Chapter 14

Interfacing D/A Converters to Loads

Bruce Carter

14.1 Introduction

A digital to analog converter, or D/A, is a component that takes a digital word and converts it to a corresponding analog voltage. It has the opposite function of an A/D converter. The D/A is only capable of producing a quantized representation of an analog voltage, not an infinite range of output voltages.

The application will almost always dictate the selection of the D/A converter, leaving the designer the task of interfacing that converter with the output load.

A D/A converter interfaces with a buffer op amp. Most D/A converters are manufactured with a process that is incompatible with op amps. Therefore, the op amp cannot be manufactured on the same IC. It must be external, and its characteristics are an integral part of the conversion process. In most cases, the data sheet will make a recommendation for the selection of a buffer op amp. Follow the recommendation, unless there is a compelling reason not to do so. Performance can be improved only if you know exactly what op amp specifications need to be optimized.

Signal conditioning — low pass filtering, DC offsets, and power stages — should all be placed after the recommended op amp buffer. Do not attempt to combine these functions with the buffer unless you are an experienced designer with a good grasp of all of the implications.

14.2 Load Characteristics

There are two main types of loads that a D/A may have to drive — ac and dc. Each has different characteristics, and will require different interface circuitry.

14.2.1 DC Loads

These include linear actuators such as those used on positioning tables, motors, programmable power supplies, outdoor displays, and lighting systems. Large load currents and/or high voltages characterize some of these loads. DC accuracy is important, because it is related to a series of desired mechanical positions or intensities in the load device.

14.2.2 AC Loads

These include linear actuators such as those used on positioning tables, motors, programmable power supplies, outdoor displays, and lighting systems. Large load currents and/or high voltages characterize some of these loads. DC accuracy is important, because it is related to a series of desired mechanical positions or intensities in the load device.

14.3 Understanding the D/A Converter and its Specifications

It is important to understand the D/A converter and its specifications before discussing interfaces.

14.3.1 Types of D/A Converters — Understanding the Tradeoffs

D/A converters are available in several types, the most common of which is the resistor ladder type. There are several variations on the resistor ladder technique, with the R/2R configuration being the most common.

14.3.2 The Resistor Ladder D/A Converter

In this type of converter, a precision voltage reference is divided into 2^{N-1} parts in an internal voltage divider, where N is the number of bits specified for the converter. One switch at a time turns on, corresponding to the correct dc level (Figure 14–1).

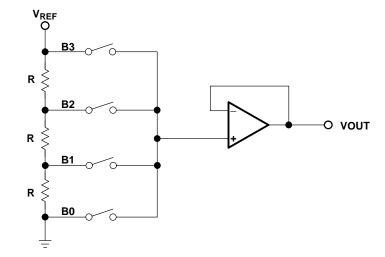


Figure 14–1. Resistor Ladder D/A Converter

14-2

Unfortunately, the number of resistors and switches doubles for each additional bit of resolution. This means that an 8-bit D/A converter would have 255 resistors and 256 switches, and a 16-bit D/A converter would have 65535 resistors and 65536 switches. For this reason, this architecture is almost never used for higher resolution D/A converters.

14.3.3 The Weighted Resistor D/A Converter

This type of converter is very similar to the Resistor Ladder D/A converter. In this case, however, each resistor in the string is given a value proportional to the binary value of the bit it represents. Currents are then summed from each active bit to achieve the output (Figure 14–2).

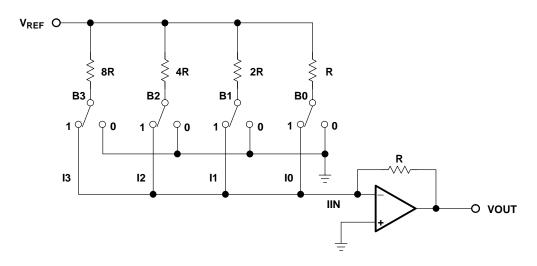
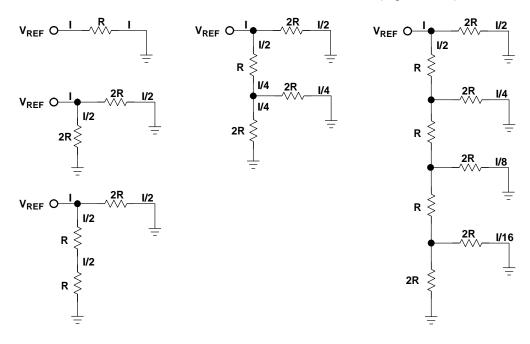


Figure 14-2. Binary Weighted D/A Converter

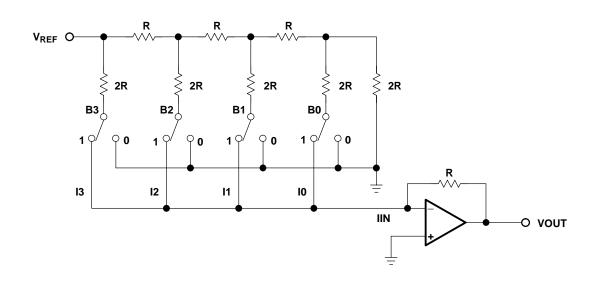
The number of resistors and switches reduced to one per bit, but the range of the resistors is extremely wide for high-resolution converters, making it hard to fabricate all of them on the IC. The resistor used for B3 is the limiting factor for power dissipation from V_{REF} to ground.

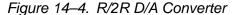

This converter architecture is often used to make logarithmic converters. In this case, the R, 2R, 4R, 8R ... resistors are replaced with logarithmically-weighted resistors.

This type of converter, and the R/2R converter described in the next paragraph, use a feedback resistor fabricated on the D/A IC itself. This feedback resistor is not an optional convenience for the designer — it is crucial to the accuracy of the D/A. It is fabricated on the same silicon as the resistor ladder. Therefore, it experiences the same thermal drift as the resistor ladder. The gain of the buffer amplifier is fixed, with a full-scale output voltage limited to V_{REF} . If a different full-scale D/A output voltage is needed, change V_{REF} .

If the full scale V_{OUT} must exceed the maximum rating of the D/A reference voltage, use a gain stage after the buffer op amp (see Paragraph 14.7.2).

The op amp must be selected carefully, because it will be operated in much less than unity gain mode for some combinations of bits. This is probably one of the main reasons why this architecture is not popular, as well as the requirement for a wide range of resistor values for high precision converters.


14.3.4 The R/2R D/A Converter



An R/R2 network can be used to make a D/A converter (Figure 14–3).

Figure 14–3. R/2R Resistor Array

For a given reference voltage V_{REF} , a current I flows through resistor R. If two resistors, each the same value (2R) are connected from V_{REF} to ground, a current I/2 flows through each leg of the circuit. But the same current will flow if one leg is made up of two resistors, each with the value of R. If two resistors in parallel whose value is 2R replace the bottom resistor, the parallel combination is still R. I/4 flows through both legs, adding to I/2. Extending the network for 4 bits as shown on the right, the total current on the bottom leg is I/4 plus I/8 plus I/16 plus I/16 in the resistor to ground. Kirchoff's current law is satisfied, and convenient tap points have been established to construct a D/A converter (Figure 14–4):

This converter architecture has advantages over the types previously mentioned. The number of resistors has doubled from the number required for the current-summing type, but there are only two values. Usually, the 2R resistors are composed of two resistors in series, each with a value of R. The feedback resistor for the buffer amplifier is again fabricated on the converter itself for maximum accuracy. Although the op amp is still not operated in unity gain mode for all combinations of bits, it is much closer to unity gain with this architecture.

The important op amp parameters for all resistor ladder D/As are:

- Input offset voltage the lower the better. It adds to the converter offset error.
- Input bias current the lower the better. The product of the bias current and the feedback resistance creates an output offset error.
- Output voltage swing it must meet or preferably exceed the zero to full-scale swing from the D/A.
- Settling time and slew rate must be fast enough to allow the op amp to settle before the next digital bit combination is presented to the D/A input register.

14.3.5 The Sigma Delta D/A Converter

The sigma delta D/A converter takes advantage of the speed of advanced IC processes to do a conversion as a series of approximations summed together. A phase-locked loop-derived (PLL) sample clock operates at many times the overall conversion frequency — in the case shown in Figure 14–5, it is 128×. The PLL is used to drive an interpolation filter, a digital modulator, and a 1-bit D/A converter. The conversion is done by using the density

ratio of the voltage out of the 1-bit D/A as the analog signal. As the pattern of 1s and 0s is presented to the 1-bit converter, their time average at the sample frequency recreates the analog waveform.

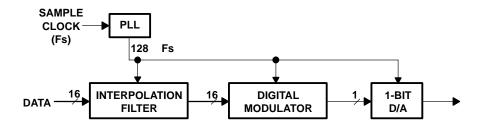


Figure 14–5. Sigma Delta D/A Converter

Sigma delta converters are popular for audio frequencies, particularly CD players. The primary limiting factor is the sample clock. CD players operate at a sample rate of 44.1 kHz, which means that according to Nyquist sampling theory, the maximum audio frequency that can be reproduced is 22.05 kHz. If an audio frequency of 23.05 kHz is present in the recorded material, it will alias back into the audio output at 1 kHz — producing an annoying whistle. This places a tremendous constraint on the low-pass filter following the D/A in a CD player. It must reject all audio frequencies above 22.05 kHz while passing those up to 20 kHz, the commonly accepted upper limit of human hearing. While this can be done in conventional filter topologies, they are extremely complex (9 or more poles). Inevitably, phase shift and amplitude rolloff or ripple will start far below 20 kHz. The original CD players often sounded a bit "harsh" or "dull" because of this.

The solution was to overclock the sample clock. To keep things simple, designers made it a binary multiple of the original sampling frequency. Today, 8× or even higher oversampling is standard in CD players. Little do the audio enthusiasts know that the primary reason why this was done was to substantially reduce the cost of the CD player! A faster sample clock is very cheap. Nine-pole audio filters are not. At 8× oversampling, the CD player only needs to achieve maximum rolloff at 352.8 kHz — a very easy requirement. Instead of the filter having to roll off in a mere 2 kHz of bandwidth, now it has 332 kHz of bandwidth to accomplish the rolloff. The sound of an oversampled CD player really is better, but it comes at the cost of increased radiated RFI, coming from the sample clock.

Sigma delta converters introduce a great deal of noise onto the power rails, because the internal digital circuitry is continually switching to the power supply rails at the sample clock frequency F_S .

14.4 D/A Converter Error Budget

The system designer must do an error budget to know how many bits are actually needed to meet the system requirements — how much "graininess" or what step size is acceptable in the output signal.

14.4.1 Accuracy versus Resolution

It is important for the designer to understand the difference between converter accuracy and converter resolution. The number of bits determines resolution of a converter. Insufficient resolution is not error — it is a design characteristic of the D/A. If a given converter's resolution is insufficient, use a converter with better resolution (more bits).

Accuracy is the error in the analog output from the theoretical value for a given digital input. Errors are described in the next paragraph. A very common method of compensating for D/A error is to use a converter that has one or two bits more resolution than the application requires. With the cost of converters coming down, and more advanced models being introduced every day, this may be cost effective.

14.4.2 DC Application Error Budget

DC applications will depend on the value of dc voltage coming out of the converter. THD and signal-to-noise will not be important because the frequency coming out of the converter is almost dc.

The resolution of a converter is $\pm 1/2$ LSB, where an LSB is defined as:

$$1 \text{ LSB} = \frac{V_{\text{FS}}}{2^{\text{N}} - 1} \tag{14-1}$$

Where:

V_{FS} Full-scale output voltage N Number of converter bits

The number of bits in a dc system determines the dc step size that corresponds to a bit. Table 14–1 shows the number of bits, and the corresponding voltage step size for three popular voltages:

Table 14–1. DC Step Size for D/A converters

BITS	STATES	3 V	5 V	10 V
4	16	0.1875	0.3125	0.625
8	256	0.011719	0.019531	0.039063
10	1024	0.00293	0.004883	0.009766
12	4096	0.000732	0.001221	0.002441
14	16384	0.000183	0.000305	0.00061
16	65536	4.58 E–05	7.63 E–05	0.000153
18	262144	1.14 E–05	1.91 E–05	3.81 E–05
20	1048576	2.86 E–06	4.77 E–06	9.54 E–06
22	4194304	7.15 E–07	1.19 E–06	2.38 E-06
24	16777216	1.79 E–07	2.98 E–07	5.96 E–07

Interfacing D/A Converters to Loads 14-7

The bit step size can get critical, especially for portable equipment. There is a requirement to operate off of low voltage, to minimize the number of batteries. The buffer amplifier, if it includes gain, will use large resistor values, lowering its noise immunity. Fortunately, the vast majority of dc applications are not portable; they are in an industrial environment.

For example: A converter is used to position a drill on a table used to drill PCB holes. The positions of the holes are specified as 0.001 inches, \pm 0.0003 inches. The actuators are centered on the table at zero volts, with full negative position of -12 inches occurring at -5 V, and full positive position of +12 inches occurring at +5 V. There are two actuators, one for vertical, and one for horizontal.

This example has several aspects. The first is that the positioning voltage has to swing both positive and negative. In the real world, it may be necessary to add (or subtract in this case) a fixed offset to the D/A output. The output voltage has to swing over a 10-V range, which may mean that the output of the D/A has to be amplified. The actuators themselves probably operate off of higher current than the D/A is designed to provide. Section 14.7 covers some methods for meeting these requirements.

Assume, for now, that the D/A has the necessary offset and gain. A \pm 12 inch position is 24 inches total, which corresponds to \pm 5 V from the D/A circuitry. The 24-inch range must be divided into equal 0.0003-inch steps to meet the resolution requirement, which is 80,000 steps. From Table 14–1, an 18-bit D/A converter is required. The actual system will be able to position with a step size of 0.0000916 inches. Two independent conversion systems are needed, one for horizontal and one for vertical.

14.4.3 AC Application Error Budget

The error budget for an ac application will most likely be specified as total harmonic distortion, dynamic range, or signal-to-noise ratio. Assuming no internal noise, and no noise in the buffer op amp circuitry, the inverse of the dynamic range is the signal-to-noise ratio of the converter D/A. Of course, noise is always present, and is measured with all input data set to zero. Noise will make the S/N ratio decrease.

The number of converter bits, however, is the overwhelming factor determining these parameters. Technically, they are not "errors", because the design of the converter sets them. If the designer cannot live with these design limits, the only choice is to specify a converter with better resolution (more bits).

14.4.3.1 Total Harmonic Distortion

The total harmonic distortion of an ideal D/A converter is the quantization noise due to the converter resolution. The number of bits of the converter determines the lowest possible total harmonic distortion. The greater the number of bits, the lower the amplitude of the harmonics, as shown in Figure 14–6.

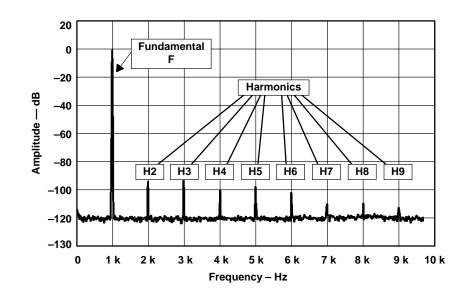


Figure 14–6. Total Harmonic Distortion

Assuming ideal D/A conversion, there is a direct relationship between the number of bits and the THD caused by the resolution:

$$\mathsf{THD}(\%) = \frac{1}{2^{\mathsf{N}}} \times 100 \tag{14-2}$$

Where N is the number of converter bits. Of course, this is the limit for ideal conversion.

14.4.3.2 Dynamic Range

There is also a direct relationship between the number of bits (n) and the maximum dynamic range of the D/A (Equation 14–2 and Table 14–2):

Dynamic Range =
$$6.02 \times n + 1.76$$
 (14–3)

Notice that there is approximately a 6-dB improvement in dynamic range per bit. This is an easy way to figure out what improvement can be realized by increasing the number of bits from one value to another.

BITS	STATES	THD	Dynamic Range
4	16	6.25%	25.8
8	256	0.390625%	49.9
10	1024	0.097656%	62.0
12	4096	0.024414%	74.0
14	16384	0.006104%	86.0
16	65536	0.001526%	98.1
18	262144	0.000381%	110.1
20	1048576	0.000095%	122.2
22	4194304	0.000024%	134.2
24	16777216	0.000006%	146.2

Table 14–2	Converter Bits,	THD and D	vnamic Range
		TTD, and D	ynanno nango

For example, if the designers of a CD player want to have a 90-dB signal-to-noise ratio, they would pick a 16-bit converter from Table 14–2. The THD is 0.0015% minimum.

14.4.4 RF Application Error Budget

RF applications are a high-frequency subset of ac applications. RF applications may be concerned with the position and relative amplitude of various harmonics. Minimizing one harmonic at the expense of another may be acceptable if the overall RF spectrum is within specified limits.

14.5 D/A Converter Errors and Parameters

The D/A errors described in this section will add to the errors caused by the resolution of the converter.

This section is divided into dc and ac sections, but many of the dc errors masquerade as ac errors. A given D/A may or may not include either dc or ac error specifications. This should give the designer a clue that the device is optimized for dc or ac applications. Like any component, D/A converters are designed with tradeoffs. It is possible to misapply a converter meant for high-frequency ac operation in a dc application, etc.

14.5.1 DC Errors and Parameters

The following paragraphs describe D/A dc errors and parameters.

14.5.1.1 Offset Error

The analog output voltage range for the complete range of input bits may be shifted linearly from the ideal 0 to full-scale value (Figure 14–7). The offset error is the $\pm \Delta$ V from 0 V that results when a digital code is entered that is supposed to produce 0.

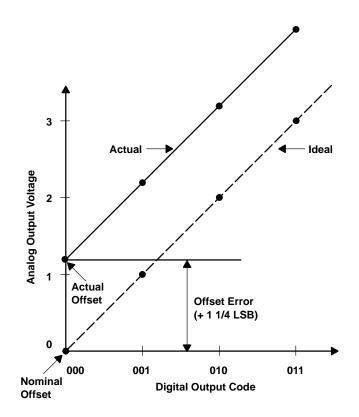


Figure 14–7. D/A Offset Error

Related to the offset error is the offset error temperature coefficient, which is the change in offset over temperature. This is usually specified in ppm/°C.

Offset error is critical in dc applications. For this reason, a buffer op amp must be selected that does not contribute to the problem — its own offset voltages should be much less than that of the converter. In ac applications, the offset error is not important and can be ignored. The buffer op amp can be selected for low THD, high slew rate, or whatever other parameters are important for the application.

14.5.1.2 Gain Error

The gain of the D/A converter may greater than or less than the gain needed to produce the desired full-scale analog voltage (Figure 14–8). The gain error is the difference in slope between the ideal D/A output gain and the actual gain.

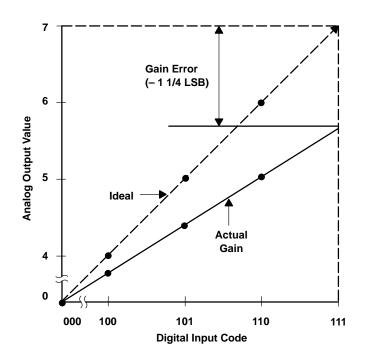


Figure 14–8. D/A Gain Error

Related to the gain error is the gain error temperature coefficient, which is the change in gain over temperature.

Gain error can be critical in both ac and dc applications. For example:

- An RF predriver must not cause the output stage to exceed FCC license requirements.
- A mechanical positioner must not stop short of or go past its intended position.

The op amp buffer should be operated with the internal feedback resistor. If possible, fullscale amplitude adjustments should be made to V_{REF} . This way, tolerances and thermal drift in external resistors do not contribute to the gain error.

14.5.1.3 Differential Nonlinearity Error

When the increase in output voltage (ΔV) is not the same for every combination of bits, the converter has a differential nonlinearity error (DNL). If the DNL exceeds 1 LSB, the converter is nonmonotonic. This can cause a problem for some servo control loops. A nonmonotonic D/A would appear in Figure 14–9 as a momentary dip in the analog output characteristic.

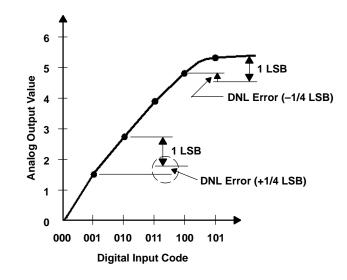


Figure 14–9. Differential Nonlinearity Error

14.5.1.4 Integral Nonlinearity Error

The integral nonlinearity error is similar to the differential nonlinearity error, except it is a first-order effect that stretches across the entire range from 0 to full scale output voltage (Figure 14–10).

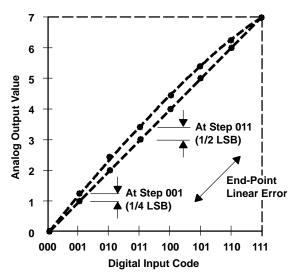


Figure 14–10. Integral Nonlinearity Error

Both the INL and DNL errors affect ac applications as distortion and spectral harmonics (spurs). In dc applications, they will result in an error in the dc output voltage. The mechanical steps of a positioning table, for instance, may not be exact increments.

14.5.1.5 Power Supply Rejection Ratio

The power supply rejection ratio is sometimes called the *power supply sensitivity*. It is the ability of the converter to reject ripple and noise on its power inputs. DC applications may not be adversely affected. Poor power supply rejection can cause spurs and harmonic distortion in ac applications, as external frequency components leak into the output and modulate with it. The designer must decouple the D/A and buffer op amp carefully to combat these problems.

14.5.2 AC Application Errors and Parameters

The following paragraphs describe D/A ac errors and parameters.

14.5.2.1 THD+N

There will always be some noise that is generated internally in the converter and buffer amp. A useful specification for audio and communication system designers is the THD+N (total harmonic distortion plus noise). The distortion plus noise (THD+N) is the ratio of the sum of the harmonic distortion and noise to the rms power of the input signal. As was the case with op amp parameters (Chapter 11), the noise sources add according to the rootmean-square law. The distortion and noise are measured separately and then added together to form the ratio. The noise voltage relates to the measured bandwidth.

14.5.2.2 SINAD

The signal-to-noise and distortion (SINAD) is the ratio of the input signal to the sum of the harmonic distortion and noise. The distortion and noise are measured separately and than added together to form the ratio. The SINAD is the reciprocal to the THD+N. The SI-NAD and THD+N are a good indication of the overall dynamic performance of the ADC, because all components of noise and distortion are included.

14.5.2.3 ENOB

The SINAD is used to determine the *effective number of bits* (ENOB) of accuracy the converter displays at that frequency. For example, a nominal 8-bit resolution D/A may be specified as having 45-dB SNR at a particular input frequency. The number of effective bits is defined as

ENOB =
$$\frac{\text{SNR}_{\text{REAL}} - 1.76}{6.02}$$
 = 7.2 bits (14-4)

The actual performance of the device is therefore less than its nominal resolution at this frequency.

14.5.2.4 Spurious Free Dynamic Range

Spurious free dynamic range is the difference in dB between the maximum signal component and the largest distortion component (Figure 114–11):

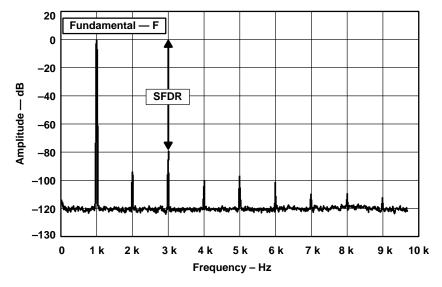


Figure 14–11. Spurious Free Dynamic Range

It is an important specification in RF applications, where FCC regulations specify the magnitude of spurs.

Improper decoupling may cause spurs. A notch filter can be used to eliminate a spur, but many RF applications are RF agile — changing the frequency of the spur as well. The notch must catch all spur frequencies, or it is useless.

14.5.2.5 Intermodulation Distortion

The differential and integral nonlinearity errors described previously appear in a high-frequency ac application as intermodulation distortion (Figure 14–12).

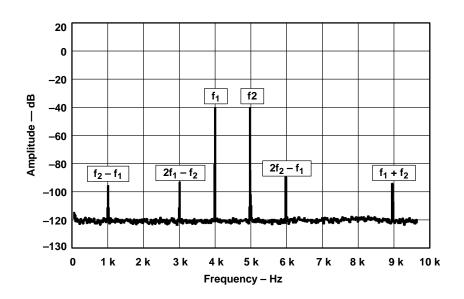
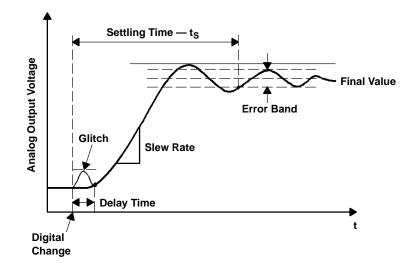
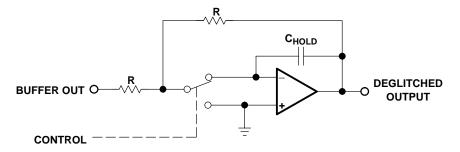



Figure 14–12. Intermodulation Distortion

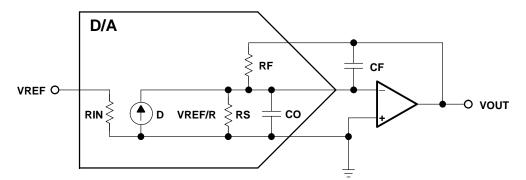
The best method of combating intermodulation distortion is to make the buffer amplifier system as linear as possible (beware of rail-to-rail op amps that may not be linear near the voltage rails). Try to limit current through the internal feedback resistor in the DAC. See Paragraph 14.7.1 on increasing the voltage rail for suggestions about reducing internal feedback resistor power dissipation.

14.5.2.6 Settling Time


The settling time of a D/A converter is the time between the switching of the digital inputs of the converter and the time when the output reaches its final value and remains within a specified error band (Figure 14–13). Settling time is the reciprocal of the maximum D/A conversion rate.

When an output buffer op amp is used with a D/A, it becomes a part of the settling time/ conversion rate calculations.

Related to the settling time is a glitch response that occurs when the digital code changes state. Even though this effect is transitory in nature, it can result in noise or harmonics when used in fast AC applications. The best way of reducing the glitch is to properly decouple the D/A and op amp buffer (see Chapter 17). In extreme cases, a deglitching circuit may be needed (Figure 14–14).



This technique relies on the software designer to balance the timing of the control signal so it activates the hold function right before the D/A input code changes, then releases the hold right after the code has changed. The selection of C_{HOLD} is critical — it must hold the buffer output without droop and without compromising system bandwidth.

14.6 Compensating For DAC Capacitance

D/A converters are constructed of either bipolar or CMOS technology, with CMOS being the more common. CMOS transistors, however, have a lot of capacitance. This capacitance will add in D/A converters, depending on the number of resistors switched on or off. Capacitance at an inverting op amp input is a good way to cause it to oscillate, especially since some buffer amplifiers will be operated at less than unity gain. The converter capacitance C_O must be compensated for externally (Figure 14–15).

Figure 14–15. Compensating for CMOS DAC Output Capacitance

The normal technique for compensating the buffer amplifier for output capacitance is to add a feedback capacitor C_F . C_F is calculated by the following:

$$C_{F} = 2 \times \sqrt{\frac{C_{O}}{2\pi R_{F}} \times \frac{1}{G_{BW}}}$$
(14–5)

Where:

 $\begin{array}{lll} C_{O} & \mbox{the output capacitance from the D/A data sheet} \\ R_{F} & \mbox{the feedback resistance from the D/A data sheet} \\ G_{BW} & \mbox{the small signal unity gain bandwidth product of the output amplifier} \end{array}$

Unfortunately, the feedback capacitors C_F and the internal D/A capacitance C_O will both limit the conversion speed of the D/A. If faster conversion is needed, a D/A with a lower output capacitance, and therefore a lower feedback compensation capacitor will be needed. The overall settling time with the external capacitance is:

$$\Gamma_{\rm S} \approx \sqrt{\frac{\mathsf{R}_{\rm F}\left(\mathsf{C}_{\rm O} + \mathsf{C}_{\rm F}\right)}{2\mathsf{G}_{\rm BW}}} \tag{14-6}$$

Where:

C_O the D/A internal capacitance

R_F the feedback resistor

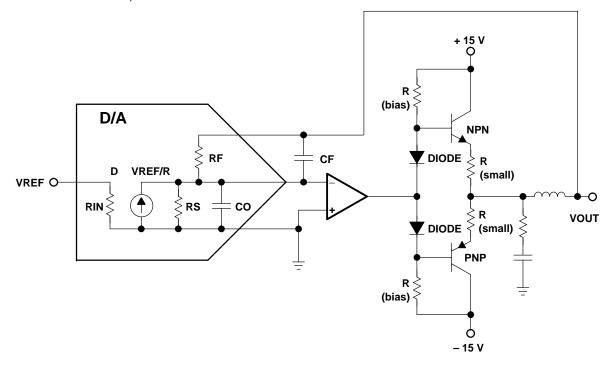
C_F the compensation capacitance

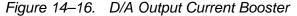
G_{BW} the small signal unity gain bandwidth product of the output amplifier

14.7 Increasing Op Amp Buffer Amplifier Current and Voltage

Process limitations of op amps limit the power that can be dissipated at the output. Unfortunately, there are applications that will require the DAC to interface to loads that dissipate considerable power. These include actuators, position solenoids, stepper motors, loudspeakers, vibration tables, positioning tables — the possibilities are endless.

While several "power op amps" are available that can drive heavy loads, they usually compromise several other specifications to achieve the high power operation. Input voltage offset, input current, and input capacitance can be decades higher than the designer is accustomed to, and make these power op amps unsuitable for direct interface with a DAC as a replacement for the buffer op amp.


The power booster stage can be designed discretely, or a prepackaged amplifier of some sort, depending on what is needed for the application. Sometimes high current is required for driving loads such as actuators and stepper motors. Audio applications can require a lot of wattage to drive loudspeakers. This implies a higher voltage rail than op amps commonly operate at. This and other high voltage applications can operate off of, and generate lethal voltages. The designer needs to be extremely careful not to create an unsafe product, or be electrocuted while developing it.


The power stage is most often included in the feedback loop of the op amp circuit, so that the closed loop can compensate for power stage errors. This is not always possible if the voltage swing of the output exceeds that of the op amp voltage rails. In these cases, a voltage divided version of the output should be used.

There are three broad categories of booster, the current booster, the voltage booster, and boosters that do both. All of them work on the same principle: anything that is put inside the feedback loop of the op amp will be compensated for — the output voltage will swing to whatever voltage it needs to make the voltage at the buffer op amp inputs equal.

14.7.1 Current Boosters

These usually use some variation of the class-B push-pull amplifier topology (Figure 14–16).

The circuit in Figure 14–16 has been employed for decades — many resources are available that can be used to design exact component values. It boosts current because the output impedance of the op amp has been bypassed, and used as the driver for the base of the NPN and PNP power transistors. The two diodes compensate for the VBE drop in the transistors, whose bases are biased by two resistors off of the supplies. The output of the booster stage is fed back to the feedback resistor in the D/A to complete the feedback loop. The output impedance of the stage is only limited by the characteristics of the output transistors and small emitter resistors. Modern power transistors have such high frequency response that this circuit may oscillate. The RC snubber network and a small inductor in series with the load can be used to damp the oscillation — or be omitted if oscillation is not a problem. Beware of varying transistor betas, however.

14.7.2 Voltage Boosters

If even more current is needed, or the output voltage swing must be more than ± 15 V, the booster stage can be operated at voltages higher than the buffer amplifier potentials. A designer might be tempted to try the circuit of Figure 14–17.

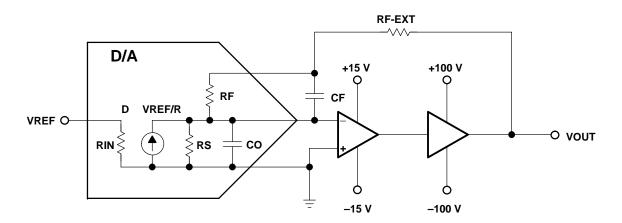


Figure 14–17. Incorrect Method of Increasing Voltage Swing of D/A Converters

Any time there are higher voltage rails on the output section, there are potential hazards. The circuit above illustrates a common misapplication.

- The whole reason for using the booster amp is to allow the V_{OUT} to swing to a ±100-V rail. If this circuit was operated in the unity gain mode (external R_F = 0), the VOUT will only swing ±15 V, maximum. There would be no need for the ±100-V rail. That voltage rail is there to allow voltage gain.
- If the circuit is operated with a gain (external R larger than 0), the external R_F adds to the internal R_F to create the gain:

$$Gain = \frac{R_{F-EXT} + R_{F-INT}}{R_{S}}$$
(14–7)

The problem with this is that the wattage of the resistors increases as the external voltage rail increases. The designer has control over the wattage of the external R_F , but has no control whatsoever over internal R_F or R_S . Because these resistors are fabricated on the IC, their wattage is limited. Even if the wattage rating of the internal resistors is meticulously observed, they may have undesirable thermal coefficients if allowed to dissipate that wattage. Resistor self-heating will change the resistance according to its rated temperature coefficient (maximum). The external resistor is sure to have a different thermal coefficient from the internal resistors, causing a gain error. The designer may never have encountered the effects of resistor self-heating before, because through-hole and surfacemount devices have enough bulk to minimize the effect of self-heating. At the geometries present on IC D/As, resistor self-heating is a much more pronounced effect. It will produce a nonlinearity error in the D/A output.

This effect is most pronounced in high-resolution converters, where the geometry is the smallest. The designer, therefore, must limit the current in the feedback resistor if at all possible. Figure 14–18 shows a method of achieving gain control while keeping the high current path out of the internal feedback resistor:

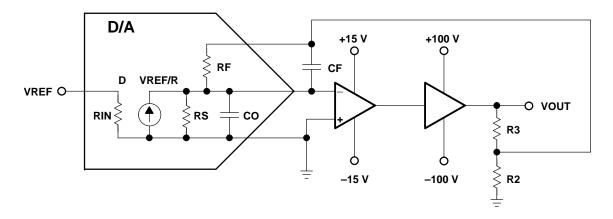


Figure 14–18. Correct Method of Increasing Voltage Range

In Figure 14–18:

- R3 and R2 are selected to ensure that the feedback voltage to the D/A internal R_F can never exceed the D/A rated limits.
- R3 and R2, of course, have to be the correct power rating. R2, in particular, has to be carefully selected. If it burns out, the feedback loop will present hazardous voltages to the D/A. R3, which drops the bulk of the voltage, will have to dissipate considerable wattage.

If the combination of voltage swing and power ratings cannot be balanced to achieve a working design, the only choice left to the designer will be to break the feedback loop and live with the loss of accuracy. For ac applications, this may be acceptable.

14.7.3 Power Boosters

The two types of boosters above can, of course, be combined to produce more power. In audio applications, for example, a \pm 15-V power supply limits the output power to 112.5 W, absolute maximum, into an 8- Ω load. In order to increase the power, the voltage rails must also be increased, with all of the cautions of the previous paragraph observed.

14.7.4 Single-Supply Operation and DC Offsets

A D/A power circuit is not the right place to try to apply single-supply design techniques. In audio applications, a single-supply design would force a large coupling capacitor, which would distort and limit low frequency response. In dc applications, a dc offset will continually drive a load — which will have to dissipate the excess voltage through its internal resistance as heat.

Nevertheless, there may be applications that require a dc offset. The designer is fortunate in that there is already a precision reference available in the circuit. The reference drives the resistor network in the D/A, and may be external or internal to it. In most cases, an internal reference is brought out to a pin on the device. It is important for the designer not to excessively load the reference, as that would directly affect D/A accuracy (Figure 14–19).

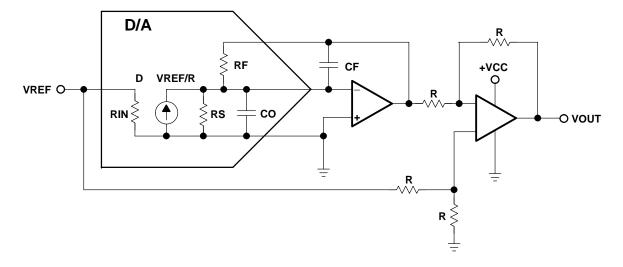


Figure 14–19. Single-Supply DAC Operation

In the circuit in Figure 14–19, the output of the buffer amplifier is shifted up in dc level by ¹/₂ VREF (not ¹/₂ VCC). VREF was selected because it is much more stable and accurate than VCC. The four resistors in the level shifter circuit must be highly accurate and matched, or this circuit will contribute to gain and offset errors. Thermal errors, however, cannot be compensated for, because the external resistors are probably going to have a different thermal drift than those on the IC. This technique is limited to applications that will see only a small change in ambient temperature.