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Ask The Applications Engineer—15
by Oli Josefsson

USING SIGMA-DELTA CONVERTERS—PART 1
Q: I’d like to use sigma-delta A/Ds but have some questions because

they seem markedly different from what I’ve been using. To start
with, what issues do I need to consider when designing my
antialiasing filter?

A: A major benefit of oversampling converters is that the filtering
required to prevent aliases can be quite simple. To understand
why this is the case and what the filter constraints are, let’s
look at the basic digital signal processing that takes place in
such a converter. For the purpose of anti-alias filter design we
can think of a sigma-delta converter as a conventional high-
resolution converter, sampling at a rate much faster than the
Nyquist sampling rate, followed by a digital decimator/filter;
the fact that the input into the digital decimator is 1-bit serial
with a noise-shaping transfer function is irrelevant.

The input signal is sampled at Fms, the modulator input
sampling rate, which is much faster than twice the maximum
input signal frequency (the Nyquist rate). The figure shows
what the frequency response of a decimation filter may look
like; frequency components between fb and Fms–fb are greatly
attenuated. Thus, the digital filter can be used to filter out all
energy from the converter within [0, Fms–fb] that does not fall
within the bandwidth of interest [0, fb]. However, the converter
can not distinguish between signals appearing at the input that
are in the range [0,± fb] and those in the ranges, [kFms± fb], where
k is an integer. Any signals (or noise) in those ranges get aliased
down to the bandwidth of interest [0,fb] via the sampling
process; the decimation filter, which works only on the digitized
samples, cannot be of any help attenuating these signals.

Q: How do I make sure that a one-pole RC filter will suffice for my
application—and establish the time constant of the filter?

A: Your application will typically specify a maximum allowable
attenuation of an input signal that falls within the bandwidth
of interest. This in turn puts a minimum on the 3-dB point of
the RC filter. Let’s take a look at an example using the ADl877
to illustrate this point further and to show how one might verify
that a single-pole filter will provide enough filtering.

Let’s assume that we have an application where the bandwidth
of interest is 0 to 20 kHz, and signals in this range must
not be attenuated more than 0.1 dB, or a ratio of 0.9886
[dB = 20 log10 (ratio) for voltage and 10 log10 (ratio) for power].
From the formula for attenuation of a single-pole filter,

    

ratio =
1

1+ 2π fRC( )2
> 0.99 at f = 20 kHz

RC ≤
1− ratio( )2

2π f( )2
ratio( )2

≈1.21×10–6 s

Choosing RC = 1.0 µs, to allow for component tolerances, the
–3-dB frequency will be 159 kHz. We can now calculate the
attenuation the filter will provide in the frequency bands,
kFms± fb, that alias down to the baseband. Assuming that the
AD1877 has a modulator sampling rate of 3.072 MHz (and
output sampling rate of 48 kHz), the first frequency band
occurs at 3.052 MHz to 3.092 MHz. The attenuation of
the RC filter at these frequencies is approximately 25.7 dB
(about 0.052) over the whole band. Over the second band
(6.124 MHz to 6.164 MHz), the attenuation is 31.8 dB
(0.026). We know that the noise in these two bands (and all
higher bands up the scale) that escapes through the filter to
the A/D input will be aliased down to the baseband and get
added as root sum-of-the-squares (rss) of their rms values,

i.e., 
    n1

2 + n2
2 + . . . + ni

2 . For values given in dB, the formulas

shown the Appendix can provide results directly in dB, avoiding
the intermediate step of computing the ratios.

For white noise, the noise spectral density is constant as a
function of frequency, and each frequency range has the same
bandwidth, so each band contributes an equal amount of noise
to the input of the filter. We can therefore find the effective
attenuation of the RC filter by adding the attenuation of the
different frequency bands in rss fashion. The noise contribution
from the first two bands, for example, is the same as the
contribution from a single frequency band with attenuation of

  0.0522 + 0.0262  = 0.058, or 24.7 dB, compared with

25.7 dB for the first band. How many bands do we need to
consider when calculating the total aliased noise? For this case,
the rss sums of the first 3, 4, 5, and 6 bands are, respectively,
–24.2, –24.0, –23.9, –23.8 dB. The first band is therefore quite
dominant; its attenuation is within 2 dB of the attenuation for
all bands. It is usually sufficient to take only the first band into
account unless the noise is exceptionally large or has a
non-white spectrum; in addition, the A/D itself, though fast,
has limited bandwidth; it tends to reject high-order bands.
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Thus it is the input noise energy in these bands [kFms± fb] that
must be removed by the antialiasing filter before the input signal
is sampled by the converter.

Q: So if I were to use the AD1877, which has a dynamic range of
90 dB, the antialiasing filter will need attenuation well above 90 dB
at Fms – fb (≈ 3 MHz)?

A: Not quite. You are assuming that the A/D has full-scale input
at frequencies close to the modulator sampling rate; this is
simply not the case in most systems. The only signal input of
concern for aliasing is normally just noise from sensors and
circuitry preceding the converter. The noise is usually low
enough for a simple RC filter to suffice as an antialias filter.
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Now that the attenuation is in hand, we can consider the noise
magnitude itself: Let’s be conservative (by about 50%) and
take the effective filter attenuation to be 20 dB (i.e., 0.1 V/V).
To be able to calculate the maximum allowed noise spectral
density when using a single pole filter, an estimate should be
made of the maximum performance degradation that aliased
noise can contribute. From the dynamic specs of the AD1877
we find that the total noise power internal to the converter is
90 dB below (32 ppm of) full-scale input. If the whole system
is to be within, say, 0.5 dB of this spec, the total aliased noise
power can’t exceed the rss difference between –90 dB and
–89.5 dB or –99.1 dB (11.1 × 10–6). Using this information,
and the fact that the input scale of the AD1877 is 3 V p-p, we
find that aliased noise must not exceed 3/(2√2) V × 11.1 × 10–6

= 11.8 µV rms. If all this noise were assumed lumped in a single
aliased band, and noting that rms noise = noise spectral density
(N.S.D.) × √BW,

    

N.S.D. <
11.8 µ V

3.092 MHz– 3.052 MHz
= 59 nV/ Hz

This is the maximum post-filter spectral density allowed. To
find the maximum prefilter spectral density (MPSD), with the
effective filter attenuation of 20 dB (i.e., × 0.1) established
previously, M.P.S.D. = 10 × 59 nV/√Hz = 0.59 µV/√Hz.

Clearly your system has to be pretty noisy in the 3-6-9-12-MHz
regions in order for a simple RC filter not to suffice; however,
as always, one must be careful of ambient rf pickup.

Q: As I understand it, the noise floor of sigma-delta converters may
exhibit some irregularities. Any thoughts on that?

A: Most sigma-delta converters exhibit some spikes in the noise
floor, called idle tones. In general, these spikes have low energy,
not enough to substantially affect the S/N of the converter.
Despite that, however, many applications cannot tolerate spikes
in the frequency spectrum that extend much beyond the white
noise floor. In audio applications, the human ear, for example,
does an excellent job of detecting tones in the absence of large
input signals even though the tones are well below the
integrated (0-20-kHz) noise of the system.

There are two sources of idle tones. Their most common cause
is voltage-reference modulation. To understand this mechanism
a basic understanding of sigma-delta converters is needed. Here
is a one minute crash course on sigma-delta converters (to
probe further please consult[1]).

As the block diagram shows, a basic sigma-delta A/D converter
consists of an oversampling modulator, followed by a digital
filter and a decimator. The modulator output swings between
two states (high and low, or 0 and 1, or +1 and –1), and the
average output is proportional to the magnitude of the input
signal. Since the modulator output always swings full-scale
(1 bit), it will have large quantization errors. The modulator,
however, is constructed so as to confine most of the
quantization noise to the portion of the spectrum beyond fb,
the bandwidth of interest.

As shown, the spectral “sticks” (single frequencies) at fi and
Fms – fi correspond to an input signal, while the shaded area
shows how the quantization noise has been pushed (shaped)
beyond the bandwidth of interest, fb.

The digital filter, which is often an n-tap FIR filter, takes the
high-speed low-resolution (1-bit) modulator output and
performs a weighted average of n modulator outputs in a
manner dictated by the desired filter characteristics. The output
of the filter is a high-resolution word, which becomes the A/D
output. The digital filter is designed to filter out “everything”
between fb and Fms–fb, where Fms is the sampling rate of the
modulator. Cleaning out all the noise in between fb and Fms–fb
makes it possible to reduce the sampling rate to values between
Fms and 2fb without causing any spectra to overlap (i.e., aliasing).

Conceptually, reducing the sample rate, i.e., decimation, can
be thought of as only sending every dth digital filter output to
the A/D output, where d is the decimation factor. This will
bring the spectral images close together, as shown in the figure,
which makes the output look like an output from a non
oversampled converter. The upper figure shows the output of
the modulator after digital filtering but prior to decimation.
The lower figure shows the spectral output after decimation—
the final A/D output.

In real converters, digital filtering and decimation are intimately
combined for economy in design and manufacture. Thus, the
terms “digital filter” and “decimator” are used interchangeably
to describe the digital circuitry processing the modulator output
to produce the output of the converter.
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O.K., now back to “idle tones”. Let’s start by looking at the
output of the modulator when a dc signal is applied to the input.
For an exact mid-scale dc input level, the output of the mod-
ulator is equally likely to be high (1) or low (0), in other words,
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the pulse density is 0.5, very likely to result in bitstream patterns
like 010101. These regular patterns mean that the output spec-
trum will have a spike at Fms/2 (upper figure). If the dc input
now moves somewhat off midscale, the modulator output bit
pattern will change accordingly. The spectrum of the modulator
output will now show spikes at Fms/2– ∂F and Fms/2 + ∂F, with
∂F proportional to the dc change from midscale (lower figure).

Q: So what can I do to minimize the chances of idle tones interfering
with my A/D conversion?

A: Follow the layout recommendations and bypassing schemes
recommended by the manufacturer of the converter. This
applies not only to the voltage reference, but to power supplies
and grounding as well. It is the manufacturer’s responsibility
to minimize the voltage-reference corruption that takes place
inside the converter, but it is up to the system designer to
minimize the external coupling. By following those guidelines,
the user should be able to reduce the coupling to a negligible
level. If, despite the proper design precautions, idle tones are
still an issue, there is yet another option that can be pursued.
As I explained previously, frequency of the idle tones is a
function of the dc input.  This opens up the possibility of
introducing enough dc offset on the A/D input to move the
idle tones out of the bandwidth of interest to where they will
be filtered out by the decimation filter. If the user does not
want the dc offset to propagate through the system it can be
subtracted out by the processor that handles the data from the
A/D.

Q: What kind of a load does the input of sigma-delta converters present
to my signal conditioning circuitry?

A: It depends on the converter. Some sigma-delta converters have
a buffer at the input, in which case the input impedance is very
high and loading is negligible. But in many cases the input is
connected directly to the modulator of the converter. A
switched-capacitor sigma-delta modulator will have a simplified
equivalent circuit like that shown in the figure.
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With effective digital filtering, how can such tones possibly
find their way down to baseband? The answer is via the voltage
reference. The digital output is a measure of the ratio of the
analog input to the voltage reference. An x% change in the
magnitude of the voltage reference will result in a –x% change
in the magnitude of the digital output word. Voltage-reference
change will, in effect, amplitude modulate the A/D output. Now,
we have clocks internal to the converter, and possibly also
externally, running at Fms/2. If small amounts of these clock
pulses get coupled onto the voltage reference line, they will
change it slightly and, in effect, modulate the tones at Fms/2 – ∂F
and Fms/2 + ∂F. One of the difference frequencies created by this
modulation is at ∂F, and it is clearly in the bandwidth of interest.
Nonlinearities may also create tones at multiples of ∂F.

Q: From your explanation it seems that if I apply an ac signal to the
converter I do not have to worry about idle tones?

A: Well, any ac signal generally has a dc component associated
with it, which will have to be represented by the modulator
output, so the explanation above still applies. But if the total
dc input offset (i.e., internal converter offset plus external
offsets) in your system is exactly 0, the tones will be at dc (0 Hz).

There is another source of idle tones in lower-order (<3rd-
order) modulators. The order of the modulator (number of
integrations) is a measure of how much quantization-noise
shaping takes place. Second-order modulators can actually
exhibit bit patterns that show up directly in the baseband, even
if voltage-reference modulation is not occurring. This is one of
the reasons why sigma-delta converters from Analog Devices
that are designed for ac applications use higher-order (≥3)
sigma-delta modulators.
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Switches S1 and S2 are controlled by the two phases of a clock
to produce alternating closures. While S1 is closed, the input
capacitor samples the input voltage. When S1 is opened, S2 is
closed and the charge on C is dumped into the integrator,
thus discharging the capacitor. The input impedance can be
computed by calculating the average charge that gets drawn
by C from the external circuitry. It can be shown that if C is
allowed to fully charge up to the input voltage before S1 is
opened then the average current into the input is the same as
if there were a resistor of 1/(FswC) ohms connected between
the input and ground, where Fsw is the rate at which the input
capacitor is sampling the input voltage. Fsw is directly
proportional to the frequency of the clock applied to the
converter. This means that the input impedance is inversely
proportional to the converter output sample rate.

Sometimes other factors, such as gain, can influence the input
impedance. This is the case for the 16/24-bit AD771x family
of signal conditioning A/Ds. The inputs of these converters
can be programmed for gains of 1 to 128 V/V. The gain is
adjusted using a patented technique that effectively increases
Fsw (but keeps the converter output sample rate constant) and
combines the charges from multiple samples. The input
impedance of these converters is, for example, 2.3 MΩ when
the device’s external clock is 10 MHz and the input gain is 1.
With input gain of 8, the input impedance is reduced to 288 kΩ.

S1 S2

C
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For converters that have a differential input, a differential
version of this circuit may be used, as shown in the figure below.
Since one input is positive with respect to ground while the
other is negative, one input (the negative one) needs to be
supplied negative charge while the other needs to get rid of
negative charge when the input capacitors are switched on line.
Connecting a capacitor between the two inputs enables most
of the charge that is needed by one input to be effectively
supplied by the other input. This minimizes undesirable charge
transfers to and from the analog ground.

VIN

∑∆ ADC
AMPLIFIER

To be continued. Topics to be covered in the next installment include
multiplexing, clock signals, noise, dither, averaging, spec clarifications

APPENDIX

RSS addition of logarithmic quantities: The root-sum square

of two rms signals, S1 and S2, has an rms value of 
    S1

2 + S2
2
.

One often needs to calculate the rss sum of two numbers that are
expressed in dB relative a given reference. To do this one has to
take the antilogs, perform the rss addition, then convert the result
back to dB. These three operations can be combined into one
convenient formula: If D1 and D2 are ratios expressed in dB
[negative or positive] their sum, expressed in dB, is

  10 log10 10D1/10 + 10D2/10

Similarly, to find the difference between two rms quantities,

  x = S2
2 – S1

2

the result, x, expressed in dB, is

  10 log10 10D2/10 – 10D1/10
b

References (not available from Analog Devices):
1Oversampling Delta-Sigma Data Converters—Theory, Design, and
Simulation, edited by J.C. Candy and G.C. Temes, IEEE Press,
Piscataway, NJ, 1991.

2J. Vanderkooy and S.P. Lipshitz, “Resolution Below the Least
Significant Bit in Digital Systems with Dither,” J. Audio Eng.
Soc., vol. 32, pp. 106-113 (1984 Mar.); correction ibid., p.889
(1984 Nov.).

3A.H. Bowker and G.J. Lieberman, Engineering Statistics, Prentice
Hall, Englewood Cliffs, NJ, 1972.
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These impedances, as noted earlier, represent the average
current flow into or out of the converters. However, they are
not the impedances to consider when determining the
maximum allowable output impedance of the A/D driver
circuitry. Instead, one needs to consider the charging time of
the capacitor, C, when S1 is closed. For dc applications the
driver circuit impedance has only to be low enough so that the
capacitor, C, will be charged to a value within the required
accuracy before S1 is opened. The impedance will be a function
of how long S1 is closed (proportional to the sampling rate),
the capacitance, C and CEXT in parallel with the input (unless
CEXT >> C). The table shows allowable values of external series
resistance with fCLKIN = 10 MHz which will avoid gain error of
1 LSB of 20 bits—for various values of gain and external
capacitance on the AD7710.

Typical external series resistance which will not
introduce 20-bit gain error

    External Capacitance (pF)

Gain 0 50 100 100 500 5000

1 145 kΩ 34.5 kΩ 20.4 kΩ 5.2 kΩ 2.8 kΩ 700 Ω

2 70.5 kΩ 16.9 kΩ 10 kΩ 2.5 kΩ 1.4 kΩ 350 Ω

4 31.8 kΩ 8.0 kΩ 4.8 kΩ 1.2 kΩ 670 Ω 170 Ω

8-128 13.4 kΩ 3.6 kΩ 2.2 kΩ 550 Ω 300 Ω 80 Ω

For ac applications, such as audio, where the modulator sample
rate is around 3 MHz for 64× oversampling, the input capacitor
voltage may not have enough time to settle within the accuracy
indicated by the resolution of the converter before the capacitor
is switched to discharging. It actually turns out that as long as
the input capacitor charging follows the exponential curve of
RC circuits, only the gain accuracy suffers if the input capacitor
is switched away too early.

The requirement of exponential charging means that an op
amp can not drive the switched capacitor input directly. When
a capacitive load is switched onto the output of an op amp, the
amplitude will momentarily drop. The op amp will try to correct
the situation and in the process hits its slew rate limit (non
linear response), which can cause the output to ring excessively.
To remedy the situation, an RC filter with a short time constant
can be interposed between the amplifier and the A/D input as
shown in the figure. The (low) resistance isolates the amplifier
from the switched capacitor, and the capacitance between the
input and ground supplies or sinks most of the charge needed
to charge up the switched capacitor. This ensures that the op
amp will never see the transient nature of the load. This
additional filter can also provide antialiasing.
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Ask The Applications Engineer—16
by Oli Josefsson

USING SIGMA-DELTA CONVERTERS—PART 2

This is a continuation of a discussion of sigma-delta converters begun in
the last issue. We covered antialiasing requirements, idle tones, and loading
on the signal source.

Q:␣ What happens if my input signal is beyond the input range of the
sigma-delta converter? I remember hearing something about the
converter becoming unstable?

A:␣ The modulator can become temporarily unstable if it is driven
with inputs outside the recommended range. However, this
instability is invisible to the user, since decimators are generally
designed to simply clip the digital output and show either
negative or positive full scale, just as one would expect with a
conventional converter.

Q:␣ The specifications for sigma-delta converters assume a certain input
clock rate and therefore a specific sampling rate. Can I safely use
the converter with a higher or lower clock frequency?

A:␣ While the specs are measured at a particular sampling frequency,
we often specify a range of input clock frequencies that the
device can be operated with. This translates into a range of
possible sampling rates. If you plan to go much beyond that
range you can expect some performance degradation. If you
sample at higher rates than specified, the internal switched-
capacitor circuits may not be able to settle to the required
accuracy before a new clock edge comes along. With too slow
a sampling rate, capacitor leakage will degrade performance.

The digital filter characteristics of the converter (group delay,
cutoff frequency, etc.) scale with sampling rate; so too do the
input impedance (unless the input is buffered) and power
consumption.

Q:␣ I am planning to use a sigma-delta converter to digitize several signals
by using a multiplexer at the input of the converter. Is that a problem?

A:␣ While sigma-delta converters have a certain appeal due to their
ease of antialiasing, they do not lend themselves well to
applications for multiplexed ac signals. The reason for this is
that the output of a sigma-delta converter is a function not
only of the latest analog input but also of previous inputs. This
is mostly due to the memory that the digital filter has of previous
inputs, but the modulator has some memory as well. In a
multiplexing application, after switching from one input to
another, all information the filter has about the old input needs
to be flushed out before the converter output word represents
the new input.

Most decimation filters in sigma-delta converters intended for
ac applications are FIR filters, principally because of their linear
phase-response. For FIR filters, it is easy to calculate the time
it takes to rid the filter of any information about the old input.
The figure shows the structure of a FIR filter; the number of
clock cycles required to clock all old data points out (i.e., the
filter settling time) is equal to k, the number of taps in the
filter. While data corresponding to a new input is propagating
through the filter and replacing the earlier data, the output of
the filter is calculated from a combination of the old data and

the new data. The AD1879, for example, an 18-bit audio A/D
converter, has a 4096-tap FIR filter which, when running at
3.072␣ MHz, has a 1.33-ms settling time.

The effective sampling rate for sigma-delta converters in
multiplexed applications is quite low because of this need to
wait for the old signal to be flushed out before capturing a
valid data point for the new input. Traditional converters, which
convert directly, or in a small number of stages, are therefore a
much better choice in applications requiring the capture of
multiple ac channels.

For a multichannel dc application where time is available to
wait after switching between channels, or if the application
does not require frequent changes between channels, the use
of a sigma-delta converter can be very feasible. In fact, Analog
Devices offers 16-24-bit converters with multiplexers on the
input (AD771x family) specifically for such applications.

Q: Does this also explain why sigma-delta converters are not suitable
for some control applications?

A:␣ Yes. Since delays in control loops must be minimized for
stability, sigma-delta converters are not suitable for control
applications where they add a relatively long time delay.
However, the actual delay is predictable; in applications that
involve relatively slow signals, the converter phase delay, and
therefore the effect on pole and zero locations of the control
loop, may be negligible. However, even if this is the case, a
traditional non-oversampling converter may still be a much
better choice for the application, because a sigma-delta
converter would need to run at a much faster sampling rate
than a traditional converter in order to have the same phase
delay.  This will unnecessarily burden the circuitry that
processes the A/D data.

Q: Are there any other issues I should be aware of when using sigma-
delta converters?

A:␣ In addition to the general guidelines on grounding, power supply
bypassing, etc., that apply to all converters, there are a couple
of points worth remembering when designing with sigma-delta
converters. The first issue involves their input. As mentioned
earlier, some sigma-delta converters (such as the AD1877) have
buffers on the input; others (such as the AD1879), without a
buffer, present a switched-capacitor load, which needs periodic
current transients to charge the input capacitor. It is important
that the circuitry driving the converter be as close to the
converter as possible to minimize the inductance in the leads
between the external circuitry and the switched-capacitor node.
This reduces the settling time of the input and minimizes
radiation from the input to other parts of the circuit board.
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Another issue has to do with interference from clock signals
affecting the A/D conversion. As I noted earlier, the digital
decimation filter can’t provide any filtering of signals whose
frequencies are close to multiples of the modulator sampling
rate. To be precise, the passbands are [kFms ±  fb]s where k is an
integer, Fms is the modulator sampling rate, and fb is the
decimator cutoff frequency.

Besides the consequences for anti-aliasing discussed earlier,
the decimator cutoff frequencies have a bearing on the selection
of clock frequencies for devices that operate in the same system
as the converter. These frequency bands (i.e., the passbands)
embody the converter’s greatest vulnerability to interference
(inductive or capacitive coupling, power supply noise, etc.),
because any signals in these frequency bands that manage to
get into the modulator will not be subjected to attenuation in
the filter. Therefore one is wise to avoid using clock frequencies
that fall in these bands to minimize the possibility of interfering
with the conversion—unless they are synchronous with the
converter clock.

QUESTIONS ON NOISE IN CONVERTERS

Q:␣ I recently evaluated a dual-supply A/D converter; one of the tests I
did was to ground the input and look at the output codes on a LED
register. To my big surprise I got a range of output codes instead of a
single code output as I expected?

A:␣ The cause is circuit noise. When the dc input is at the transition
between two output codes, just a little circuit noise in even the
finest dc converters will ensure that two codes will appear at
the output. This is a fact of life in the converter world. In many
instances, as in your case, the internal noise may be large
enough to cause several output codes to appear. Consider, for
example, a converter with peak-to-peak noise of just over
2␣ LSB.  When the input of this converter is grounded, or a
clean dc source is connected to the input, we will always see
three—and sometimes even four—codes appear at the output.
The circuit noise prevents the voltage being sampled from being
confined to a voltage bin that corresponds to one digital code.
Any external noise on the A/D input (including a noisy signal),
on the power supplies, or on the control lines will add to the
internal circuit noise—and possibly result in more bits toggling.

Q: Is there a way to determine how many codes I can expect to appear
when I apply a dc signal to a converter?

A: It would not be hard in the ideal case where you knew the
noise distribution, the exact size of the codes where the dc
input is at and where within a code quantum the input lies (in
the center, on the edge of two codes, etc.). But in reality you
don’t have this information. However, knowing some of the ac
specifications (S/N, dynamic range, etc.) of the converter, you
can make an estimate. From these specs you can find the
magnitude of the rms converter noise relative to full scale. The
noise will in all likelihood have a Gaussian amplitude
distribution, so the standard deviation (sd) of the distribution
equals the rms value. This also means that the codes that appear
will not have equal probability of occurring. Using the fact
that 99.7% of a Gaussian distribution occurs within ± 3
standard deviations from the mean, we can estimate the peak-
to-peak noise voltage at six times the standard deviation.

If Nrms is the rms value of the converter noise and VLSB is the
size of the LSB in volts (=␣ Vspan/2b, where b is the number of
bits in the output word) the peak to peak noise in terms of
LSBs, NB, is

   NB = 
6 × Nrms

VLSB
 = 

6 × 2b × Nrms

Vspan

If the signal-to-noise ratio of a converter expresses noise power

relative to full scale, rms signal 
    
Vspan / (2 2)



 , we have

   NB = 3
2

× 2b × 10–SNR/20

How many codes show up at the output depends where the
mean of the input, i.e., the dc input value, is with respect to
code transitions. If the mean is close to the boundary between
two output codes, more codes are likely to appear than if the
mean is half way between two output codes. It can easily be
shown that NC, the number of codes appearing for a particular
value of NB, is either INT(NB)+1 or INT(NB)+2, depending
on the dc input value [INT(NB) is the integer portion of NB].
And don’t be surprised to see even more codes from the less-
probable noise amplitudes >±3␣ standard deviations.

How many bits will NC cause to toggle on the output? The
number of bits needed to represent NC codes is

  
INT

log NC

log 2  + 0.5

We can, however, see many more bits toggle, since the number
of bits toggling is a function of the actual value of the converter’s
dc input. Consider, for example, that a one-code transition
from an output word of –1 to 0 on a 2s-complement-coded
converter involves inverting all the output bits.

Lets look at an example using the AD1879, an 18-bit sigma-
delta converter with dynamic range of 103␣ dB. From the
definition of dynamic range we have

  103 = 20 log S
Nrms

From the AD1879 data sheet, we find that the rms value of a
full-scale input signal, S, is 6/√2 ␣ V rms. This allows us to solve
for Nrms which turns out to be 30␣ µV.  We next find the LSB
size by dividing the full input range by the number of possible
output codes:

   VLSB = 12
218 = 45.8 µV

Thus NB is 3.9. We can therefore expect either 4 or 5 different
codes to appear at the AD1879 output when the input is
grounded (ground corresponds to a midscale input for the
AD1879).
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One can take this estimation one step further: If the standard
deviation (the rms value) of a Gaussian distribution and the
mean (the mean of the noise is 0 in this case) are known, one
can use standard tables for the Gaussian distribution to
calculate what percent of the time the noise will fall into a
voltage interval corresponding to a specific output code. A
histogram can be estimated, showing the distribution of codes
at the output. Also the process can be reversed: a histogram
showing the distribution of noise codes at a given value of dc
output permits one to estimate the S/N ratio for a converter.

To make all this real, let’s continue our example involving the
AD1879. Consider two cases, one where the input lies midway
between two output codes and one when the input is on the
transition between two codes. From the calculations above,
we found that the standard deviation (sd) of the noise (the
rms value) was 30␣ µV. The size of one LSB in terms of sd is

  45.78 µV
30.0 µV  = 1.524

In the case where the dc input is midway between code
transitions, as shown below, it is clear that any noise that falls
within –0.5␣ LSBs to +0.5␣ LSBs from the input will result in
the correct code at the A/D output. This corresponds to the
noise being confined to a range of (–0.5␣ × ␣ 1.524)␣ sd to
(+0.5␣ × ␣ 1.524)␣ sd from its mean (0). From standard tables one
can find that the noise will fall in this range 55.4% of the time.
If the noise falls within 0.5␣ LSBs to 1.5␣ LSBs, the output will
be one code too high. Again from standard tables one can find
that this will occur 21.2% of the time. Continuing in this
manner one can calculate the whole histogram showing the
distribution of output codes.

actual applied dc input is slightly above the border between
the two codes, whereas the calculations assume it is exactly on
the border.

The biggest weakness of this estimating technique is the fact
that in conventional converters the code width (the amount
the dc input has to be increased to increase the digital output
by one bit) varies from code to code. This means that if the dc
input is in an area where codes are narrow, we can expect more
bits to be toggling than in an area where the codes are wide.
This method also assumes that the circuit noise within the
converter stays constant, whether the applied signal is ac or
dc. This is not exactly true in many cases.

The estimate will probably be more accurate when used with
sigma-delta converters (except for “dead bands”), because
neither of the two factors mentioned above is an issue in such
converters.

Q: Ah, now I understand why there are multiple codes at the output.
But why not discard the bits that toggle and only bring out the bits
that stay steady, since the others are really indeterminate? Isn’t that
the real resolution of the converter?

A: Many converters are designed for ac or dynamic applications
where THD (total harmonic distortion) and THD+N (total
harmonic distortion+noise) are the most important specs. The
design therefore focuses on minimizing harmonic distortion
for high- and low-level input signals, while keeping the noise
to acceptable levels. As it turns out, these requirements
somewhat contradict the requirements for a good dc converter,
which is optimized for precision conversion of slow moving
signals where harmonic distortion is not an issue. It is actually
desirable to have some noise (called dither) superimposed on
the input signal to minimize distortion at very low input signal
levels; dither can also be used to improve dc accuracy where
repeated measurements can be made.

To understand how this may be, let’s start by looking at
quantization noise. The output of an ideal A/D converter has
finite accuracy because of the finite number of bits available to
represent the input voltage. Each one of the 2b quanta
represents with one single value all values in the analog range
from –0.5␣ LSB to +0.5␣ LSB of its nominal input value. The
A/D output can therefore be thought of as a discrete version of
the analog input plus an error signal (quantization noise). When
a large and varying input signal (dozens, hundreds, or
thousands of LSBs in amplitude) is applied to a converter, the
quantization noise has very little correlation with the input
signal. It is, in other words, approximately white noise. The
figure shows the quantization noise of a perfect A/D converter
at various instants of time when the input signal is a sinusoid
of about 100␣ LSBs in amplitude.
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The upper figure shows an actual measurement where the dc
input happened to be –25␣ LSBs. Five output codes, ranging
from –27 to –23, appeared. 1024 measurements were taken
and the percentage distribution of each code is shown on top
of each column. The calculated distribution is listed in brackets
on top of each column. As can be seen, the experimental results
agree well with the calculated values. The lower figure  shows
a case where the dc input is close to the boundary between
two codes. By following a similar procedure, one can calculate
how the histogram should look. Again the experimental and
calculated values are in excellent agreement. Note that the
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When the A/D input is very low in amplitude, so that the
amplitude does not change more than a fraction of a LSB
between samples, the samples stay in the same quantum, and
are therefore constant for a few sample periods. This is depicted
in the figure below, which shows a sinusoidal input signal that
has an amplitude of only 1.5␣ LSBs, the A/D output and the
quantization noise. Note that the quantization error follows
the input waveform exactly while the samples are staying
constant. The longer the samples stay constant, the more the
quantization noise looks like the input waveform, i.e., the
correlation between the input signal and the quantization noise
increases. While the rms of the quantization error may not have
changed, the quantization error will take on a non-uniform
spectral shape. In fact, the correlated quantization noise shows
up as harmonics in the A/D spectrum.

signal is often about 1/3␣ LSB rms (2␣ LSBs peak-to-peak if the
noise is Gaussian). Clearly, this will result in a converter that
will have more than two codes at the output when the input is
grounded. We saw an example earlier involving the AD1879
which had either four or five codes appear on the output
depending on the dc input level.

The figure below shows the simulated output of an A/D
converter with an undithered low level input signal. The
quantization noise is a function of the input signal magnitude
at the sample instant. This correlation between the quantization
noise and the input signal shows up as a cluster of harmonically
related sticks in the A/D output spectrum. Note that the
magnitude scale in the figure is referenced to the input signal
(not full scale input).
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Another way to look at this phenomenon is to consider the
case when the (sinusoidal) input signal is only around 1␣ LSB
in size and the digital output resembles a square wave. Square
waves are rich in harmonics! The harmonics, or noise
modulation products, are very objectionable in many converter
applications, especially audio.

To get around this problem, a technique called dithering is
used to trade correlated quantization noise for white noise,
which is less offensive to the human ear than correlated noise.
Dithering is done by using circuit elements to add random
noise to the input signal. While this will result in an increase of
the total converter noise, the added noise breaks up the simple
square wave patterns in the output code. The quantization error
will not be a function of the input signal but of the instantaneous
value of the dither noise. Thus the dither decorrelates the
quantization noise and the input signal. The size of the dither
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The right-hand figure shows the A/D output after a dither signal
that is 4␣ dB above the quantization noise floor is added to the
input. In this case the quantization noise depends on the
magnitude of the dither signal at the instant when a sample is
taken. Since the value of the dither doesn’t depend on the input
signal, the quantization noise becomes uncorrelated to the input
and the harmonics in the A/D spectrum are eliminated, but at
the cost of an overall increase in the noise floor.

Instead of actually adding noise to the A/D input, dithering
can be accomplished by using the thermal noise of the converter
as the dither signal and calculating enough output bits to ensure
a decorrelated quantization noise.

Though I have used A/D converters in my examples, the idea
of using dither also applies to D/A converters as well. Dither is
applied to D/A converters by adding the output of a digital
noise generator to the digital word sent to the D/A.

Q: But in dc applications, I want to make an accurate measurement
each time and may not be able to tolerate the uncertainty of having
a few LSBs of error in a particular measurement.

A: If you need n-bit dc accuracy in each conversion and you have
problems finding a suitable n-bit converter, you have two
options. One is to use an (n+2)-bit converter and simply ignore
the two LSBs. However, if your hardware has the capability
(and time) to do some signal processing, you can enhance the
resolution of a noisy (dithered) dc converter and, in fact, get
more than n-bit accuracy out of an n-bit converter if the
accuracy is limited by noise.

To understand why this may be so, think of an ideal n-bit
converter. For a particular value of dc input, you will get one
digital code at the output. However, you do not know where
the input lies within the code quantum (i.e., in the middle,
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close to the upper transition, etc.). That may be sufficiently
accurate for your application, but if you add noise to the input
of the converter—so that several codes can appear at the
output—you will find that the code distribution contains
information to place the dc value of the input more exactly.

In the earlier examples involving the AD1879, we saw how the
code distribution looks when the input is in the vicinity of a
code transition; the two most-frequent output codes are the
ones on either side of the transition. Their average is therefore
a good estimate of where the input lies. In fact, taking the
average of a lot of conversions, while the input stays put, is an
excellent way of enhancing the resolution of the converter. One
has to be careful, when processing the converter output, to
allow the output word length to grow without introducing
roundoff errors. Otherwise one actually injects unwanted
noise—called requantization noise—into the final output. Note
that filtering out the noise is only just that; it will have no effect
on other error sources of the converter, such as integral and
differential nonlinearity.

This concept of resolution enhancement is an interesting one
and is not restricted to the dc domain. One can actually trade
resolution for bandwidth in the ac domain and combine the
outputs of several converters or to construct a more-accurate
output. The basic principle is that signal repetitions (which
are self-correlated) add linearly, while repetitions of random
noise produce root-square increases. Thus, a fourfold increase
in number of samples increases S/N by 6␣ dB.

Q:␣ You mentioned a couple of converter ac specifications above. I am
somewhat confused about how S/N, THD+N,THD, S/THD,
S/THD+N, and dynamic range are measured on A/D and D/A
converters and how they relate to each other. Can you shed any light
on this?

A:␣ Your confusion is quite understandable. There is unfortunately
no industry standard on exactly how these quantities are
measured and therefore, what exactly they mean. Sometimes
manufacturers are guilty of choosing the definition that portrays
their part favorably.

Most often data sheets include a note on the testing conditions
and how the different specs were calculated. The best advice I
can give is to read these very carefully. By simple calculations
you can often convert a specification for one part to a number
that allows a fair comparison to a specification for another part.

Most specifications are not expressed in absolute units, but as
relative measurements or ratios. Noise, for example, is not
specified in rms volts, but as SNR, or the ratio between signal
power and noise power under particular test conditions. These
ratios are usually expressed in decibels, dB, and occasionally
as percentages (%). A power ratio, x, expressed in bels, is
defined as log10x; multiply by 10 if expressed in decibels (one
tenth of a bel): 10␣ log10x. SNR is therefore equal to
10␣ log10␣ (signal power/noise power)␣ dB. Evaluated in terms of
rms voltage quantities, SNR ␣ =␣ 20␣ log10(Vsignal/Vnoise).

Armed with this knowledge, let’s see whether we can make
sense out of the multiple specifications you mentioned above
(many of which are redundant). Those specifications seek to
describe how the imperfections of the converter affect the
characteristics of an ac signal that gets processed by the
converter. For dc applications, a listing of the magnitude of

the actual imperfections suffices, but these can only suggest ac
performance. For example, integral nonlinearity is a major
factor in determining large-signal distortion (along with glitch
energy for D/As) while differential nonlinearity governs small-
signal distortion. To accurately determine the ac performance,
at least two types of tests are performed in the case of A/Ds.
The tests are as follows:

a) Full-scale sine
A sinusoidal signal approaching full-scale is applied to the
converter. The signal is large enough so that converter’s
imperfections cause significant harmonic components to occur
at multiples of the input signal frequency.  The harmonics will
show up in the output spectrum, along with noise. A common
performance measure is the relative magnitude of the harmonic
components, usually expressed in dB. Relative to what? Two
possibilities are the applied input signal and the full scale of
the converter (which in most cases is different from the applied
input signal). Referring the harmonics to full scale will clearly
yield a lower (more attractive) number than referring them to
the  rms value of the actual input signal. This reference issue
causes a lot of confusion when dynamic specifications are
evaluated, because there is no universally accepted standard
for what each performance measure should be referred to.  The
best advice I can give you is: never assume anything; read
manufacturers’ data sheets very carefully.

Sometimes the magnitudes of the individual harmonics are
specified, but most often only the total harmonic distortion
(THD) is specified. The THD measures the total power of the
harmonics and is found by adding the individual harmonics in
rss fashion. The formula then for THD when referred to the
input signal is

   
20 log10

H2(i)rmsΣ
i = 2

m

S or 10 log10

H2(i)rmsΣ
i = 2

m

S2

where H(i)rms refers to the rms value of ith harmonic component
and S to the rms value of the input signal. Usually, harmonics
2 through 5 are sufficient. Note that the input-frequency, or
fundamental, component is the first harmonic. To refer any
harmonic to full scale, add x␣ dB to the formula above, where x
is the magnitude of the input signal relative to full scale. This
simple conversion formula can be applied to  other
specifications, but take care to observe proper polarity of the
log quantities.

Nowadays, clear distinction is usually made between total
harmonic distortion plus noise (THD+N) and THD. This has
not always been the case. THD+N includes not only the
harmonics that are generated in the conversion, but also the
noise. The formula for THD+N when referred to the input
signal is:

   
20 log10

N 2
rms + H 2(i)rmsΣ

i = 2

m

S

or

   
10 log10

N 2
rms + H 2(i)rmsΣ

i = 2

m

S2
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where Nrms is the rms value of the integrated noise in the
bandwidth specified for the measurement.

Another commonly used specification is signal to noise-plus-
distortion (S/[N+D], or S/[THD+N]), also called sinad.
This is essentially the inverse of THD+N, when referred to the
signal; its dB number is the same, but with opposite polarity.

Another performance measure describing the test results is
the signal to noise ratio, S/N or SNR, which is a measure of
the relative noise power, most useful for estimating response
to small signals in the absence of harmonics. If S/N is not
specified, but THD and THD+N are provided, relative to the
input signal, THD can be rss-subtracted from THD+N to obtain
the noise to signal ratio [=␣ 1/(S/N]. If the numbers are given
in dB, the rss subtraction formula for logarithmic quantities in
the Appendix can be used as follows

  SNR = –10 log10 10 THD+N /10 – 10THD/10

to yield the input signal power relative to noise power expressed
in dB.

b) Low-level sine
The second test usually performed is to apply a sinusoidal signal
well below full scale to the converter (usually –60␣ dB). At this
input level, sigma-delta converters usually exhibit negligible
nonlinearities, so only noise (no harmonic components)
appears in the spectrum. At this level, S/N ␣ = ␣ S/N+D
= –THD+N ␣ =␣ –THD, when all are referred to the same level.
As a result, one specification indicating the noise level suffices
to describe the result of this test. This specification called
dynamic range (inversely, dynamic-range distortion), specifies
the magnitude of the integrated noise (and harmonics if they
exist) over a specific bandwidth relative to full scale, when a
–60-dB input signal is applied to the converter.

Conventional (i.e. not sigma-delta) converters can exhibit
harmonics in their output spectrum even with low-level input
signals because all the codes may not have equal width
(differential nonlinearity). In some such instances, the S/N,
which ignores harmonics, measured with a –60-dB input signal,
is different from dynamic range.

Frequently one sees THD+N at –60-dB and dynamic range
specified for the same converter. These really are, as explained
above, redundant since they only differ in the reference used.
The only twist on dynamic range is that sometimes, when audio
converters are specified, a filter that mimics the frequency
response of the human ear is applied to the converter output.
This processing of the converter output is called A-weighting
(because an A-weighting filter is used); it will effectively
decrease the noise floor, and therefore increase the signal-to-
noise ratio, if the noise is white.

Everything discussed above applies to both A/D and D/A
converters, with the possible exception of signal to noise ratio.
Sometimes (particularly for audio D/A converters) S/N is a
measure of how “quiet” the D/A output is when zero (midscale)
code is sent to the converter. Under these conditions, the S/N
expresses the analog noise power at the D/A output  relative to
full scale output.

Analog Dialogue 28-2 (1994)

It’s important to note that the performance measures above
are affected by: bandwidth of the measurement, the sampling
frequency, and the input signal frequency. For a fair comparison
of two converters, one has to make sure that these test
conditions are similar for both.

Image Filtering Question
Q: I intend to use Analog’s AD1800 family of audio D/A converters

for a digital audio playback application. I understand that using an
interpolator ahead of the D/A will make it easier to filter the
D/A output, assuming I want to get rid of all the images at the D/A
output. But is it really necessary to filter the output, since all the
images will be above the audible range as long as sampling is at
>40␣ kHz?

A: Good question. The audio equipment (audio amplifiers,
equalizers, power amplifiers, etc.) that may eventually receive
the output of your D/As are typically built to handle 20-Hz to
20-kHz signals. Since they are not intended to respond at
frequencies much beyond 20␣ kHz—and in effect themselves
function as filters—they may not have the necessary slew rate
and gain to handle incoming signals from an unfiltered D/A
output having significant energy well above 20␣ kHz. With their
slew-rate and gain limitations, the amplifiers are driven into
nonlinear regions, generating distortion. These distortion
products are not limited to high frequencies but can affect the
20-Hz to 20-kHz range as well.  Attenuating the high frequency
signals at the DAC will therefore reduce the possibility of
distortion. CD players often include filters steep enough to
reduce the total out-of-band energy to >80␣ dB below full scale.

APPENDIX
RSS addition of logarithmic quantities: The root-square sum

of two rms signals, S1 and S2, has an rms value of   S1
2+ S2

2 .

One often needs to calculate the rss sum of two numbers that are
expressed in dB relative a given reference. To do this one has to
take the antilogs, perform the rss addition, then convert the result
back to dB.  These three operations can be combined into one
convenient formula: If D1 and D2 are ratios expressed in dB, their
sum, expressed in dB, is

  10 log10 10D1/10 + 10D2/10

Similarly, to find the difference between two rms quantities,

  x = S2
2 – S1

2

the result, x, expressed in dB, is

  10 log10 10D2/10 – 10D1/10
b
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