## Two-DAC circuit adds and subtracts

V Manoharan, Naval Physical and Oceanographic Laboratory, Kochi, India

A typical way to add two binary words and provide an ana$\log$ output is to use several digital ICs that drive a DAC. The circuit in Figure 1 eliminates the use of several digital-IC packages and, hence, the need for the digital power supply. The circuit simultaneously carries out addition and subtraction on two 8 -bit binary words and presents the output in bipolar analog form.

The hardware consists of four ICs, and the operation takes only 85 nsec , which is the settling time of the DACs plus the settling time of the op amp. $\mathrm{IC}_{1}$, a precision 10 V reference, provides the reference current for both multiplying DACs: $\mathrm{IC}_{2}$ and $\mathrm{IC}_{3}$. For these DACs, $\mathrm{I}_{\text {REFA }}=10 \mathrm{~V} / \mathrm{R}_{1}$, and $\mathrm{I}_{\text {REFB }}=10 \mathrm{~V} / \mathrm{R}_{2}$. In this case, $I_{\text {REFA }}=I_{\text {REFB }}=I_{\text {REF }}=2 \mathrm{~mA}$.

The output currents, $\mathrm{I}_{\mathrm{OA}}$ and $\mathrm{I}_{\mathrm{OB}}$, depend on the respective $A$ and $B$ binary inputs and the input reference currents as follows:

$$
\begin{equation*}
\mathrm{I}_{\mathrm{OA}}=\mathrm{I}_{\mathrm{REF}} \cdot \frac{\mathrm{~N}_{\mathrm{A}}}{2^{\mathrm{n}}} \div \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{I}_{\mathrm{OB}}=\mathrm{I}_{\mathrm{REF}} \bullet \frac{\mathrm{~N}_{\mathrm{B}}}{2^{\mathrm{n}}} \div \tag{2}
\end{equation*}
$$

where n is the number of input bits and $\mathrm{N}_{\mathrm{A}}$ and $\mathrm{N}_{\mathrm{B}}$ range in value from 0 to $2^{\mathrm{n}}-1$, in accordance with the input binary words.

94 b EDN SEPTEMBER 1, 1998

## EDN ${ }^{\text {Design Ideas }}$

The DAC-08 has complementary current outputs. Therefore, you can express the complements of $\mathrm{I}_{\mathrm{OA}}$ and $\mathrm{I}_{\mathrm{OB}}$ as

$$
\begin{equation*}
\overline{\mathrm{I}_{\mathrm{OA}}}=\mathrm{I}_{\mathrm{FS}} \quad \mathrm{I}_{\mathrm{OA}}, \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\overline{\mathrm{I}_{\mathrm{OB}}}=\mathrm{I}_{\mathrm{FS}} \quad \mathrm{I}_{\mathrm{OB}}, \tag{4}
\end{equation*}
$$

where $\mathrm{I}_{\mathrm{FS}}$, the full-scale current of the DAC, is

$$
\begin{equation*}
\mathrm{I}_{\mathrm{FS}}=\frac{2^{\mathrm{n}} 1}{2^{\mathrm{n}}} \bullet \mathrm{I}_{\mathrm{REF}} \tag{5}
\end{equation*}
$$

The circuit configures $\mathrm{IC}_{4 \mathrm{~B}}$ as a current-to-voltage converter. Thus,

$$
\begin{equation*}
\mathrm{V}_{\mathrm{OUT}(\mathrm{~A}+\mathrm{B})}=\mathrm{I}_{\mathrm{OA}} \bullet \mathrm{R}_{5}+\mathrm{I}_{\mathrm{OB}} \bullet \mathrm{R}_{5} \tag{6}
\end{equation*}
$$

Substituting $\mathrm{I}_{\mathrm{OA}}$ and $\mathrm{I}_{\mathrm{OB}}$ from Equations 1 and $\mathbf{2}$ into Equation 6 yields

$$
\begin{aligned}
\mathrm{V}_{\mathrm{OUT}(\mathrm{~A}+\mathrm{B})} & =\mathrm{I}_{\mathrm{REF}} \bullet \frac{\mathrm{~N}_{\mathrm{A}}}{2^{\mathrm{n}}} \div \bullet \mathrm{R}_{5}+\mathrm{I}_{\mathrm{REF}} \bullet \frac{\mathrm{~N}_{\mathrm{B}}}{2^{\mathrm{n}}} \div \bullet \mathrm{R}_{5} \\
& =\frac{\mathrm{I}_{\mathrm{REF}} \bullet \mathrm{R}_{5}}{2^{\mathrm{n}}} \bullet\left(\mathrm{~N}_{\mathrm{A}}+\mathrm{N}_{\mathrm{B}}\right) .
\end{aligned}
$$

$\mathrm{IC}_{4 \mathrm{~A}}$ serves as both a current-to-voltage converter for $\mathrm{I}_{\text {ОВ }}$ and a buffer to the potential drop across $R_{3}$ because of the flow of $\mathrm{I}_{\mathrm{OA}}$. Thus, assuming $\mathrm{R}_{3}=\mathrm{R}_{4}$,

$$
\begin{align*}
\mathrm{V}_{\mathrm{OUT}(\mathrm{~A} \mathrm{~B})} & =\overline{\overline{\mathrm{I}}_{\mathrm{OB}}} \bullet \mathrm{R}_{4} \quad \overline{\mathrm{I}_{\mathrm{OA}}} \bullet \mathrm{R}_{3}  \tag{8}\\
& =\left(\overline{\mathrm{I}_{\mathrm{OB}}} \overline{\mathrm{I}_{\mathrm{OA}}} \bullet \mathrm{R}_{4} .\right.
\end{align*}
$$

Substituting $\mathrm{I}_{\mathrm{OA}}$ and $\mathrm{I}_{\mathrm{OB}}$ from Equations $\mathbf{3}$ and $\mathbf{4}$ into Equation 8 and assuming that $\mathrm{R}_{4}=\mathrm{R}_{5}$ result in

$$
\begin{align*}
\left.\mathrm{V}_{\mathrm{OUT}(\mathrm{~A}} \mathrm{B}\right) & \left.=\left[\begin{array}{lll}
\left(\mathrm{I}_{\mathrm{FS}}\right. & \mathrm{I}_{\mathrm{OB}}
\end{array}\right)\left(\begin{array}{ll}
\mathrm{I}_{\mathrm{FS}} & \mathrm{I}_{\mathrm{OA}}
\end{array}\right)\right] \bullet \mathrm{R}_{4}  \tag{9}\\
& =\left(\begin{array}{ll}
\mathrm{I}_{\mathrm{OA}} & \mathrm{I}_{\mathrm{OB}}
\end{array}\right) \bullet \mathrm{R}_{5} \\
& =\mathrm{I}_{\mathrm{REF}} \bullet \frac{\mathrm{~N}_{\mathrm{A}}}{2^{\mathrm{n}}} \div \mathrm{I}_{\mathrm{REF}} \bullet \frac{\mathrm{~N}_{\mathrm{B}}}{2^{\mathrm{n}}} \div \cdot \mathrm{R}_{5} \\
& =\frac{\mathrm{I}_{\mathrm{REF}} \bullet \mathrm{R}_{5}}{2^{\mathrm{n}}} \bullet\left(\begin{array}{ll}
\mathrm{N}_{\mathrm{A}} & \mathrm{~N}_{\mathrm{B}}
\end{array}\right) .
\end{align*}
$$

(DI \#2226)
e
To Vote For This Design, Circle No. 358


Two DACs and two op amps simultaneously carry out both addition and subtraction on two 8-bit binary words.

