
42

Ask The Applications Engineer—19
INTERFACING TO SERIAL CONVERTERS—I

by Eamon Nash

Q. I need data converters to fit in a tight space, and I suspect that a
serial interface will help. What do I need to know to choose and use
one?

A. Let’s start by looking at how a serial interface works and then
compare it to a parallel interface. In doing this we will dispel
some myths about serial data converters.

The key difference between serial and parallel data converters
lies in the number of interface lines required. From a space
saving point of view, serial converters offer a clear advantage
because of reduced device pin-count. This makes it possible to
package a 12-bit serial ADC or DAC in an 8-pin DIP or SO
package. More significantly, board space is saved because serial
interface connections require fewer PCB tracks.

Q. My digital-to-analog converters have to be physically remote from
the central processor and from one another. What is the best way to
approach this?

A. Initially, you must decide whether to use serial or parallel DACs.
With parallel DACs, you could map each one into a memory
mapped I/O location, as shown in the figure. You would then
program each DAC by simply doing a Write command to the
appropriate I/O location. However, this configuration has a
significant disadvantage. It requires a parallel data bus, along
with some control signals, to all of the remote locations. Clearly,
a serial interface, that can have as few as two wires, is much
more economical.

Analog Dialogue 29-3 (1995)

The figure shows an AD7890 8-Channel multiplexed 12-bit
serial A/D converter (ADC) connected to the serial port of an
ADSP-2105 digital signal processor (DSP). Also shown is the
timing sequence that the DSP uses to communicate with the
ADC. The 12 bits that constitute the conversion result are
transmitted as a serial data stream over a single line. The data
stream also includes three additional bits that identify the input
channel that the AD7890’s multiplexer is currently selecting.
To distinguish the bits of the serial data stream from one
another, a clock signal (SCLK) must be provided, usually by
the DSP; However, sometimes the ADC supplies this clock as
an output. The DSP usually (but not always) supplies an
additional framing pulse that is active either for one cycle at
the beginning of the communication or, as shown (TFS/RFS),
for the duration of the transmission.

In this example, the DSP’s serial port is used to program an
internal 5-bit register in the ADC. The register’s bits control
such functions as selecting the channel to be converted, putting
the device in power-down mode, and starting a conversion. It
should be evident that the serial interface, in this case, must
be bi-directional.

A parallel ADC, on the other hand, connects directly (or
possibly through buffers) to the data bus of the processor it is
interfaced with. The figure shows the AD7892 interfaced to
an ADSP-2101. When a conversion is complete, the AD7892
interrupts the DSP, which responds by doing a single read of
the ADC’s decoded memory address.

LEADING
ZERO A2 A1 A0 DB11 DB10 DB0

A2 A1 A0 CONV STBY DON’T
CARE

DON’T
CARE

SLCK

DATA OUT

DATA IN

RFS1

TFS1

SCLK1

DR1

DT1

DSP
ADSP-2105

ADC
AD7890

DMA13–DMA0

DMD15–DMD0

ADSP-2101

ADDRESS
DECODE

LOGIC

TIMER

DB11–DB0

AD7892

tCONV

tHOLDtACCESS

VALID DATA
3-STATE3-STATE

DATA OUT

Serial converters cannot in general be mapped into a processor’s
memory. But a number of serial DACs could be connected to
the serial I/O port of the processor. Then, other ports on the
processor could be used to generate Chip Select signals to
enable the DACs individually. The Chip Select signals will
require a line from each device to the interface. But there may
be a limit to the number of lines on the processor that can be
configured to transmit Chip Select signals.

One way of getting around this problem is to use serial DACs
that can be daisy-chained together. The figure shows how to
connect multiple DACs to a single I/O port. Each DAC has a
Serial Data Out (SDO) pin that connects to the Serial Data In
(SDI) pin of the next DAC in the chain. LDAC and SCLK are
fed in parallel to all the DACs in the chain. Because the data
clocked into SDI eventually appears at SDO (N clock cycles
later), a single I/O port can address multiple DACs. However,
the port must output a long data stream (N bits per DAC times
the number of devices in the chain). The great advantage of
this configuration is that device decoding is not needed. All
devices are effectively at the same I/O location. The main
drawback of daisy chaining is accessibility (or latency). To
change the state of even a single DAC, the processor must still
output a complete data stream from the I/O port.

ADDRESS BUS

DECODE LOGIC

DAC “N”DAC 1DAC 0 ...

DATA BUS

CS 0 CS 1 CS “N”

DAC 0 DAC 1

DAC
REGISTER

INPUT
REGISTER

DAC
REGISTER

INPUT
REGISTER

LDAC

SDISDO SDO

LDAC

SDI

CLOCK

TO
LDAC
DAC 3

TO
SDI
DAC 3

TO
CLK
DAC 3

43

Q. If serial data converters save so much space and wire, why aren’t
they used in every space-sensitive application?

A. A major disadvantage of serial interfacing is the tradeoff of
speed for space. For example, to program a parallel DAC, just
place the data on the data bus and clock it into the DAC with
a single pulse. However, when writing to a serial DAC, the bits
must be clocked in sequentially (N␣ ␣ clock pulses for an N-bit
converter) and followed by a Load pulse. The processor’s I/O
port spends a relatively large amount of time communicating
with a serial converter. Consequently, serial converters with
throughput rates above 500␣ ␣ ksps are uncommon.

Q. My 8-bit processor doesn’t have a serial port. Is there a way to interface
a serial 12-bit ADC like the AD7893 to the processor’s parallel bus?

A. It can of course be done using an external shift register, which
is loaded serially (and asynchronously), then clocked into the
processor’s parallel port. However, if the sense of the question
is “without external logic”, the serial ADC can be interfaced
as if it were a 1-bit parallel ADC. Connect the converter’s
SDATA pin to one of the processor’s data bus lines (it is
connected to D0 in the diagram). Using some decode logic,
the converter can be mapped into one of the processor’s
memory locations so that the result of the conversion can be
read with 12 successive Read commands. Then additional
software commands integrate the LSBs of the 12 bytes that
were read into a single 12-bit parallel word.

(less than 10 effective bits of resolution). There is also an additional
danger that overshoot and noise on the sampling signal will further
degrade the integrity of the analog to digital conversion.

Q. When should I choose a converter with an asynchronous serial
interface?

A. An asynchronous link allows devices to exchange unclocked
data with each other. The devices must initially be programmed
to use the identical data formats. This involves setting a
particular data rate (usually expressed in baud, or bits per
second). A convention, that defines how to initiate and end
transmissions, is also necessary. We do this using identifiable
data sequences called start and stop bits. The transmission may
also include parity bits that facilitate error detection.

Analog Dialogue 29-3 (1995)

This technique, which is sometimes referred to as “bit banging”,
is very inefficient from a software perspective. But it may be
acceptable in applications in which the processor runs much
faster than the converter.

Q. In the last example, a gated version of the processor’s write signal
was used to start conversions on the AD7893. Are there problems
with that approach?

A. I am glad you spotted that. In this example, a conversion can
be initiated by doing a dummy write to the AD7893’s mapped
memory location. No data is exchanged, but the processor
provides the write pulse needed to begin the conversion. From
a hardware perspective, this configuration is very simple
because it avoids the need to generate a conversion signal.

However, the technique is not recommended in ac data-
acquisition applications, in which signals must be sampled
periodically. Even if the processor is programmed to do periodic
writes to the ADC, phase jitter on the Write pulse will seriously
degrade the attainable signal-to-noise ratio (SNR). The gating
process may make the Write signal jitter even worse. A sampling
clock phase jitter level of as little as 1␣ ns, for example, would
degrade the SNR of an ideal 100-kHz sine wave to about 60 dB

D7
D6
D5
D4
D3
D2
D1
D0

WR

RD

ADDRESS
DECODER

MICRO-
PROCESSOR

DATA BUS
(1 BIT USED)

ADDRESS BUS

AD7893

SCLK

SDATA

The figure shows how the AD1B60 Digitizing Signal
Conditioner interfaces to a PC’s asynchronous COM Port. This
is a 3-wire bidirectional interface (the ground lines have been
omitted for clarity). Notice that the receive and transmit lines
exchange roles at the other end of the line.

An asynchronous data link is useful in applications in which
devices communicate only sporadically. Since start and stop
bits are included in every transmission, a device can initiate
communication at any time by simply outputting its data. The
number of connections between devices is reduced because
clocking and control signals are no longer necessary.

Q. The data sheet of an ADC I am considering recommends using a
non-continuous clock on the serial interface. Why?

A. The specification probably requires that the clock be kept
inactive while the conversion is in progress. Some ADCs require
this because a continuous data clock can feed through to the
analog section of the device and adversely affect the integrity
of the conversion. A continuous clock signal can be
discontinued during conversion if the I/O port has a framing
pulse; it is used as a gating signal that enables the serial clock
to the converter only during data transfer.

Q. What makes a device SPI or MICROWIRE compatible?

A. SPI (Serial Peripheral Interface) and MICROWIRE are serial
interface standards developed by Motorola and National
Semiconductor, respectively. Most synchronous serial
converters can be easily interfaced to these ports; but in some
cases additional “glue” logic may be necessary.

Q. O.K. I decided to put prejudice aside and use a serial ADC in my
current design. I have just wired it up as the data sheet specifies.
When my micro reads the conversion result, the ADC always seems
to output FFFHEX. What’s happening?

A. Perhaps you are having a communications problem. We need
to look at the connections between the ADC and the
processor—and at how the timing and control signals have been
set up. We also need to look at the Interrupt structure. The
next installment will return to this issue, discussing the
problems encountered when designing serial interfaces. b

AD1B60

RXD

TXD

ADM232 PC

RXD

TXD

COM PORT

All brand or product names mentioned are trademarks or registered trademarks of their respective holders.

Ask The Applications Engineer – 19

44

Ask The Applications Engineer—20
INTERFACING TO SERIAL CONVERTERS—II

by Eamon Nash

Q. At the end of our discussion in the last issue,␣ I was having a problem
establishing communication between my ADC and my
microcontroller. If you recall, the microcontroller always seemed to
be reading a conversion result of FFFHEX regardless of the voltage
on the analog input. What could be causing this?

A. There are a number of possible timing-related error sources.
You could start trouble-shooting this problem by connecting
all of the timing signals either to a logic analyzer or to a multi-
channel oscilloscope (at least three channels are needed to look
at all signals simultaneously). What you would see on the screen
would look similar to the timing diagram in the figure below.
First make sure that a Start Conversion command (CONVST)
is being generated (coming either from the micro or from an
independent oscillator). A frequent mistake is to apply a
CONVST signal with the wrong polarity. The conversion is
still performed, but not when you expect it to be. It is also
important to remember that there is usually a minimum pulse
width requirement on the CONVST signal (typically about
50␣ ns). The standard Write or Read pulse from fast
microprocessors may not satisfy this requirement. If too short,
the pulse width can be extended by inserting software Wait
states.

A. Once again there are a number of possible error sources. The
ADC will be outputting its conversion result either in straight
binary or in twos complement format (BCD data converters
are no longer widely used). Check that your micro is configured
to accept the appropriate format. If the micro can’t be
configured to accept twos complement directly, you can convert
the data to straight binary by exclusive-or’ing the number with
100␣ .␣ .␣ .␣ 00 binary.

Normally the leading edge of the serial clock (either rising or
falling) will enable the data out of the ADC and onto the data
bus. The trailing edge then clocks the data into the micro. Make
sure that both micro and ADC are operating under the same
convention and that all Setup and Hold times are being met. A
conversion result that is exactly half or double what one would
expect is a tell-tale sign that the data (especially the MSB) is
being clocked on the wrong edge. The same problem would
manifest itself in a serial DAC as an output voltage that is half
or double the expected value.

Analog Dialogue 30-1 (1996)

Make certain that the micro is waiting for the conversion to be
completed before the Read cycle begins. Your software should
either be taking note of the time required to convert or be
waiting for an End of Conversion (EOC) indicator from the
ADC to generate an interrupt in the micro. Make sure that the
polarity of the EOC signal is correct, otherwise the ADC will
cause an interrupt while the conversion is in progress. If the
micro is not responding to the interrupt, you should examine
the configuration of the interrupt in your software.

It is also important to consider the state of the serial clock line
(SCLK) while it is not addressing the converter. As I mentioned
in our previous discussion, some DACs and ADCs do not
operate correctly with continuous serial clocks. In addition to
this, some devices require that the SCLK signal always idles in
one particular state.

Q. O.K. I’ve found and corrected some bugs in my software and things
seem to be improving. The data from the converter are changing as
I vary the input voltage but the conversion results seem to have no
recognizable format.

t1

tCONV

SCLK

DATA OUT DB11 DB10 DB0

The digital signals driving the converter should be clean. In
addition to causing possible long-term damage to the device,
overshoot or undershoot can cause conversion and
communication errors. The figure shows a signal with a large
overshoot spike driving the clock input of a single-supply
converter. In this case, the clock input drives the base of an
PNP transistor. As is usual practice, the P-type substrate of
the device is internally connected to the most negative potential
available—in this case, ground. An excursion of more than 0.3
volts below ground on the SCLK line is sufficient to begin
turning on a parasitic diode between the N-type base and the
P-type substrate. If this happens frequently, over the long term,
it may lead to damage to the device.

In the short term, though not causing damage, energizing the
normally inert substrate affects other transistors in the device
and can lead to multiple clock pulses being detected for each
pulse applied.␣ The resulting jitter is a serious matter in serial
converters—but is less of a problem in parallel converters,
because the Read and Write cycles generally depend upon the
first applied pulse; subsequent pulses are ignored. However,
the noise performance on both serial and parallel converters
can suffer if signals of this kind are present during conversion.

The figure shows how overshoot can be easily reduced. A small
resistor is placed in series on the digital line that is causing the
problem. This resistance will combine with Cpar, the parasitic
capacitance of the digital input, to form a low-pass filter which
should eliminate any ringing on the received signal. Typically
a 50-Ω resistor is recommended, but some experimentation
may be necessary. It may also be necessary to add an external
capacitance from the input to ground if the internal capacitance

B E C

P P

N

P

0V
UNDERSHOOT > 0.3V

45

of the digital input is insufficient. Here again, experimentation
is necessary—but a good starting point would be about 10␣ pF.

Analog Dialogue 30-1 (1996)

The figure also shows how to deal with the increasingly
common challenge of powering a mixed-signal system with a
single power supply. As in the grounding case, we run separate
power lines (preferably power planes) to the analog and digital
portions of the circuit. We treat the digital power pin of the
converter as analog. But some isolation from the analog power
pin, in the form of an inductor, is appropriate. Remember that
both power pins of the converter should have separate
decoupling capacitors. The data sheet will recommend
appropriate capacitors, but a good rule of thumb is 0.1␣ µF. If
space permits, a single 10-µF capacitor per device should also
be included.

Q. I want to design an isolated serial interface between an ADC and a
microcontroller using opto-isolators. What should I be aware of when
using these devices?

A. Opto-isolators (also known as opto-couplers) can be used to
create a simple and inexpensive high-voltage isolation barrier.
The presence of a galvanic isolation barrier between converter
and micro also means that analog and digital system grounds
no longer need to be connected. As shown in the figure, an
isolated serial interface between the AD7714 precision ADC
and the popular 68HC11 microcontroller can be implemented
with as few as three optoisolators.

Q. You mentioned that clock overshoot can degrade the noise
performance of a converter. Is there anything else I can do from an
interfacing point of view to get a good signal to noise ratio?

A.␣ Because your system is operating in a mixed-signal environment
(i.e., analog and digital), the grounding scheme is critical. You
probably know that—because digital circuitry is noisy—analog
and digital grounds should be kept separate, joined at only
one point. This connection is usually made at the power supply.
In fact, if the analog and digital devices are powered from a
common supply, as might be the case in a +5␣ V or +3.3␣ V
single-supply system, there is no choice but to connect the
grounds back at the supply. But the data sheet for the converter
probably has an instruction to connect the pins AGND and
DGND at the device! So how can one avoid creating a ground
loop that can result if the grounds are connected in two places?

The figure below shows how to resolve this apparent dilemma.
The key is that the AGND and DGND labels on the converter’s
pins refer to the parts of the converter to which those pins are
connected. The device as a whole should be treated as analog.
So after the AGND and DGND pins have been connected
together, there should be a single connection to the system’s
analog ground. True, this will cause the converter’s digital
currents to flow in the analog ground plane, but this is generally
a lesser evil than exposing the converter’s DGND pin to a noisy
digital ground plane. This example also shows a digital buffer,
referred to digital ground, to isolate the converter’s serial data
pins from a noisy serial bus. If the converter is making a point-
to-point connection to a micro, this buffer may be unnecessary.

ADC/DAC

TO INTERNAL
CIRCUITRY

CPAR

50Ω

CEXT

DIGITAL
INPUT

SIGNAL

VD VA

ADC/DAC

AGND DGND

A

SYSTEM
POWER

SYSTEM
GROUND

VD

BUFFER
LATCH

“QUIET”
DIGITAL

D

TO OTHER
DIGITAL CIRCUITS

NOISY SERIAL
DATA BUS

TO OTHER
DIGITAL CIRCUITS

DIGITAL GROUND/POWER PLANE

ANALOG GROUND/POWER PLANE

The designer should be aware, though, that the use of
optoisolators having relatively slow rise and fall times with
CMOS converters can cause problems, even when the serial
communication is running at a slow speed.

CMOS logic inputs are designed to be driven by a definite
logic zero or logic one. In these states, they source and sink
a minimal amount of current. However, when the input
voltage is in transition between logic zero and logic one (0.8␣ V
to 2.0␣ V), the gate will consume an increased amount of
current. If the opto-isolators used have relatively slow rise
and fall times, the excessive amount of time spent in the
dead-band will cause self-heating in the gate. This self-heating
tends to shift the threshold voltage of the logic gate upwards,
which can lead to a single clock edge being interpreted by
the converter as multiple clock pulses. To prevent this
threshold jitter, the lines coming from the optoisolators
should be buffered using Schmitt trigger circuits, to deliver
fast, sharp edges to the converter. b

68HC11 AD7714
MISO 4N25

10kΩ
425Ω

425Ω
4N25

DATA OUT

MOSI

10kΩ

425Ω
4N25

10kΩ

SCLK AGND DGND

DATA IN

SCLK

+5V +5V

Ask The Applications Engineer – 20

