Precision integrator sparks current-ratio-to-frequency converter

Stefano Salvatori and Gennaro Conte, Università degli Studi di Roma Tre, Rome, Italy

\triangle
The Design Idea in Figure 1 uses the S_{1} switch of the Texas Instruments (www.ti.com) IVC102 precision integrator to select between a single input current or the superposition of two input currents. This function allows you to obtain an output signal whose characteristics directly relate to the ratio between the two input currents. The circuit achieves high accuracy independent of most of the system parameters. In addition, you can enhance accuracy if you let a digital counter control the IVC102-based circuit (Figure 2). In this case, the system's output is a number in the BCD (binary-coded-decimal) format proportional to the input-current ratio,
realizing a true digital conversion.
The circuit divides into two phases. The first phase begins when the output voltage of the IVC102 becomes slightly greater than the threshold voltage of the LM311 comparator. The comparator generates a falling-edge signal, and the 555 monostable starts a pulse, which closes S_{1}. In this case, the total input current, $I_{2}-I_{1}$, generates a negative-going ramp if I_{2} is greater than I_{1}. In the delta-time period, $\Delta \mathrm{T}_{\mathrm{A}}$, the integrator's output voltage reaches the final voltage value. Hence, $\left|\mathrm{V}_{\mathrm{FIN}}-\mathrm{V}_{\mathrm{TH}}\right|=\left(\mathrm{I}_{2}-\mathrm{I}_{1}\right) \Delta \mathrm{T}_{\mathrm{A}} / \mathrm{C}_{\mathrm{INT}}$, where $\mathrm{C}_{\text {INT }}$ is the value of the IVC102's integrating capacitor. When the 555 monostable's output pulse ends, the
second phase starts: S_{1} opens, and input current I_{1} discharges $\mathrm{C}_{\mathrm{INT}}$. The $\Delta \mathrm{T}_{\mathrm{B}}$ for the output voltage to assume the threshold voltage's value is then $\mathrm{C}_{\mathrm{INT}}\left|\mathrm{V}_{\mathrm{FIN}}-\mathrm{V}_{\mathrm{TH}}\right| / \mathrm{I}_{1}$, and the comparator generates a new trigger command to the monostable so that a new cycle can start. Manipulating the previous equations yields: $I_{1} / I_{2}=\Delta T_{A} f$, where $f=\left(\Delta T_{A}+\Delta T_{B}\right)^{-1}$. This equation states that the generated output signal, a train of pulses, has a frequency, f, proportional to the I_{1} / I_{2} current ratio. The accuracy of the monostable directly affects the accuracy of the system. Conversely, the integrating capacitor's and threshold voltage's values do not influence the accuracy if they maintain constant values at least in the $1 / \mathrm{f}$ time scale.
You can increase the accuracy of the circuit in Figure 1 by modifying the section that generates the constant, $\Delta \mathrm{T}_{\mathrm{A}}$-wide pulse. The circuit in Figure 2 generates a $\Delta \mathrm{T}_{\mathrm{A}}$-wide pulse using three
(continued on pg 108)

designideas

Figure 1 This circuit allows you to obtain an output-signal frequency that directly relates to the ratio between the two input currents.

Figure 2 To the circuit in Figure 1, this design adds a BCD counter to obtain direct readouts on seven-segment LED displays.

designideas

(continued from pg 104)
HCF40110 BCD counters. When the third counter generates a carry, 1000/ f_{CK} seconds have elapsed. In Figure 2, a set/reset flip-flop controls S_{1} 's state, and the 74 HC 14 hex inverter with a Schmitt-trigger input generates the pulses that reinitialize the system. A brief description of the measurement cycle follows. When the IVC102's output voltage becomes greater than the threshold voltage, the INH (inhibit) signal connected to the toggle input of
the first HCF40110 inhibits counting. At the same time, the negative-going edge of the comparator output generates a negative-going pulse of approximately $10 \mu \mathrm{sec}$, which latches the counters' values at the output to display the actual result. After this step, a nega-tive-going pulse sets the SR flip-flop to close S_{1}. A corresponding positive-going pulse resets the counters. The latchenable lines of the 40110 s are tied high, so the counters' reset doesn't affect the displayed value. When the reset pulse
ends and the comparator's output goes high, the HCF40110s can count up. When the third counter generates a carry (negative-going pulse), the 1000th clock period has elapsed, and the SR flip-flop resets to open S_{1}. The cycle ends at the next falling edge of the comparator's output. The time period in which $\mathrm{I}_{2}-\mathrm{I}_{1}$ charges $\mathrm{C}_{\mathrm{INT}}$ is $\mathrm{N}_{\mathrm{A}} /$ $\mathrm{f}_{\mathrm{CK}}\left(\mathrm{N}_{\mathrm{A}}=1000\right)$, and the I_{1} requires for discharging is $\mathrm{N}_{\mathrm{B}} / \mathrm{f}_{\mathrm{CK}}$. Manipulating the integrator-related relationships yields $\mathrm{I}_{2} / \mathrm{I}_{1}=\mathrm{N} / \mathrm{N}_{\mathrm{A}}$, where $\mathrm{N}=\mathrm{N}_{\mathrm{A}}+\mathrm{N}_{\mathrm{B}} \cdot \mathrm{EDN}$

