
projects microcontrollers

32 elektor - 5/2008

Two-wire LCD
ATM18 display for
the Elektor AVR project

Udo Jürss
and Wolfgang Rudolph

This LCD expansion module for the ATM18 test board opens up a huge range of applications. Although
the design might look like a standard interface between microcontroller and LCD panel, there is an
elegant technical detail: in order to minimise the number of port pins required, a special two-wire
interface has been developed.

An ordinary LCD panel can be driven
from a microcontroller using either four
or eight data wires. In addition to these,
an RS signal is needed to distinguish
data from commands, and an E signal

is needed to clock the data into the pan-
el. This large total number of connec-
tions is unfortunate in our application
because it ties up a number of port pins
that could be used for other purposes.

Data transfer
All ordinary LCD panels are connected
using 14 wires, plus any connections
needed for the backlight. It is here

335/2008 - elektor

that models differ, as the manufactur-
ers are not consistent as to whether
the backlight supply should be locat-
ed next to pin 1 or next to pin 14. Our
printed circuit board is designed for
displays where the backlight connec-
tions are on pins 15 and 16, and two
pads are provided to which the back-
light power supply can be soldered.
If a different display is used it is sim-
plest to use just the 14 main connec-
tions and leave the backlight uncon-
nected. The display we used has the
following pinout:

Pins 14 down to 7: data bus

Pin 6:E (enable signal), active high

Pin 5: R/W, 0 = write, 1 = read

Pin 4: RS, 0 = command, 1 = data

Pin 3: V0, contrast adjustment from 0 V to 2 V

Pin 2: VDD, +5 V

Pin 1: VSS, 0 V

The direction of data transfer is spec-
ified by the level on the R/W signal.
Here we only use write mode, and so
the pin is connected permanently to
ground in the circuit (Figure 1). The
internal registers of the display con-
troller are selected using the RS signal,
which is used to distinguish between
data and commands.

Two-wire interface
The circuit is based around a port ex-
pander that uses two port bits. A natu-
ral choice for such a design would be

the I2C bus, but we have chosen a fast-
er and cheaper approach. All that we
need is a type 4094 shift register (see
Figure 1). This allows clock rates of sev-

C compiler
Advanced C programmers who wish to control an LCD using the ex-
pansion module described here can take advantage of two exam-
ple programs available for download from the Elektor website. One
example is for use with WinAVR (GCC) and the other is for use with
CodeVision.

Software house HPInfoTech has produced a special free-of-charge ver-
sion of their popular ‘CodeVisionAVR’ compiler for this Elektor project.
The compiler supports the ATmega48, ATmega88, ATmega168 and

ATmega328 with a maximum object code size of 4 kB.

A version limited to 16 kB code size costs around fifty pounds and
a 32 kB version is around sixty pounds, within the reach of many
hobbyists.

The compiler produces very efficient code and includes a so-called
‘smart linker’ that only includes in the final object file functions that
are actually called. It is therefore possible to use comprehensive librar-
ies without having to tailor them to each application.

CodeVision makes setting up a project very straightforward. The in-
tegrated ‘CodeWizard’ automatic program generator generates a
complete skeleton for your program. Beginners in particular will find
it helpful to use this as a model for their programs in the same way as
they can learn from our example programs. Automatic generation of
libraries and selection between application and bootloader code, as
well as code templates for frequently wanted program functions, make
it easier to get started. Built-in drivers for all current programming
adaptors allow devices to be programmed directly from within Code-
Vision. Internal EEPROM and fuse bits can also be programmed, and
there is a built-in terminal with file transfer and hexadecimal debug-
ging output. The compiler offers powerful optimisation features for ad-
vanced users including global register allocation and freely-program-
mable ISR entry and exit code, comprehensive help (also available
on-line) and a debugging interface to AVR Studio.

CodeVisionAVR in use

IC1

4094

SRG8

EN3

C1/

15

11

12

13

14

C2

1D 2D

10

3

2

1

7

6

5

4
3

9

071148 - 11

+5V

K1

+5V

LC DISPLAY 20 x 4
HD44780U

LCD1

V
S

S

V
D

D

R
/W

V
O

R
S

D
0

D
1

D
2

10

D
3

11

D
4

12

D
5

13

D
6

14

D
7

123456

E

789

R1

4k
7

10k

P1

+5V

D1

BAS70

DATA

CLK

+5V

C1

10µ
6V3

IC1

16

8

Figure 1. The LCD interface is built around a shift register.

projects microcontrollers

34 elektor - 5/2008

eral MHz rather than the 400 kHz maxi-
mum that can be achieved using I2C.
At first sight things might look a little
complicated. First we have to send the
data bits D4 to D7 and RS, and then we
have to generate an enable pulse on
the E wire. To achieve this, the data
input to the shift register is logically
ANDed with output Q7 using a resis-
tor and a diode.
Only when Q7 is high will a pulse on

register are low, and in particular no E
signal can be generated.

2. Now send seven data bits. The first
bit must be high and will ultimately
appear on Q7, where it will allow an
E pulse to be generated. The second
bit is destined for the RS signal on Q6;
the next four bits are data. The final bit
is zero, ensuring that the data signal
is left low. After a total of seven clock
pulses the data bits will appear as re-
quired on the Q outputs, and in par-
ticular Q7 will be high.

3. Now we emit a pulse on the data
signal, which in turn generates a pulse
on the E line because Q7 is high.

The above procedure must be carried
out twice, once for the high data nib-
ble (bits D4 to D7) and once for the low
data nibble (bits D0 to D3). Listing 1
shows an excerpt from the BASCOM
example program that can be down-
loaded from the Elektor website. Data
can be written to the LCD (with RS be-
ing set high) using Lcd_write_data,
while commands can be sent (RS low)
using Lcd_write_ctrl, for example when
initialising the display controller.

Initialisation
The display recognises a large number
of commands, all of which are sent with
RS set low. The commands are grouped
into families according to the number of
zeros that appear in the high-order bits
of the command byte (see Table 1).
The display also includes an internal
cursor register that points to an indi-
vidual character position on the dis-
play. In the case of a two-by-sixteen
display we have:

Row 1: addresses 00h to 0Fh
Row 2: addresses 40h to 4Fh

while for a four-line display with 20
characters per line we have:

Row 1: addresses 00h to 13h
Row 2: addresses 40h to 53h
Row 3: addresses 14h to 27h
Row 4: addresses 54h to 67h

The cursor advances automatically as
each character is written, or the ad-
dress can be set directly in order to
write to any desired position.
On power-up a number of initialisation
commands must be written to the com-
mand register. Listing 2 shows an ex-
ample of how an LCD can be initialised

the data input be transmitted to the
LCD as a pulse on its E input. To make
sure that no spurious E pulses are gen-
erated, the following sequence must
be observed.

1. Clock eight zero bits into the shift
register by setting the data signal low
and generating eight clock pulses. The
bits are clocked in on each rising clock
edge. Now all the Q outputs of the shift

Listing 1
Data transfer using the shift register

Sub Lcd_write_data(byval D As Byte)
 Rs = 1
 Low_nibble = D And 15
 High_nibble = D / 16
 Lcd_write_nibble High_nibble
 Lcd_write_nibble Low_nibble
End Sub

Sub Lcd_write_ctrl(byval D As Byte)
 Rs = 0
 Low_nibble = D And 15
 High_nibble = D / 16
 Lcd_write_nibble High_nibble
 Lcd_write_nibble Low_nibble
End Sub

Sub Lcd_write_nibble(byval D As Byte)
 Pe_clock = 0
 Pe_data = 0
 ‘Clear all stages of shift register
 For N = 1 To 8
 Pe_clock = 1
 Pe_clock = 0
 Next N
 ‘Set E level at Q7
 Pe_data = 1
 Pe_clock = 1
 Pe_clock = 0
 ‘Set level for RS at Q6
 Pe_data = Rs
 Pe_clock = 1
 Pe_clock = 0
 ‘Shift in 4 bits
 Mask = 8
 For N = 1 To 4
 State = D And Mask
 If State = 0 Then
 Pe_data = 0
 Else
 Pe_data = 1
 End If
 ‘Clock in data with rising edge
 Pe_clock = 1
 Pe_clock = 0
 Shift Mask , Right
 Next N
 ‘Shift in zero bit
 Pe_data = 0
 Pe_clock = 1
 Pe_clock = 0
 ‘Set E
 Pe_data = 1
 Pe_data = 0
End Sub

355/2008 - elektor

Table 1. Display commands

Function 7 6 5 4 3 2 1 0

Clear display 0 0 0 0 0 0 0 1

Cursor home 0 0 0 0 0 0 1 x

Entry mode 0 0 0 0 0 1 ID S

(ID=1/0: right/left, S=1/0: without/with scroll)

Display, Cursor 0 0 0 0 1 D C B

(D,C,B=1/0: display, cursor, blink on/off)

Scroll 0 0 0 1 SC RL x x

(SC=1/0: scroll/cursor moves to RL=1/0: right/left)

Initialisation 0 0 1 DL N x x x

(DL=1/0: 8-/4-bit bus, N=1/0: two lines/one line)

User-defi ned character
memory

0 1 Character Column

Display memory 1 Memory address

Figure 2. Printed circuit board for the LCD expansion module.

COMPONENTS LIST
Resistors
R1 = 10k (SMD 805)
P1 = 10k preset (SMD)

Capacitors
C1 = 10µF 6.3V (SMD)

Semiconductors
D1 = BAS70 (SMD)
IC1 = 4094 (SMD SO16)

Miscellaneous
K1 = 4-way SIL pinheader
LCD1 = LC Display 4x20 characters

(HD44780 compatible)
14-way SIL pinheader
PCB with SMDs premounted, incl. all

parts and 4x20 LCD; Elektor Shop #
071035-93

Listing 2
Initialisation

Sub Lcd_init
 Waitms 50
 Lcd_write_ctrl &H20
 Waitms 50
 Lcd_write_ctrl &H20
 Waitms 50
 Lcd_write_ctrl &H28
 Waitms 50
 Lcd_write_ctrl &H0C
 Waitms 50
 Lcd_write_ctrl &H01
 Waitms 50
End Sub

Advertisement

over its four-bit data bus.

Text output
In order to display text at a defi ned po-

sition we must fi rst set the cursor ad-
dress. It is convenient to express the
position in terms of the column (x-coor-
dinate) and row (y-coordinate). Then a
call to Lcd_pos will move the cursor as

Listing 3
Text output

Sub Lcd_pos(byval X As Byte , Byval Y As Byte)
 D = 127 + X
 If Y = 2 Then D = D + 64
 Lcd_write_ctrl D
End Sub

Sub Lcd_text(byval Text As String)
 J = Len(text)
 For I = 1 To J
 Char = Mid(text , I , 1)
 D = Asc(char)
 Lcd_write_data D
 Next I
End Sub

www.hammondmfg.com/uk

Die-cast aluminium,
metal and plastic

enclosures.

sales@hammond-
electronics.co.uk

UK0805_32_36_071148_UK_CC2_AVR_b35 35 03-04-2008 08:33:48

PROJECTS MICROCONTROLLERS

36 elektor - 5/2008

required. For example, Lcd_pos 1,1 will
move the cursor to the leftmost column
of the fi rst row. Then Lcd_text can be
used to write a string of characters, as
illustrated in Listing 3.

Printed circuit board
The interface circuit can be construct-
ed on the compact printed circuit
board shown in Figure 2, which uses
SMD components. Those wary of sol-
dering SMDs can purchase ready-pop-
ulated boards from the Elektor shop,
with just the external connections left
to be soldered by hand. The four-way
connection to the ATM18 test board is
best fi tted with a header socket so that
temporary connections can be made
for test purposes using lengths of sol-
id-core wire.
The 16-way connection can also be fi t-
ted with a socket or plug to mate with
a connector on the LCD, or direct con-
nection can be made using header pins
or a ribbon cable. The four connections
to the microcontroller are VCC, GND,
data and clock. Data and clock can be

on analogue input ADC(0). The ana-
logue-to-digital converter is config-
ured to use the external 5 V reference,
and the 10-bit conversion result, in the
range 0 to 1023, is written to the dis-
play. The complete example program
is available for free download from the
Elektor website at www.elektor.com.

(071148-I)

connected to any two port pins: the ex-
ample software uses port B.1 for clock
and port B.2 for data.

In use
Using the display module is very easy.
Listing 4 shows a simple example pro-
gram that displays a measured voltage

Listing 4
Outputting a measured value

Config Adc = Single , Prescaler = 64 , Reference = Off
Start Adc

Lcd_init

Lcd_pos 2 , 1
Lcd_text „adc(0)=“

Do
 Lcd_pos 2 , 2
 Value = Getadc(0)
 Text = Str(value)
 Lcd_text Text
 Waitms 500
Loop

Advertisement

UK0805_32_36_071148_UK_CC2_AVR_b36 36 03-04-2008 08:33:49

