007, http://electronicdesign. com/Articles/ArticleID/15512/15512. html.
4 Gadre, Dhananjay V, and Anurag Chugh, "Microcontroller drives logarithmic/linear dot/bar 20-LED display," EDN, Jan 18, 2007, pg 83, www.edn. com/article/CA6406730.
■ Benabadji, Noureddine, "PIC microprocessor drives 20-LED dotor bar-graph display," EDN, Sept 1, 2006, pg 71, www.edn.com/article/ CA6363904.

