
projects microcontrollers

18 elektor - 5/2008

Display Computer

M16C mini board with graphics,
programmable in C and Basic

Dr Uwe Altenburg

The prices of graphic displays are dropping, which makes them increasingly attractive for many
applications. However, programming a graphic display is distinctly more difficult than programming
a text display. Our mini microcontroller board features a new display-on-glass module and a
high-performance Renesas M16C microcontroller. The board is available fully assembled, and the
microcontroller is pre-loaded with a TinyBasic interpreter to simplify the development of graphics
applications – even for novices.

There are countless applications for a
stand-alone microcontroller board with
a graphic display – everything from
model railways or regulating the tem-
perature in your home or conservatory
to robotics.

However, driving the display and pro-
gramming the associated microcontrol-
ler are tasks that exceed the skills of
quite a few beginners. For this reason,
in this article we present a ready-made
board equipped with a display, a high-

performance 16-bit microcontroller, and
even a Basic interpreter [1].

The powerful M16C – the big broth-
er of the R8C, which is well known to
many of our readers – can also be pro-
grammed in C just like any other mi-
crocontroller, so advanced users have
plenty of opportunity to develop their
own applications. In any case, you can
take advantage of features such as
128 kB of flash memory, a 10-bit ADC,
PWM signal generation and much

more, which make this mini board a
truly versatile module.

Display
Electronic Assembly has released a
novel ‘display on glass’ module with
the part number EA-DOGM128, which
is driven via an SPI interface [2]. This in-
terface can be clocked at up to 20 MHz,
so data transmission is not a significant
bottleneck. Data is only transmitted in
one direction here (from the microcon-

195/2008 - elektor

troller to the display), so only two sig-
nal lines are necessary. All in all, only
five microcontroller I/O pins are needed
– two for the data lines and three for the
control lines (RESET, /CS and DATA).
The display also features a very low
profile of only 5.8 mm. The integrated
LED backlight and automatic contrast
adjustment ensure good legibility un-
der all conditions, combined with low
current consumption. Thanks to its pin-
header contacts spaced at 2.54 mm,
the module is easy to fit on a PCB. And

on top of all this, it is available in sev-
eral colour combinations (e.g. from Re-
ichelt Germany [3]).

Microcontroller
Our search for a suitable microcon-
troller led us to choose the Renesas
M16C28/29 [4]. This 16-bit machine
has an impressive array of features.
With 128 kB of flash program memory,
4 kB of flash data memory and 12 kB
of RAM, it is generously endowed

with storage capacity. Although the
display has its own graphic memory,
the data for the display must still be
assembled in the microcontroller. A
monochrome display with a resolution
of 128 × 64 pixels requires an image
memory of 1 kB in the microcontrol-
ler for this purpose (128 × 64 ÷ 8). The
M16C28/29 has two DMA channels, so
data can be copied directly from the
image memory to the display without
imposing any significant load on the
microcontroller.

R13

10
k

+5V

R12

10
0k

R7

10
0

Ω

C2

100n

C1

100n

C5

100n

Q1 Q2

C8

22p

C7

22p

C11

15p

C10

15p

MAX202

T1OUT

T2OUT

R1OUT

R2OUT

R1IN

IC3

T1IN

T2IN

R2IN

C1–

C1+

C2+

C2–

11

12

10

13

14

15

16V+

V-

7

89

3

1

4

5

2

6

C3

100n

C4

100n

C9

100n

C12

100n

C13

100n

+5V

JP3

10

1

2

3

4

5

6

7

8

9

+5V
R

16
10

k

R
15

10
k

R
17

10
k

R
14

10
k

P6.4

P6.5

P6.6

XCOUT

RESET

CNVSS

P6.7

P0.0

P0.1

P0.2

P0.3

P0.4

P0.5

P0.6

P0.7

P1.5

P1.6

P1.7

P2.0

P2.1

P2.2

P2.3

P2.4

P2.5

P2.6

P2.7

SCL

SDC

SSO

SDA

1

2

3

4

5

6

7

8

9

10

11

12

13

JP2

14

1

2

3

4

5

6

7

8

9

10

11

12

13

JP1

14

+5V

P0.7

P2.0

P2.1

P2.2

P2.3

P2.4

P2.5

P2.6

P2.7

TXD/A

RXD/B

NMI

RESET

TXD

RXD

SDC

SDA

INT0

INT1

P0.0

P0.1

P0.2

P0.3

P0.4

P0.5

P0.6

CLK0

RXD0

TXD0

P6.4

P6.5

P6.6

RESETRESET

P20/OUTC10/INPC10/SDA

P21/OUTC11/INPC11/SCL

P17/INT5/INPC17/IDU

P70/TXD2/SDA/TA0OUT

P15/INT3/ADTRG/IDV

P22/OUTC12/INPC12

P23/OUTC13/INPC13

P24/OUTC14/INPC14

P25/OUTC15/INPC15

P26/OUTC16/INPC16

P27/OUTC17/INPC17

P72/CLK2/TA1OUT

P60/RTS0/CTS0

P64/RTS1/CTS1

P104/AN4/KI0

P105/AN5/KI1

P106/AN6/KI2

P107/AN7/KI3

P16/INT4/IDW

P80/TA4OUT/U

P71/RXD2/SCL

P74/TA2OUT/W

P81/TA4IN/U

P75/TA2IN/W

P76/TA3OUT

P90/TB0IN

P91/TB1IN

P92/TB2IN

P32/SOUT3

P77/TA3IN

P93/AN24

P100/AN0

P101/AN1

P102/AN2

P103/AN3

P00/AN00

P01/AN01

P02/AN02

P03/AN03

P30/CLK3

P31/SIN3

P61/CLK0

P62/RXD0

P63/TXD0

P65/CLK1

P66/RXD1

P67/TXD1

P82/INT0

P83/INT1

P73/CTS2

INT2/ZP

M16C29

NMI/SD

XCOUT

CNVSS

RESET

IC1

AVCC

XCIN

VREF

AVSS XOUT
P87/ P86/

P84/ P85/ VCC

P33

XIN VSS

36

10

64

63

60

58

57

56

55

54

53

52

51

50

49

48

47

46

45

62

44

43

42

41

40

39

38

37

32

31

30

29

35

34

33

28

27

26

25

16

15

14

13

12 11

24

23

22

21

20

19

18

17

61

59

2

1

54

3

6

9 7 8

P6.7

INT0

INT1

TXD2

RXD2

CLK2

TX/RX

P7.4

INT0

P7.6

INT1

CNVSS

NCP1117ST33
IC2

C6

100n

+5V +VDD

D10

LL4148

Q9

BC548

R24

4k7

+5V

C18

1µ

C17

1µ

C16

1µ

C15

1µ

C14

1µ

EA DOG M128

LC DISPLAY

LCD1

C
A

P
1P

C
A

P
1N

C
A

P
3P

C
A

P
2P

C
A

P
2N

CS1B

V
D

D
2

VOUT

SCL

RST

V
D

D
V

S
S

V
S

S

36
SI

V0

21

V1

22

V2

23

V3

24

V4

25

37

38
A0

39

40

29 30 31 28 27 35 34

26 33

A1

A2

A3

18
C1

19
C2

20
C3

32

1

2

3

C22

1µ

C20

1µ

C21

1µ

C19

1µ

R20

100 Ω

R21

100 Ω

R19

100 Ω

Q3

BC548

+5V

R22

10
k

R23

680 Ω

R1

1k
8

R6

3k
3

R2

1k
8

R8

3k
3

R3

1k
8

R9

3k
3

R4

1k
8

R10

3k
3

R5

1k
8

R11

3k
3

P
1.

5

P
1.

6

P
1.

7

S
C

L

S
S

O

TXD0

CLK0

RXD0

TXD

RXD

P7.6

+5V

SW1

SW2
SW3

R18

10
k

TXD2

RXD2

RXD2

TX/RX

TXD2

P7.6

TXD/A

RXD/B

070827 - 11

SN75176BD

IC4

5

8

2

1
R

D

3

4

7

6

+VDD

Q1 = 18.432MHz Q2 = 32.768kHz

CSE

SP1

CST-931RP/A

Figure 1. The circuitry around the M16C is relatively uncomplicated.

projects microcontrollers

20 elektor - 5/2008

Naturally, this little powerhouse in its
64-lead P-LQPFP package also has a lot
more to offer. Along with a 10-bit ADC
with 16 input channels, it has several
timer units, one of which can generate
up to eight PWM signals with a resolu-
tion of 16 bits. There is an SPI interface
for the display (of course), as well as
two UARTs available for user-defined

time is only 50 ns with a 20 MHz clock.
Several registers can be saved on the
stack at the same time with a single
assembly-language instruction when
an interrupt routine is called. This re-
sults in extremely short interrupt re-
sponse times. For information on other
features, such as clock generation us-
ing a PLL, we suggest that you consult
the datasheet.

Circuit
The schematic diagram of the circuit
(Figure 1) is relatively uncomplicated.
It is built around an M16C29 micro-
controller (IC1) with a minimum of pe-
ripheral components. The Reset input
manages nicely with a simple RC net-
work (R12/C2). The primary clock sig-
nal is generated using an 18.432-MHz
crystal (Q1). The microcontroller has a
specified maximum clock frequency of
20 MHz. Given the capabilities of the
internal dividers and the requirement
to have the serial interfaces support
all standard baud rates from 300 to
115,200 baud, the maximum clock fre-
quency that can be used is 18.432 MHz.
However, the SMD crystal used here is
a standard component.

In the interest of maintaining a low
profile, the display is soldered flush
against the surface of the circuit board.
All other components are mounted on
the solder side. This means that SMD
components must be used (with a few
exceptions). This applies to the second
crystal as well (Q2), which operates
at 32.768 MHz to provide a second-
ary clock signal. There are essentially
two situations in which the second-
ary clock can play a role. The first is
when a timer is programmed to act as
a real-time clock, for instance in order
to trigger a low-priority interrupt once
per second. Alternatively, the second-
ary clock can be used in place of the
primary clock in order to operate the
microcontroller with the lowest possi-
ble power consumption.

A 10-way MicroMatch connector is
used for programming and debugging
the microcontroller. The signals avail-
able on this connector correspond to
the signals needed by the Renesas E8
emulator for this type of microcontrol-
ler. The Renesas emulator is available
from Reichelt [3], among other sourc-
es, but it can also be obtained from
Rutronik or Glyn along with an evalu-
ation board. The emulator is accompa-
nied by a very good C compiler, which

functions. A third UART is used for the
ISP/debug interface.

Without wishing to revive the old de-
bate on the relative merits of RISC
and CISC architectures, we can sim-
ply mention here that the instruction
set of this CISC processor is extreme-
ly efficient. The instruction execution

D7DATA

CLK

CS

D6 D5 D4 D3 D2 D1 D0

Figure 2. The data transferred via the SPI link is clocked into the display on the rising clock edge.

Page 0

Page 1

Page 2

write pointer
D0

D7
Page 3

B
yt

e
0

B
yt

e
1

B
yt

e
2

B
yt

e
3

B
yt

e
4

B
yt

e
12

7
Page 4

Page 5

Page 6

Page 7

Figure 3. The image memory structure of the display.

215/2008 - elektor

can handle a code size of up to 64 kB
in the free version.
But that’s not all: for the C fans among
our readers, the next issue of Elektor
will have an article describing a small
circuit that lets you program the mi-
crocontroller without using purchased
hardware. All you actually need to
flash into the M16C is a serial inter-
face and a few freely downloadable
tools (for example, from Renesas), and
many readers are probably already fa-
miliar with them from the R8C ‘Tom
Thumb’ project.

Display power
The display (LCD1) requires only a sin-
gle supply voltage of 3.3 V. The micro-
controller can be operated at 3.3 V or
5 V. As the display module is intended
to be used in other circuits, we decided
on a supply voltage of 5 V.

A supplementary low-drop 3.3-V volt-
age regulator (IC2) generates the sup-
ply voltage for the display. Simple volt-
age dividers (R1–R10) are used to ad-
just the levels of the signals from the
microcontroller to the levels required
by the display. Here the fact that the
display is driven by only five lines, and
only in one direction, is a distinct ad-
vantage. It keeps the amount of hard-
ware necessary for level adjustment
within reasonable limits.
The display microcontroller (an ST7565)
needs higher internal voltages to drive
the LCD segments. For this purpose,
a set of external capacitors (C14–C21)
must be connected to its integrated
charge pump circuit.

The LEDs for the display backlight are
driven via series resistors R19, R20 and
R21 and a simple transistor stage (Q3).
The display illumination is always on
unless it is programmed otherwise. In
the simplest case, the illumination can
be switched on and off under software
control. However, the I/O pin used for
this purpose (P7.4) can also be pro-
grammed as a PWM output to provide
a conveniently adjustable brightness
level under software control.
One of the two free serial interfac-
es is connected to one of the 14-way
headers via an RS232 level converter
(IC3, a MAX202). This interface can be
used for connection to a PC or a mo-
dem. The TinyBasic interpreter, which
is described later on in this article,
also uses this interface for download-
ing program code. (Note: if you’re not
afraid of a bit of soldering work, you

can tap off another V24 signal from the
T2OUT pin of the MAX202 – see the
schematic diagram.)
The second serial interface can be con-
nected to the header either directly or
indirectly via an RS485 level converter
by suitable configuration of jumpers
SW1, SW2 and SW3. This means that

the module can also be connected to
a network and share a bus with other
microcontrollers.

Drive logic
Now let’s turn our attention to the
graphic display. The SPI interface is

Listing 1. Display initialisation
(Data types used: BYTE = 8 bits unsigned, WORD = 16 bits unsigned, INT8 = 8 bits with
sign, INT = 16 bits with sign, LONG = 32 bits with sign)

// --- Init sequence ---
const BYTE InitList[] =
{
	 0x40,					 // start line
	 0xA1,					 // normal layout
	 0xC0,					 // normal COM0..63
	 0xA6,					 // normal display
	 0xA2,					 // set bias 1/9
	 0x2F,					 // booster regulator on
	 0xF8,0x00,				 // booster to 4x
	 0x27,0x81,0x16,			 // set contrast
	 0xAC,0x00,				 // no indicator
	 0xAF					 // display on
};

// --- Init display ---
void InitDisplay()
{
 	 BYTE nCmd;
		
 	 LCD_CS = 1;				 // no chip select
 	 LCD_RES = 0;
	 Sleep(50);				 // 50ms reset delay
 	 LCD_RES = 1;
	 Sleep(50);				 // 50ms power-up delay

	 LCD_MODE = 0;				 // command mode
 	 for (nCmd = 0; nCmd < sizeof(InitList); nCmd++)
	 {
 	 SPISend(InitList[nCmd]); 	 // send cmd
		 Sleep(1);			 // wait 1ms
	 }	
}

Listing 2. Page copying

// --- Copy a single page ---
void CopyPage(BYTE nPage)
{
	 BYTE nPos;

	 LCD_MODE = 0;				 // command mode
	 SPISend(0x40);				 // memory base
	 SPISend(0xB0 + nPage);			 // select page	
	 SPISend(0x00); 	 		 // col low
	 SPISend(0x10);				 // col high

	 LCD_MODE = 1; 		 // data mode
	 for (nPos = 0; nPos < 128; nPos++)	 // copy page
		 SPISend(Pixels[nPage][nPos]);	// send byte

	 LCD_MODE = 0;				 // command mode
	 SPISend(0xE3);				 // send nop
}

projects microcontrollers

22 elektor - 5/2008

operated in Mode 0, which means that
the data is clocked into the display on
the rising edge of the clock. The timing
diagram for this is shown in Figure 2.
The individual data bytes are trans-
ferred to the display sequentially using
this clocking scheme. In the code ex-
amples, the SPISend() routine is called
for this purpose (see Listing 1).
The display must be initialised be-
fore any image data is sent to it. The
routine that does this is called Init-
Display(). This routine sends several
commands after the Reset pulse and a
short startup time delay. The A0 line of
the display must be held low while the
commands are being transferred. Con-
sult the data sheet for the display mi-
crocontroller (ST7565) for the specific
functions of the individual commands.
The sequence of commands shown in
Listing 1 is designed to initialise the
display to an operational state.
The next question is how to send im-
age data to the display. To answer this
question, you first have to understand
how the image memory of the display
is organised. The EA-DOGM128 is di-
vided into eight sections called ‘pag-
es’. Each page consists of a 128 × 8
array of pixels. This means that each
page needs 128 bytes. The top left pix-
el corresponds to bit 0 of the first byte
of the top page.

The display has a write pointer in ad-
dition to the image memory (see Fig-
ure 3). The write pointer can be set to
a specific position in a page by send-
ing commands to the display. All data
bytes sent after this are written to the
image memory starting from this posi-
tion. The write pointer is incremented
automatically during this process.
Naturally, each data byte modifies
eight pixels at the same time. Modify-
ing a single pixel is thus not possible,
and it would anyhow not be especially
efficient. Instead, a copy of the image
memory is maintained in the microcon-
troller, and it is also organised in pag-
es. This can be achieved by declaring a
suitable variable: BYTE Pixels[8][128].
All drawing operations are performed
directly on this internal image memory.
This simplifies the graphics routines,
and it is significantly faster.
Of course, the internal image memo-
ry must be copied periodically to the
display. In the simplest case, this can
be done by an interrupt routine that
copies only one page at a time to the
display. The CopyPage() routine first
sends several commands to the display
to set the write pointer to the start of

command (see Listing 2).
At a data rate of 1 Mbit/s, the copy
process takes approximately 1.1 ms.

the page to be copied. After this, the
page data is sent to the display, and
the process is terminated by a NOP

Listing 3. Pixel setting

// --- Set a single pixel ---
void SetPixel(BYTE x,BYTE y)
{
	 if (x < 128 && y < 64)			 // clip
	 {
		 BYTE nPage = y / 8;		 // calc page
		 BYTE nMask = 1 << y % 8;	 // calc mask

Pixels[nPage][x] |= nMask;	 // set pixel
	 }
}

write direction

y

yb

ya

xa xb
x

Figure 4. The Bresenham algorithm constructs lines as sequences of adjacent pixels.
Here three steps in a straight line are followed by a diagonal step (see Listing 4).

235/2008 - elektor

If the interrupt routine is called every
10 ms, it takes around 80 ms to transfer
a full image. Naturally, it is only neces-

sary to copy the pages where changes
have actually occurred. For this pur-
pose, a ‘Dirty’ flag is maintained for

each page. It is set by the graphics
routines. The alternative ‘high-end’
solution is to use a DMA channel for
the page data.

Graphics programming
Now that you know how to connect
and program the EA-DOGM128, you
might think that you’re all set – but in
fact you’re just getting started. Here
we want to talk about drawing line
and circles, which is not as simple as
it seems.
Of course, the first thing you need is a
routine for setting the values of indi-
vidual pixels, which goes by the name
SetPixel(x,y) – see Listing 3. As the im-
age memory is virtually located in the
RAM of the microcontroller, the routine
only has to set the right bit. One of the
most important tasks in this connec-
tion is range checking, as otherwise
it would easily be possible to set bits
that have nothing at all to do with the
image.

When you hear the term ‘straight line’,
you may well recall the standard alge-
braic formula for a straight line: y =
ax + b. It can be used to calculate the
y value of a straight line for all possi-
ble values of x. This is a good initial
approach, but it requires very precise
calculation of the factors, in particular
the slope a (∆y/∆x), and even with a
precise calculation the formula for a
straight line results in a broken line if
the slope is steep, due to the quantisa-
tion of the x values.
Avoiding the need for floating-point
arithmetic another is another factor
that makes revisiting the ‘stone age’
of computer technology worthwhile.
At that time, clever approaches were
often devised to compensate for low
processing power – something that
seems to neglected more and more
these days. In the 1960s, Jack Bresen-
ham was working at IBM on graphic
output for plotters, and around 1962
he developed an algorithm that bears
his name: the Bresenham algorithm
[5a][5b] – see Figure 4 and Listing 4.
Even now, 40 years later, this algorithm
is just as important as ever.

Lines and circles
The Bresenham algorithm first con-
siders only straight lines with slope
0 < a < 1 (first octant). The line is
drawn by processing the x coordinates
incrementally starting from the ini-
tial point and deciding for each point

Listing 4. Line from point A(ax,ay) to point B(bx,by)

	
// --- Draw a line ---
void DrawLine(BYTE ax,BYTE ay,BYTE bx,BYTE by)
{

INT x = (INT)ax;			 // start
	 INT y = (INT)ay;
	 INT dx = (INT)bx - ax;		 // distance
	 INT dy = (INT)by - ay;
	 INT8 sx = 1;				 // step width
	 INT8 sy = 1;
		
	 if (dx < 0) 				 // x orientation
	 {
		 sx = -1;
		 dx = -dx;
	 }

	 if (dy < 0) 				 // y orientation
	 {
		 sy = -1;
		 dy = -dy;
	 }

	 if (dy <= dx) 				 // select direction
	 {
		 INT c = 2 * dx;
		 INT m = 2 * dy;
		 INT d = 0;

		 while (x != bx) 		 // draw in x direction
		 {
			 SetPixel(x,y);		 // set pixel	

			 x += sx;		 // step x
			 d += m;

			 if (d > dx)
			 {
				 y += sy;
				 d -= c;
			 }
		 }
	 }
	 else 					
				
	 {
		 INT c = 2 * dy;
		 INT m = 2 * dx;
		 INT d = 0;

		 while (y != by) 		 // draw in y direction
		 {
			 SetPixel(x,y);		 // set pixel

			 y += sy;		 // step y
			 d += m;

			 if (d > dy)
			 {
				 x += sx;
				 d -= c;
			 }
		 }
	 }
}

projects microcontrollers

24 elektor - 5/2008

whether the y coordinate should be in-
creased. The y coordinate is increased
if the error relative to the straight line
is greater than half a pixel.
The error is calculated for each step in
a manner that only requires an integer
comparison. Finally, the algorithm can
be applied to the other seven octants
by mirroring or by reversing the direc-
tion of drawing. This yields a very fast
and exact line-drawing algorithm. The
Bresenham algorithm can also be used
to draw circles and ellipses, which
avoids the need to calculate sine and
cosine values. A suitable listing can be
downloaded from the Elektor website
[6].

TinyBasic interpreter
As mentioned above, the microcontrol-
ler used here has enormous potential,
including a relatively large memory
capacity, analogue inputs, and a va-
riety of interfaces. It would be a sin
to use this potential for nothing more
than driving the display. To make it
even easier for novice programmers
to create their own graphic applica-
tions, the author has developed a Ba-
sic interpreter.

Programs can be generated using a
convenient PC-based text editor that
highlights keywords in colour (Fig-
ure 5). The program code can then be
downloaded directly to the flash mem-
ory of the microcontroller, where it will
be launched immediately when the
module is switched on.
An overview of the language and the
available commands is available online
[1]. Naturally, it supports condition-
al branching and loop commands, as
well as mathematical functions such as
SIN(), COS(), EXP() and LOG(). There
are also commands for graphic output
(PLOT, MOVE, DRAW, COLOR, FRAME,
CIRCLE, PICTURE, BARGRAPH) and
for accessing the hardware (POKE,
PAUSE, SOUND, SETCOM, SETPWM,
SETPORT, SETCLOCK, SETDRIVE,
SETKEYPAD, SETDISPLAY, SETNET-
WORK, SETCOUNTER, SEND, RECV,
I2CIN, I2COUT, and SPISHIFT).
As an example, up to eight R/C ser-
vos could be connected to the mod-
ule, which is enough for a small walk-
ing robot with facial expressions and
gestures.

A sample application…
As a sample application to get you
started, here we describe how to use

Listing 5. Analogue clock in TinyBasic (excerpt)

‘ --- Definitions ---
#define BTN1_PRESSED 	 (port0.5 = 0) 		 ‘ Button 1
#define BTN2_PRESSED (port0.6 = 0) 	‘ Button 2
#define BTN3_PRESSED (port0.7 = 0)		 ‘ Button 3
#define BACKLIGHT port7.4		 ‘ LCD backlight
#define T20SEC		 20000			 ‘ Backlight time

‘ --- Hardware ---
setdisplay LCD_DOGM128x64 			 ‘ Display type
setclock REAL_CLOCK 			 ‘ Real-time clock
setport 7,$10 					 ‘ Backlight output
setport 0,0,$E0				 ‘ PB switch pull-ups

‘ --- Variables ---
float w,t0,t1
byte ho,mi,se,da,mo,ye,x,y
byte Icon[18]

‘ --- Init ---
BACKLIGHT = 1 				 ‘ Backlight on
Timer0 = T20SEC				 ‘ Start timer

gosub Scale					 ‘ Draw clock face

‘ --- Main loop ---
do
	 if BTN1_PRESSED or BTN2_PRESSED or BTN3_PRESSED then
		 Timer0 = T20SEC		 ‘ Start timer
		 BACKLIGHT = 1 	 ‘ Backlight on
	 elsif Timer0 = 0 then
		 BACKLIGHT = 0	 ‘ Backlight off
	 endif	
	
 	 if Time.Second <> se then		 ‘ New second
		 gosub UpdateTime		 ‘ Update time
 		 gosub UpdateTemp 		 ‘ Display temperature
 	 endif

Figure 5. The PC-based text editor provides a convenient development environment for Basic programs.

255/2008 - elektor

the module to make an analogue clock
with an integrated display of the in-
door and outdoor temperature. This
requires a small amount of additional
circuitry for measuring the tempera-
ture in a suitable manner.
A temperature-dependent current
source, such as the AD592, can be
used as the temperature sensor. The
advantage of this sensor is that it has
a linear characteristic. You only have
to connect a 10-kΩ resistor in series
with the sensor in order to covert the
current into a temperature-dependent
voltage with a scale factor of 10 mV/
K (see Figure 6). Unfortunately, this
sensor is relatively expensive. As an
alternative, you could construct a sim-
ilar circuit using the more economical
LM344 sensor.

The AD592 supplies a current of 273 µA
at a temperature of 0 °C. This results in
a voltage of 2.73 V across the resistor.
The analogue inputs (in this case P0.0

and P0.1) have a resolution of 10 bits,
which means they supply values in the
range of 0 to 1023. The currently meas-
ured temperature can be calculated us-
ing the simple formula ‘temp = (ana-

logue_value – 559) ÷ 2.04’.
Naturally, the previously described rou-
tines for lines and circles can be used
for the analogue clock display. The
sin() and cos() functions must be used
to calculate the positions of the hands.
TinyBasic provides these trigonometric
functions (and others) – see Listing 5.
As this is supposed to be an analogue
clock, the hands should of course move
smoothly. For this reason, the positions
of the hour and minute hands are inter-
polated. This gives the impression of
continuous motion. The second hand
is represented by a small circle, which
is more a question of design than
necessity.

…and your own applications
If you buy the display board from the
Elektor Shop, you receive a fully assem-
bled and tested module. The TinyBasic
interpreter is already installed in the
microcontroller. The Basic development
environment can be downloaded from
the Elektor website [6] free of charge,
along with additional examples and
listings.

For beginners, we have also put togeth-
er a step-by-step guide that describes
how to install the necessary software
on the PC and how to download your
own application.

(070827-1)

Web Links
[1] www.tinybasic.de/

[2] www.electronic-assembly.de/deu/dog/dog.
htm

[3] www.reichelt.de/ (in German)

[4] www.m16c.de/

[5a] http://en.wikipedia.
org/wiki/Bresenham_algorithm

[5b] http://www-lehre.inf.uos.de/~cg/2002/
skript/node30.html (in German)

[6] www.elektor.com

loop

‘ --- Clock face ---
Scale:
	 frame 0,0,127,63 			 ‘ Draw frame	
	 circle 39,32,29,25			 ‘ Draw clock

	 for w = 0 to 2 * pi step 2 * pi / 12	
		 x = round(39 + 25 * sin(w))
		 y = round(32 - 22 * cos(w))
	 	 plot x,y
	 next
	
	 for w = 0 to 2 * pi step 2 * pi / 4	
		 x = round(39 + 26 * sin(w))
		 y = round(32 - 23 * cos(w))
	 	 plot x,y
	 next
return

‘ --- Hands ---
Clock:
	 ‘ Hour hand...
 	 w = pi - (mi * 60 + se) * 2 * pi / 3600
	 x = round(39 + 23 * sin(w))	
 	 y = round(32 + 19 * cos(w))
	 move 39,32 : draw x,y
	
	 ‘ Minute hand...
	 if ho > 11 then ho = ho - 12
 	 w = pi - (ho * 60 + mi) * 2 * pi / 720
	 x = round(39 + 18 * sin(w))	
 	 y = round(32 + 16 * cos(w))
	 move 39,32 : draw x,y

	 ‘ Second hand...
 	 w = pi - se * 2 * pi / 60
	 x = round(39 + 23 * sin(w))	
 	 y = round(32 + 19 * cos(w))
	 circle x,y,1	
return

R1

10
k

R2

10k

C1

100n

3

1

IC1

AD592

+9V...+12V

ADC

070827 - 15

Figure 6. This additional circuitry can be used
for temperature measurement.

Component availability notice

Ready assembled and tested board
including display and pre-programmed
microcontroller (bootloader and Basic
Interpreter) available from the Elektor
Shop, order code 070827-91.

Bare PCB, ref. 070827-1 available from
www.thepcbshop.com.

