-
|
I
[
[
I
1
|
I

= Com
>
py

ELECTRONICS
your first order

IJust Enter VIP# CC2 When Ordermgl
I From Our New Real-Time Website |

Www.jameco.com,
18008314242

. T = |

Not valid with any other offer.
*Aluo siapio gem 0} sajjdde Jao

UIT GELLAR

THE MAGAZINE FOR COMPUTER APPLICATIONS

FEATURE

ARTICLE

Jan Axelson

USB Chip Choices

Finding a Peripheral Controller

Today, most periph-
eral devices are de-
signed with USB
connections. Design-
ing USB peripherals
can get tricky, but

choosing the right
chip can make a
world of difference.
Jan knows her USB,
S0 you might want to
choose to listen up.

www.circuitcellar.com

f you're design-
ing a device that
will connect to a PC or
Mac, you'll probably use
a universal serial bus (USB). You may
have noticed that the ports that served
PCs for 20 years are disappearing. USB
was designed from the ground up to
replace a variety of legacy ports with a
single interface that’s flexible and easy
to use.

But simplicity for end users has a
pricel the interface is more compli-
cated than the single-purpose ports it
replaces. To manage the complexity,
every USB peripheral must contain an
intelligent controller that knows how
to respond to the requests defined by
the specification. The good news for
developers is that there are plenty of
choices for controllers.

This article will help you find the
USB controller that gives the best
performance. I'll start with a quick
tour of USB and a review of the respon-
sibilities of USB peripherals. Then, I'll
discuss how to narrow the choices. I

CIRCUIT CELLAR®

won't describe every chip, but I will
present advantages and disadvantages
of some popular chips.

USB, IN BRIEF

USB is suitable for nearly any appli-
cation that needs a slow to moderate-
speed connection to a host CPU with
USB support. This article will concen-
trate on Windows 98 and 2000 hosts,
but a host can be any computer with
host-controller hardware and operat-
ing system support. USB peripherals
include standard devices like key-
boards, mice, and printers, as well as
test instruments, control systems, and
other small-volume or custom designs.
Video and other high-speed applica-
tions will most likely use IEEE-1394/
Firewire.

One goal of USB is freeing users
from technical and logistical hassles.
There’s no need to assign IRQs or port
addresses. Inexpensive hubs make it
easy to add peripherals without hav-
ing to open the box and find a slot.
There’s only one interface. And the
interface can provide up to 500 mA at
a nominal 5 V, so many peripherals no
longer need a wall wart or AC power
cord for an internal supply.

The host controls the bus and
keeps track of which devices are at-
tached. It also ensures each data trans-
fer gets a fair share of the time. Inside
the peripheral, the controller hard-
ware and embedded code respond to
transmissions from the host.

USB is the product of a consortium
that includes Intel, Microsoft, and
other companies. The organization,
the USB Implementers Forum, spon-
sors a web site (www.usb.org) that has
the specification documents and tools
for both developers and end users.

HOST COMMUNICATIONS

Even if you’re designing only the
peripheral side, it’s helpful to know

Issue 120 July 2000 1

how the host communicates. Windows
uses a layered driver model for USB
communications. Each driver layer
handles a portion of the communica-
tion (see Figure 1).

Applications communicate with
device drivers (including class drivers)
that communicate with the system’s
bus drivers, which access the USB
hardware. Windows includes bus driv-
ers and some class drivers.

For Windows, a device driver for a
USB device must conform to Win32
Driver Model (WDM). A WDM driver,
supported by Windows 98 and 2000, is
an NT kernel-mode driver with power
management and plug-and-play.

A device may have its own driver,
or use a generic class driver that
handles communications with any
hardware that conforms to a class
specification. Windows adds class
drivers with each release (see Table 1).
If your device isn’t in a supported
class, you must provide a driver.

How does Windows decide which
driver to use with a device? Every
device stores a series of data struc-
tures called descriptors. Every Win-
dows system has a variety of INF
files, which are text files that match
drivers with class codes or vendor and
product IDs stored in the descriptors.

When the files detect an attached
device, the host performs an enumera-
tion process that requests the descrip-
tors. All devices must know how to
respond to the enumeration requests.
The host compares the information in
the descriptors with the information
stored in the system’s INF files and
selects the best match. Some products
provide their own INF files, others
use files provided with Windows.

TRANSFERS

USB 1.1 supports two speeds. Full
speed is 12 Mbps. Low speed, which is
intended for inexpensive devices and
devices that need flexible cables, is
1.5 Mbps. The latest release, version
2.0, supports 480 Mbps, but requires
new hardware in the host, peripheral,
and any hubs between.

A single peripheral’s data transfer
rate is less than the bus rate and not
always predictable. The bus must also
carry addressing, status, control, and

2 Issue 120 July 2000

| Applications |

User

Win32 API calls
mode

| Win32 sub-system |

1/0 request packets

| Hardware device drivers |

Kernel

110 t ket
request packets ode

| Bus drivers |

Hardware-specific interface

| Hardware |

Figure 1—USB communications use a layered driver
model in Windows 98 and 2000. Each layer handles a
portion of the communications. Bus drivers and some
class/device drivers are provided with Windows.

error-checking information. Any pe-
ripheral may have to share bus time
with other peripherals, although a
device can request guaranteed delivery
rate or maximum latency between
transactions. Low-speed transfers are
limited to a fraction of the bus time
so that they don’t clog the bus.

To make the bus practical for de-
vices with different needs, the specifi-
cation defines four transfer types:
control, interrupt, bulk, and isochro-
nous (see Table 2).

Control transfers are the only
transfers that every device must sup-
port. Enumeration uses control trans-
fers. With each, the host sends a
request. The specification defines re-
quests that devices must respond to,
and a class or individual device driver
may define extra requests.

Along with each control request,
the host sends a 2-byte value and a 2-
byte index, which the request can
define in any way. Depending on the
request, either the host or device may
send data. The receiver returns an
acknowledgement. However, there is
no data stage with some requests, and
the device returns an acknowledge-
ment after receiving the request.

The other transfers don’t use de-
fined requests. They transfer blocks of
data and identify and error-check
information to or from a device.

Interrupt transfers are useful for
applications that need to send small
amounts of data at intervals, such as
keyboards, pointing devices, and other
monitoring and control circuits. A
transfer can send blocks of up to 64
bytes with a guaranteed latency

CIRCUIT CELLAR®

(maximum time between transactions)
of 1 to 255 ms.

Bulk transfers are useful for applica-
tions that need to transfer large
amounts of data when delivery time
isn’t critical, such as printing and scan-
ning. A bulk transfer can send blocks
up to 64 KB, but without guaranteed
delivery time.

Isochronous transfers are used
when delivery rate is critical and
errors can be tolerated, such as audio
to be played in real time. An isochro-
nous transfer can send up to 1023 Bpms
with a guaranteed attempt to send a
block of data every millisecond. Un-
like the other transfers, isochronous
transfers have no handshake packet
that enables the receiver to notify the
sender of errors detected within data
that is received.

USB transfers consist of one or
more transactions. Each transaction,
in turn, contains identifying informa-
tion, data, and error-checking bits.

Inside the device, all USB data
travels to or from an endpoint, which
is a buffer that stores data to be sent
or received. A single device can have
up to 16 endpoint numbers (0-15). An
endpoint address is the endpoint num-
ber plus its direction: in (device-to-
host) or out (host-to-device). Every
device must support endpoint 0 in and
out for control transfers and may
support up to 30 additional endpoints.

Most controllers support fewer
than the maximum number of end-
points and some don’t support all of
the transfer types. Low-speed control-
lers are limited to using control and
interrupt transfers. Cypress Semi-
conductor’s EZ-USB is one chip that
supports the maximum number of
endpoints (one bidirectional control
endpoint plus 30 additional endpoints)
and all four transfer types.

The host controls the bus and ini-
tiates transfers. But, a device in the
low-power suspend state can use the
remote wake-up feature to request a
transfer. And a device can request the
host to send or request periodic inter-
rupt or isochronous data.

ELEMENTS OF A USB CONTROLLER

A USB peripheral controller has
several responsibilities. It must pro-

www.circuitcellar.com

Windows edition
Windows 98 Gold (original)
Windows 98 SE (second edition)

Windows 2000
Windows 98 Millennium

USB device drivers added
audio HID 1.0 (includes keyboard and pointing devices)

HID 1.1 communications (modem) stillimage capture
(scanner, camera), (first phase/preliminary)

mass storage printer

Table 1—Each release of Windows added drivers for new classes of USB devices. If your device fits into one of the

Supported classes, you don't need to write a driver for it.

vide a physical interface to the bus and
detect and respond to requests and
other events at the USB port. And it
provides a way for an internal or exter-
nal CPU to store data that it wants to
send and retrieve.

Controller chips vary by how much
firmware support they require for
these operations. Some, such as
NetChip’s NET2888, require little
more than accessing a series of regis-
ters to configure the chip and store
and retrieve bus data. Others, such as
Cypress’ M8 series, require routines
to manage data transfers and ensure
that the appropriate handshaking in-
formation is exchanged.

Some chips use registers, and others
reserve a portion of data memory for
transmit and receive buffers.

For faster transfers, Philips
Semiconductor’s PDIUSBD12 has
double buffers that store two full sets
of data in each direction. While one
block of data is transmitting, the
firmware can write the next block of
data into the other buffer so it’s ready
when the first block finishes trans-
mitting. In the receive direction, the
extra buffer enables a new tran-
saction’s data to arrive before the
firmware finishes processing data
received in the previous transaction.
In both cases, the hardware automati-
cally switches between the buffers.

A controller likely will have an
interface other than the USB port to
the outside world. In addition to gen-
eral-purpose I/O pins, a chip may
support other serial interfaces, such as
an asynchronous interface for RS-232
or synchronous interfaces, such as I’C
or Microwire.

Some chips include special inter-
faces. For example, Philips’ USA1321
contains a digital-to-analog converter
(DAC) for USB speakers and other
audio devices. NetChip’s NET1031 is

www.circuitcellar.com

a scanner controller with a USB inter-
face. Dallas Semiconductor’s DS2490
is a USB-to-1-wire bridge.

SIMPLIFYING THE PROCESS

Aside from the chip’s features, easy
development affects how long it takes
to get a project running. The simplest
and quickest USB project meets the
following criteria. First, you must be
familiar with the project’s chip archi-
tecture and programming language.
Second, the project has a development
system that enables easy firmware
downloading and debugging. Third, it
has detailed, well-organized hardware
documentation. Fourth, there is well-
documented, bug-free sample firmware
for an application similar to your
project. And fifth, it can communicate
using device drivers included with
Windows or another well-documented
driver that you can use with minimal
modification.

These are not trivial consider-
ations. The correct choice will save
many hours and much aggravation.

ARCHITECTURE CHOICES

Some USB controllers contain a
general-purpose CPU, and others have
a serial or parallel interface that must
connect to an external CPU.

A chip with a general-purpose CPU
may be based on an existing family
such as the 8051, or may be designed
specifically for USB applications.
Controllers that interface with an
external CPU provide a way to add

USB to any microcontroller with a
data bus. The external CPU manages
non-USB tasks and communicates with
the USB controller as needed.

For applications that require fast
performance, another option is to
design an application-specific inte-
grated circuit (ASIC). Components are
available as synthesizing VHDL and
Verilog source code.

Cypress has several chips that
contain a CPU developed specifically
for USB applications. The M8 family
includes the CY7C6xxx series of inex-
pensive chips, each with two to four
endpoints, 12 to 32 general-purpose I/
O lines, and 2 to 8 KB of program
memory. Note that the program
memory is one-time programmable
(OTP) EPROM.

The instruction set is short (35
instructions), so learning it isn’t diffi-
cult. However, this also means you
won't find detailed instructions that
do most of the work for you. For ex-
ample, there are no instructions for
multiplying or dividing; calculations
must be done by adding, subtracting,
and bit shifting (Cypress offers a C
compiler from Byte Craft with exten-
sive math functions).

For 8051 users, Cypress’ EZ-USB
has an architecture similar to Dallas
Semiconductor’s 80C320. Two other
early 8051 compatibles were Intel’s
8x930 and 8x931. Intel stopped manu-
facturing both of these this year but
licensed the technology to Cypress.

If you have 8051 experience, espe-
cially if you’re designing a USB-ca-
pable version of an existing 8051
product, sticking with the 8051
makes sense. Even if you're not famil-
iar with the architecture, its popular-
ity means that programming and
debugging tools are available, and
you're likely to find sample code and
advice from other users on the
Internet. Keil has C compilers for the

Low Guaranteed Guaranteed
Transfer speed Error delivery maximum
type Required OK correction rate latency Typical use
control Y Y Y N N enumeration
bulk N N Y N N printer
interrupt N Y Y N Y mouse
isochronous N N N Y Y audio

Table 2—The USB's four transfer types are designed to meet different application needs.

CIRCUIT CELLAR®

Issue 120 July 2000 3

8x930/1, and both Keil and
Tasking have a C compiler for
the EZ-USB.

Other examples of families
with USB-capable chips are
Mitsubishi’s 740, 7600, and
M16C, Motorola’s HCO05, and
Microchip’s PIC16C7x5.

Controllers that interface to
external CPUs typically use a
parallel or synchronous serial
interface. An interrupt pin sig-
nals the CPU when the control-

data on the bus is encoded,
conventional oscilloscopes and
logic analyzers aren’t helpful
for viewing USB data. A proto-
col analyzer captures the data,
then filters and displays it in a
variety of formats. PC-based
analyzers may connect to an
Ethernet port or an ISA card.
Other analyzers are designed as
attachments to logic analyzers.

PROJECT NEEDS

ler receives USB data or is ready

In addition to looking for a

for new data to send. This
works if you want to use a CPU
that doesn’t have a USB-capable
variant.

Philips’ PDIUSBD11 has an I>C
interface that uses three pins, a clock
input, bidirectional data, and an inter-
rupt output. The maximum clock
frequency of the chip’s IC bus is 100
kHz, so it doesn’t handle high-volume
transfers. In contrast, the PDIUSBD12
has a multiplexed parallel bus that can
transfer up to 1 Mbps.

National Semiconductor’s
USBN9602 can be configured to trans-
fer multiplexed or non-multiplexed
parallel data or Microwire serial data.

DRIVER CHOICES

The other side of programming a
USB device is the device driver and
application software on the host. You
can use a device driver included with
Windows, use or adapt a driver from
another source, or write your own.

The human interface device, known
as HID, drivers included with Win-
dows 98 and 2000 are an option for
general-purpose applications up to 64
KBps. HIDs can use control and inter-
rupt transfers.

The classic HID examples are the
keyboard and mouse, when a human’s
actions cause data to be sent to the
host. But, a HID doesn’t need a human
interface, it can include test instru-
ments, control circuits, and other de-
vices that operate within the limits of
the class specification.

Applications access HIDs using the
API functions ReadFileand
WriteFile. Thedevice’s firmware
must include the HID class code in its
descriptors and define a report format

4 Issue 120 July 2000

Photo 1—Cypress Semiconductor’s M8 Monitor program enables you to
control program execution, and view and change memory and registers.

for the data it will exchange. The re-
port format tells the host the size and
quantity of the report data, and also
may provide units and other informa-
tion to help the host interpret the data.

The mass-storage driver introduced
with Windows 2000 is an option for
devices that need to transfer a lot of
data but don’t have critical timing
requirements.

For custom drivers that use bulk or
isochronous transfers, start with the
bulkusb.sysandisousb.sys ex-
amples in the Windows 2000 DDK. If
you use these, search the Developers
Webboard at www.usb.org for tips and
bug fixes.

DEBUGGING TOOLS

Most chip vendors offer a develop-
ment board and basic debugging soft-
ware to make development easier. The
development board enables you to
load a program from a PC to the chip’s
program memory, or to circuits that
emulate the chip’s hardware.

Typical debugging software uses a
monitor program, which enables you
to control program execution and
watch the results (see Photo 1). You
can step through a program line by
line, set breakpoints, and view the
contents of the chip’s registers and
memory. And, you can run the monitor
program and a test application at the
same time. Look inside the emulated
chip to view registers and memory
contents as your application communi-
cates with it.

Another useful debugging tool is a
USB protocol analyzer. Because the

CIRCUIT CELLAR®

chip that will be easy to work
with, narrow the choices by
specifying your project’s re-
quirements and looking for chips that
can meet them. Here are some ques-
tions to consider.

How fast does the data need to
transfer? The rate of data transfer de-
pends on several things: whether the
device is low- or full-speed, how busy
the bus is, and the transfer type. As a
peripheral designer, you don’t control
how busy a user’s bus will be, but you
can design your product to work in a
worst-case scenario.

If a product requires only occasional
interrupt and control transfers, a low-
speed chip may save money. But, the
fastest configuration for a low-speed
interrupt endpoint is 8 bytes per trans-
action with a maximum latency of 10
ms between transactions, which is 800
Bps.

How many and what type of end-
points do you need? Each endpoint is
configured to support a transfer and
direction. Although the host can re-
quest a new configuration or interface
to use a different transfer for each, in
most cases each transfer type and di-
rection will have its own endpoint.

What about firmware upgrades? For
program memory, many USB devices
use EPROM, in which changing the
firmware requires removing the chip.
The EZ-USB supports an easier way,
using a re-enumeration process that
loads the program code into the chip
from the host on each power-up. If you
expect firmware changes, the EZ-USB
is difficult to beat.

Do you need a flexible cable? One
reason why most mice are low-speed
devices is that the less stringent re-

www.circuitcellar.com

quirements for a low-speed cable mean
that the cable can be thinner and more
flexible.

Need a long cable? Low-speed
cables are limited to 3 meters, and full-
speed cables can be 5 meters. Full-
speed cables have shielded, twisted
pairs. Hubs can stretch a connection
beyond these limits. The limit is five
hubs plus the host, each with a 5-meter
cable, for a maximum distance of 30
meters. Active extension cables that
contain embedded hubs are available.

What other hardware features and
abilities are needed? The list includes
everything from general-purpose I/O
to on-chip timers. The requirements
depend on the application.

The answers to these should nar-
row your search, making your chip
choices and the development as pain-
less as possible. &l

This article is adapted from mate-
rial in USB Complete: Everything You
Need to Develop Custom USB Periph-
erals by Jan Axelson.

Jan Axelson has worked with elec-
tronics and computers for 25 years.
Jan’s web site (www.lvr.com) has
resources for developers using USB
and legacy ports. You may reach her
at jan@lvr.com.

REFERENCES

USB Central, links for USB devel-
opers, www.lvr.com/usb.htm.

USB Designer Links, links to USB
controller chips,
www.ibhdoran.com/
usb_link.html.

USB Implementers Forum, the
specification documents,
Developer’s Webboard, and
more, www.usb.org.

SOURCES

USB Chips

Cypress Semiconductor
(408) 943-2600

Fax: (408) 943-6848
WWW.Cypress.com

Dallas Semiconductor
(972) 371-4448
Fax: (972) 371-3715

www.circuitcellar.com

www.dalsemi.com

Keil Software

(800) 348-8051
(972) 312-1107
Fax: (972) 312-1159
www.keil.com

Microchip Technology, Inc.
(888) 628-6247

(480) 786-7200

Fax: (480) 899-9210
www.microchip.com

Mitsubishi Electronics
(408) 730-5900

Fax: (408) 730-4972
www.mitsubishichips.com

Motorola

(512) 328-2268

Fax: (512) 891-4465
www.mot-sps.com/sps/general/
chips-nav.html

National Semiconductor
(408) 721-5000

Fax: (408) 739-9803
www.national.com

NetChip Technology, Inc.
(650) 526-1490

Fax: (650) 526-1494
www.netchip.com

Philips Semiconductor

(408) 991-5207

Fax: (408) 991-3773
www.semiconductors.philips.com

CIRCUIT CELLAR®

Circuit Cellar, the Magazine for Computer Applica-

tions. Reprinted by permission. For subscription
information, call (860) 875-2199,
subscribe@circuitcellar.com or
www.circuitcellar.com/subscribe.htm.

Issue 120 July 2000

5

