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Abstract 

This paper describes the systematic design of E~ analog-to-digital 
converters (ADC) , from the top level of abstraction represented 
by the filters defining signal and noise transfer functions, passing 
through the architecture-Ievel, where topology-related performance 
is ca1culated and simulated, and finally down to circuit parameters. 
The systematic approach allows the evaluation of different loop fil­
ters and quantizer resolutions, mapped on single-Ioop or cascaded 
topologies with both discrete- and continuous-time loop filters. 

1. Spectral Noise Shaping 

Analog signals are continuous both in time and amplitude and their spectrum 
contains non-zero tones in a finite frequency band as an effect of their continu­
ity in amplitude. In Fig. 1 the input signal spectrum is placed around De (the 
void trapezoid) and extends to Ib in the positive spectrum. The analog-to-digital 
conversion requires the analog input signal to firstly be sampled by a sample­
and-hold (the block S / H) which transforms it into an analog, discrete-time sig­
nal, only changing its amplitude at periodic intervals Ts (set by the sampling 
frequency Is, Ts = 1/ls). Because sampling introduces instantaneous amplitude 

Figure 1: Noise shaping ADe 
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changes in the analog signal, the spectrum of the sampled signal has infinite band­
width, by replicating the input signal spectrum around the multiples of the sam­
pling frequency (shaded spectrum around Is). The sampled signal is quantized by 
the ADe, being quantized into a discrete-time, discrete-amplitude (digital) form. 
From a "spectral" point ofview, the quantization introduces quantization noise in 
the signal bandwidth which limits the conversion resolution (as the ratio between 
a reference level and the minimal signal that can be converted). To reduce the 
in-band noise power, the ADe operates faster than 2/b, as an oversampled ADe. 
In this case, the oversampling ratio (OSR) is a design parameter showing how 
many times is Is larger than the minimal value required by the Nyquist theorem 

OSR=~ 
2/b 

(1) 

With oversampling, only apart of the quantization noise power falls in the signal 
bandwidth. Furthermore, for large OSRs, the S / H block is not really required 
since the input signal changes little during one Ts period. Given enough OSR, 
the ADe resolution n can be eventually reduced to 1 bit, while attaining the final 
target resolution N (after the decimation filter). 

To reduce the required OSR needed for a conversion resolution N, keeping a 
constant number of ADe bits n, noise shaping is applied. This is accomplished 
by high-pass filtering the quantization noise to displace most of its power from 
low frequencies where the input signal spectrum is placed to higher frequencies 
close to Is/2, as shown in Fig. 1 by the bell-shaped shade centered on Is/2. 
The amount of quantization noise power stillleft inside the signal bandwidth Qn 
depends on the exact filtering applied in terms of filter order and cutoff frequency. 

One method to attain a high-pass noise filtering is to implement a sigma-delta 
(L:ß) loop around the quantizer, with a loop filter setting the noise shaping. L:ß 
ADes are well-studied and versatile architectures which only miss one important 
feature: a highly-accurate analytical model. 

2. Filter-Level Analysis 

2.1. Linear Model. Transfer Functions 

A generic discrete-time representation of a L:~ ADe, given in Fig. 2, is best used 
to explain the functioning of the L:ß ADe modeled as a linear system. The loop 
filter has two sections, a forward filter G(z) and a feedback filter H(z). The input 
signal X(z) is applied and compared with the signal fed back by H(z), filtered 
through G(z) and quantized to give the digital output. The quantization introduces 
an error E(Z) which is modeled as input-signal-independent and directly added 
to the output, in the quantizer (represented as a summation point). 
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Figure 2: Noise shaper 
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The two ~~ transfer functions are defined on the system above: the signal 
transfer function to characterize the transfer from X(z) to Y(z) and the noise 
transfer function for the partial contribution of E(z) in Y(z) 

Y(z) = STF(z)X(z) + NTF(z)E(z) (2) 

These functions can be independently defined because a linear model for the 
quantizer is assumed, thus making the whole system a linear one where super­
position rules apply. The definitions of the two transfer functions are based on 
the two sections of the loop filter: 

STF( ) - Y(z) _ G(z) 
z - X(z) - l+G(z)H(z) 

(3) 

NT F(z) = ~i;; = l+G(~)H(Z) 
The STF can be approximated with 1 (one) at frequencies where G(z) is large 

and H(z) is unity, while, at the same frequencies, NTF can be approximated with 
o (zero) [1]. Note that, if the filters are implemented using integrators, the fre­
quency band where G(z) is large is around DC (see Fig. 3). If resonators are used 
instead of integrators, the central frequency for the region of interest is shifted 
around the resonance frequency of the resonators. The latter approach allows 
for band pass converters to be designed. The feedback filter H(z) is usually not 
implernented separately, but as distributed feedbacks into the G(z) [3]. 

Typical shapes for NTF and STF are shown in Figure 3. The fullline repre­
sents the STF while the dashed line is a typical NTF for low-pass ~~ converters. 
The important parameters of the two curves are shown, for STF the DC value 
and in-band ripple and for NTF the 18/2 gain and out-of-band ripple. It is worth 
noting that the STF gain is dropping out of the band, rejecting high frequency sig­
nals. When STF is not weH controlled it can also show an overshoot just above 
signal band limit, which is tightening the rejection specification for the digital 
filter following the converter [1]. 

The steepness of the NTF curve inside the signal band is given by the order 
of the loop, which is the order of the numerator of the product G(z)H(z) (see 
Fig. 2) multiplied by 20dB/dec. The poles of this product give the zeros of NTF 
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while the zeros of the G(z)H(z) product affect the poles of NTF. Using resonators 
inside the G(z), the NTF zeros can be moved away from DC and spread inside the 
signal bandwidth in a manner which minimizes total quantization noise power. 
This noise power, scaled by the quantization noise spectral density, is represented 
on the graph in Fig. 3 as the shaded tri angle marked Pqnoise which gives the hard 
(theoretical) limit for the conversion resolution in the given band, for a given NTF 
and quantization noise total power. 
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Figure 3: NTF and STF amplitude characteristics for a low-pass ~ß ADe 

A large STF ripple is not convenient for most applications, which do not tol­
erate frequency-dependent in-band gain. For certain applications the STF phase 
is also important, as is the case with audio applications. The STF out-of-band 
attenuation can decrease the risk of input signal aliasing and relax the specifi­
cations for the digital decimating filter following the ADC, but is not a design 
goal when signal conditioning is available in front of the ADe. The out-of-band 
NTF magnitude influences the amount of quantization noise re-circulated on the 
loop [1]. A large magnitude around 1s/2 will put more noise at the input of the 
quantizer, thus reducing the maximum signal level which can still be processed. 
A high out-of-band NTF ripple makes the NTF shape more sensitive to process­
induced pole shifts, possibly tuming a stable design into a less-stable or even 
unstable implementation. 

2.2. Design of Loop Transfer Functions 

The NTF is the filter defining the resolution and other properties of a ~ß ADC, 
hence the design process always starts by defining this transfer function. Even 
if different filter families (Butterworth, Chebyshev or elliptic) can be used, an 
NTF filter has to be causal and scaled to yield an impulse-response starting with 
a unity output. Tbe causality is required for a filter mapped to physical systems 
and implies that there cannot be more zeros than poles in the NT F(z). The 
requirement of initial unity impulse-response sterns from the architecture of a ~ß 
ADC, as shown in the previous section, Fig. 2. There is no direct (zero-delay) 
feedback from the quantizer output to the quantizer input. All the feedback is 
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supplied through the loop filter G (z) H (z) which contains at least one delay in 
its forward path. 

The required scaling of the NTF filter introduces a relationship between its 
cutoff (-3dB) frequency and its magnitude at half the sampling frequency Is/2. 
An increased cutoff frequency induces a larger magnitude at Is/2, as shown in 
Fig. 4 for the NTF of a fourth-order ~~ ADC with Chebyshev poles. The 
fullline has the lowest cutoff frequency and the smallest magnitude in the same 
time. It is the least aggressive NTF in the set shown. The legend in the graph 
also shows simulated DR for the three curves designed into single-bit ~~ ADC 
architectures, and the least aggressive curve offers the lowest DR (66dB) from the 
three. This is caused by a larger in-band (DC to Signal BW limit) quantization 
noise power compared with the more aggressive members of the set. 
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Figure 4: Choice of NTF aggressiveness for a fourth order ~ß ADC 

2.3. Continuous-Time Loop Filters 

Starting from DT loop filters, continuous-time equivalents can also be built. A 
noise shaper having the loop filter implemented with CT circuits still remains a 
sampled system [7], as shown in Fig. 5. Its output Y (s) supplied by the quantizer 
only changes on the edge of a sampling dock signal with period Ts . Even with 
a passive DAC (a pair of resistors for example), the sampled nature of Y(s) 
produces a DAC output D( s) which is sampled with the same Ts . Assuming the 
input signal X (s) is largely oversampled, the ~~ ADC in Fig. 5 can be designed 
to be equivalent with the DT-based version in Fig. 2. Noting .c-1{.} the inverse 
Laplace transform for CT transfer functions and Z -1 { .} the inverse Z transform 
for DT transfer functions, a mapping is performed between the complete transfer 
functions NTF and STF. By designing the entire NTF(s) and STF(s) to show 
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V(a) 

Figure 5: Noise shaper with continuous-time loop filter 

identical impulse responses: 

Z-l{ NT F(z)} = L:-1{NT F(s)}lt=nTs 

Z-l{STF(z)} = L:-1{STF(s)}lt=nTs 

(4) 

the partial contributions of the input signal and of the quantization noise to the 
quantizer input are identical in the two designs. This opens good comparison 
possibilities between the functioning of the DT and CT equivalent loops because 
the poles and zeros of the entire transfer functions are matched. 

The direct mapping of NTF and STF assumes a constant DAC output during 
one dock cyde. However, return-to-zero (RTZ) DAC waveforms may be needed 
in high-DR CT designs. RTZ DACs switch from zero to nominal value during 
any dock period and, with such DAC waveforms, the design method has to be 
adapted to consider the Laplace transform of the DAC impulse response. 

2.3.1. Fundamental Performance Limitation Compared to DT Loops 

It has been mentioned before that a mapping of complete NTF and STF from 
realizable DT loop filters to CT equivalents opens the possibility to compare 
the performance of two equivalent implementations of virtually the same design. 
"Virtually" highlights the fact that an equivalence is only valid when the linear 
model holds in both cases, which is not true with large input signals. Therefore, 
it is important to analyze the performance of the two 2::.6. ADCs, with equiva­
lent DT and CT loop filters respectively, as independent designs and compare 
the results from time-domain simulations which account for the non-linear loop 
transfer. 

The range of usable NTF aggressiveness (as defined by the lower and upper 
limits of peak NTF magnitude yielding a stable NTF) has been found to vary 
with the order of the loop, the number of bits in the quantizer, as weIl as with 
the nature of the loop filter, DT or CT. This is proven in Fig. 6 for a set of 
fifth-order, single-Ioop modulators, with the number of quantizer bits ranging 
from 1 to 8. For any number of bits in the quantizer, the CT equivalents cannot 
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be designed as aggressive as the DT designs. Also, the range of usable NTFs 
increases very fast with the number of quantizer bits for DT designs but very 
slow for the CT equivalents. These results are valid for NRZ, CT DAC pulses. 
Independent simulations using RZ DAC pulses proved to yield results closer to 
DT designs, intuitively placing the cause of the effects explained for the NRZ 
designs in the DAC pulse shape. 
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Figure 6: Peak NTF magnitude ranges for DT and CT loops of ORDER = 5 

2.3.2. Sensitivity to Initial Accuracy of Implemented Coefficients 

One issue which is not present with DT loop design is the initial accuracy of an 
loop coefficients implemented in the final circuit. As opposed to DT loops, where 
an coefficients are implemented as ratios of either capacitors or currents [3] [9] 
[10], in CT loops the typical coefficient implementation is ultimately a resistor­
capacitor (Re) product [11]. If no calibration is available for the RC product 
[12], the two on-chip passive components show independent spreads from their 
designed values. As a result, an RC products are within 30% in error from their 
nominal value. 

The method to cope with this spread of loop coefficients is based on the as­
sumption that spread is the same across a processed wafer. Since all the resistors 
and capacitors (of the same type) on the chip have identical initial accuracies, 
the feedback and the forward (and feedforward) paths keep the same gain ratios. 
The shapes of NTF and STF are not affected, but the NTF corner frequency is 
changed so enough margin should be considered for the quantization noise power 
when the high-pass filter is designed. The output of all integrators scales with the 
initial accuracy of the coefficients, so care should be taken that even when the 
loop coefficients are 30% larger than nominal no clipping occurs. 
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3. Architecture-Level Analysis 

3.1. Non-Linear Loop Transfer 

The linear model only yields accurate results if the two signals entering the sys­
tem and used to define the transfer functions, X(z) and E(z) in Fig. 2, are mutu­
ally independent. This is true for small input signals, when the quantizer input 
is dominated by re-circulated quantization noise. At high input signals however, 
the signal at the input of the quantizer also contains some of the input signal 
spectrum. 

From the point of view of attainable DR it is obviously more convenient to use 
aggressive NTF filters. There is however a price to pay for the NTF aggressive­
ness, and this is a reduced overloading level (OVL). A lower-than-OdBR OVL is 
produced by the modulation of the quantization noise with the input signal spec­
tral components. A more aggressive NTF concentrates more quantization noise 
power around f8/2 for small input signal levels. Hence, at large input signal 
levels, larger spectral components will be found in the quantization noise spec­
trum around the input signal frequencies, producing faster overloading due to 
increased non-linear I:.6. loop transfer. Fig. 7 shows the variation of OVL as a 
function of the peak NTF magnitude (NTF magnitude at f8/2 for flat out-of-band 
NTF) for a fourth-order single-bit I:.6. ADe. The peak NTF magnitude is used to 
measure its aggressiveness rather than the cutoff frequency in order to highlight 
the effect explained above. The number of bits in the quantizer has to be taken 
into account since it changes the power of the quantization noise and the tonal 
behavior of the quantization noise at large input signals. This curve, connected 
with the DR values shown in Fig. 4, shows the trade-off between the attainable 
DR and peak SNDR (if limited only by OVL). 

The graphs in Figs. 4 and 7 also contain the limits of the usable NTF ag-

·5 

~ · 10 
l1. 

] 
!!' ·15 

j 
o ·20 Pe'k NTF = (1.8 : 5.3) 

·25 

-JO '---'---::!2.'::-0 --'--~3;;';.0:----'---:.'::-.O --'--;';5.0;-" 

Peak NTF Magnitude (dBI 

Figure 7: Overloading level variation with NTF aggressiveness 
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gressiveness for a fourth-order, single-bit 2;ß ADe. It is impossible to design a 
stable 2;ß ADe with this architecture if the peak NTF magnitude falls outside 
the shown limits [1]. 

3.2. Performance Metrics 

During the design and characterization of a 2;ß ADe, a number of performance 
metries are collected from output spectra. Such a spectrum is shown in Fig. 8, 
generated by a fast Fourier transform (FFT) of the digital output of a fourth-order 
2;ß ADe with a 5-bit quantizer. The input signal is set elose to the OVL, at 
-2dBR. The entire spectrum is scaled to bring the reference level to OdBR. On 
such a graph it can be measured if the noise shaping has the correct order (here, 
80dB/decade outside the signal bandwidth), showing the 100p is not overloaded. 
The resolution and the distortion are also measured on this spectrum. 

As with other ADes, the resolution of a 2;ß ADe is the measure for the 
smallest analog signal which can be converted. Only in the case of 2;ß convert­
ers, due to the quantization noise particular shape, the definition of the resolution 
does not start from the noise floor level, but rather from the total in-band noise 
power which gives the dynamic range (DR) 

DR = -10log lO (~jf=fb Y(f)2) [dER] 
2 f=O (5) 

with fb being the input signal bandwidth (Signal BW in Fig. 3) and Y(f) being 
the quantization noise spectral power density, measured as the spectrum of the 
digital stream output with no input signal. 

Because of the overloading effect, DR cannot be used to define the effective 
number of bits (ENOB) since the full input scale is not at OdBR. In the same time, 
DR does not explicitly inelude non-linearity information. To determine ENOB, 

Normalized Frequency (Fs) 

Figure 8: FFT spectrumfor the output digital stream 
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the ratio between the input signal power and the power of all the other in-band 
spectral components is calculated as the signal-to-(noise+distortion) ratio SNDR 

SN DR = 10[og10 (~!~=j;n+öI Y(f)2) + DR [dB] 
I-Im-öl 

(6) 

with jin the frequency of the single-tone input signal, 8 jasmall frequency shift 
and Y (J) the spectral power density of the output signal. The SNDR is used to 
approximately calculate the ENOB as 

ENGB = (Peak SN DR) - 1.76 ~ Peak SN DR 
6.02 6 

(7) 

To fully characterize the L:ß ADC, two other curves are used: the variation of 
DR and SNDR with the input signal amplitude. A large variation of DR with the 
input signal amplitude shows a highly-aggressive NTF or circuit-induced non­
ideal effects, the differential non-linearity (DNL) can be measured on the SNDR 
curve as local changes of the slope and integral non-linearity (INL) as a variation 
of the average slope from the desired conversion gain. 

3.3. Single Loop Topologies 

Different topological variants can be used to design "stable" (or rather "realiz­
able") L:ß ADCs. No topology design can stop the non-linear behavior of the 
L:ß loop to become apparent at high input signals, therefore the overloading level 
is less than OdBR for all implementations. However, some topologies behave bet­
ter than others at large input signals in terms of OVL value, increasing it by one 
or two dBR. OVL is much tighter connected with the NTF aggressiveness than 
with the L:ß topology used. Why "realizable" is a better term than "stable" when 
it comes to characterizing a topology becomes apparent by taking a look at Fig. 
9 which is a typical fourth-order "realizable" topology, sometimes praised to be 
the most "stable" one due to its feedforward coefficients b1 ... b3 [5]. Without 
the feedforward coefficients, the only NTF that can be mapped on this topology 
would be 

NT F(z) = ~z - 1)4 
(z - 1) + !Iala2a3a4 

(8) 

The NTF(z) above offers very littIe freedom in designing its poles and is practi­
cally impossible to map on a convenient filter shape like the ones in Fig. 4. 

3.3.1. Mapping of Transfer Functions to Loop Coefficients 

Starting from Fig. 9, the expressions of designable NTF and STF can be calcu­
lated from Eq. 3 after expressing G(z) and G(z)H(z) as sums of products of loop 
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Figure 9: Distributed feedforward topology 

coefficients a1 ... a4 and b1 ... b3. The filter G(z) is the partial contribution ofthe 
input signal X(z) to the quantizer input 

G() b1a1 b2a1a2 b3a1a2a3 a1 a2a3a4 
z =--+ + +---

z-l (z-l)2 (z-1)3 (z-1)4 
(9) 

The other filter of interest, G(z)H(z), is 

G(z)H(z) = - hG(z) (10) 

By replacing the two expressions above in Eq. 3, the two transfer functions are 
easily written as NT F" (z - 1) and ST pli (z - 1) 

NTP"(z - 1) = 0 (z-1)4 
Lj~4 nj(z-l)j 

(11) 

with the polynomial coefficients ca1culated from the topology coefficients. The 
NTF and STF are only represented as functions of (z - 1) instead of z because 
they are easier to extract from the topology in this form. As such, they can still 
be mapped to an equivalent form of the filters generated from a set of target poles 
and zeros. 

A complementary topology replaces the three feedforwards with three feed­
back coefficients, as shown in Fig. 10. The three feedback coefficients 12, h 

Figure 10: Distributed feedback topology 
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and f4 are sufficient to offer control over the pole structure of the NTF and STF, 
hence this topology can also be used for E~ ADC designs. Because only three 
feedback coefficients can be added, this architecture still lacks control over the 
STF zeros, independently of the NTF poles. To gain control over STF zeros as 
weH, there is obviously need to use a more complex topology by connecting both 
distributed feedbacks and feedforwards. 

Note that, although all four NTF zeros are shown in Eq. 11 as being placed 
at DC (z=1), it is possible, with minor architecture changes, to spread the zeros 
inside the signal bandwidth and further reduce the NTF's in-band mean value, 
thus reducing the total in-band quantization noise power. The use of a resonator 
(shown dashed in Fig. 10, loop coefficient r) introduces a zero in the NTF(z) at 

(12) 

Taking advantage of the usually small value of r caused by the small value of 
Zin-band (especially at high OSR), the resonator can be completely ignored in the 
first mapping phase and only calculated and added after the integrator coefficients 
have been determined. Multiple resonators can be added to reduce the NTF in­
band magnitude, the limit of their number being set by the loop order divided by 
two. From the circuit point of view, it is more efficient (both in area and power) 
to add resonators starting from the end of the loop filter. 

The mapping ftow is therefore a prioritized list starting with the strict map­
ping ofNTF's poles, followed by the optional mapping of STF's zeros (depend­
ing of design requirements and architecture complexity), and ending with the 
addition of resonators in case more resolution is desired. 

3.3.2. Noise and Distortion Contribution of Individual Integrators 

Conversion performance limits for a low-pass E~ converter are set by the noise 
and distortion, which are contributed by all integrators in the E~ loop. Noise 
is generated in each integrator by resistors and active devices (MOS transistors). 
Distortion is caused by large-signal non-linear behavior of active devices. The 
weights associated with the noise and distortion contribution of each particular 
integrator in a E~ loop depend on the loop gain from the input to the respective 
integrator. 

For the following calculations only the white noise will be considered, gen­
erated in a bandwidth larger than half the sampling frequency, f8/2. Noting the 
total noise power at the input of each integrator Pwni , i = 1··· 4 (for a fourth 
order loop as shown in Figs. 9 or 10) and knowing the coefficient of integrator i 
is ai, the power PWni can be referred to the input of the converter as 

(
i-lI) 7r2(i-l) 

~ = PWni ß a; (2i - 1)OSR2i-l 
(13) 
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under the assumption that the signal bandwidth Ib is much smaller than Is. 
The distortion power introduced by integrator i, noted Dni for similarity with 

the noise contributions, refers back to the input of the loop by the worst-case 
integrator gain, which is at the end of the input signal bandwidth. Assurning a 
large OSR, the input-referred distortion gets a simplified form 

D = D . (rri
-

1 ~) (_7r ) 2(i-l) 
I n, a2 OSR 

j=1 J 

(14) 

3.4. Cascaded Topologies 

Cascaded I;,6. ADC designs consist of a chain of I;,6. ADC loops, only the first 
loop processing the input signal while the following ones process the quantization 
noise of the previous loop in the chain, respectively. In this way, the cascaded 
I;,6. ADC designs maximize both the DR by using highly-aggressive (high cutoff 
frequency) noise shaping and the OVL by only applying the full input signal to 
a low-order loop placed as the first stage in the cascade. Cascaded designs are 
convenient in applications where a de-coupling between the increase in DR and 
decrease in peak SNDR is wanted at a fixed OSR, as is the case with broadband 
ADCs that reach into technology-limited OSR values. 

3.4.1. Digital Cancellation of Quantization Noise 

One possible topology for a fifth-order, three-Ioop cascade I;,6. ADC is given in 
Fig. 11. It consists of a first 100p, taking the input signal X (z) and generating the 
digital stream Yi (z) which contains a delayed version of X (z) and quantization 
noise EI (z) shaped by the second-order NT F1 . The subsequent loops convert 
the un-shaped quantization noise of the previous loop in cascade. Therefore the 
OVL is only limited by the second-order first loop, a likely larger value than what 
can be obtained with a fifth-order loop. The digital part of the topology, at the 
right of the dashed boundary, cancels alliower-order shaped quantization noise, 
allowing only the fifth-order shaped noise generated in the third loop to still be 
present in the output digital stream Y (z ). This is accomplished by combining the 
individual outputs Yi ... 3 filtered through digital replicas of the analog NT F1 and 
NT F2 to generate the output stream (assuming 91, 92 and 93 are 1) 

Y(z) = X(z)z-5 + E3(z)NTF1(z)NTF2(z)NTF3(z) (15) 

According to this equation built on linear model of the loops in the cascade, only 
the quantization noise generated by the last loop in the cascade and shaped by the 
fifth-order product of all NTFs is present in the output stream, so the topology 
ideally attains the same DR as a fifth-order single-Ioop I;,6. ADC with a quantizer 
having N3 bits. 
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Figure 11: Fifth-order, 3-1oop cascade E.6. ADC 

Considering the non-OdBR OVL shown by all the loops in the cascade, the 
coefficients dI, el and d2, e2 are not unity in real designs. The coefficients 92 and 
93 are sized depending of d l , el, d2 and e2 . In straightforward designs (no scaling 
of quantizer input in any loop) dl = e l and d2 = e 2, so 

1 1 
92 = dl 93 = dl d2 

(16) 

91 is only different from unity if there are differences in the reference level of the 
first and the subsequent loops. 

4. Discrete-Time Circuits 

4.1. Switched-Capacitor Summing Integrator 

The most widely used DT integrator is the switched-capacitor integrator, shown 
in Fig. 12 in its differential, summing version. It consists of an opamp connected 
in closed-Ioop with the integration capacitors Ci, which are used to accumulate 
charge, thus performing the low-pass function. For half the clock period (sam­
pling phase) the input signal is sampled on the sampling capacitors Cs by closing 
the switches sand keeping the switches i open. During the next half dock period, 
the switches s are open and the switches i are closed, thus connecting Cs to the 
charge-transfer nodes that are the opamp inputs. Because during this integrating 
phase the sampling capacitors Cs are connected between ground and the virtual 
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Figure 12: Summing SC integrator with two integration paths 

ground nodes (held at virtual ground by the large opamp gain), all the charge 
stored in Cs is added to the charge of Ci, modifying the output voltage accord­
ingly. The transfer function can be written in Z-domain, considering VR+=VR-, 
as 

(17) 

A similar transfer function can be written from the VR input to the output. Hence 
the integrator coefficient, important for the mapping of the loop filter to the de­
signed topology, is given by the ratio of the two capacitors. This is convenient 
from the point of view of yield optimization due to a relative mismatch of on-chip 
capacitors as low as 0.1 % for a good layout. 

The integrator in Fig. 12 completely separates the integration paths for the 
input signal and for the DAC reference voltage. Furthermore, the switching at the 
VR nodes is signal-independent, and so is the switching at the opamp's inputs, re­
ducing harmonie distortion. The only signal-dependent switching is introduced 
by the use of physieally different switches at the VR nodes, but this has minimal 
effects due to their connection to low-impedance nodes. The noise power (re­
ferred to the input of the integrator) introduced inside the signal bandwidth by 
this switching scheme is 

4kT ( GIb) 
PBWnoise = GsOSR 1 + Gs . (18) 

The circuit described above implements a DT integrator transfer function only 
if circuit non-idealities are neglected. But even if these non-idealities alter the 
function implemented in the final circuits, their effects on the overall conversion 
performance can be reduced by correct design of circuit components and signals. 
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4.1.1. Finite, Nonlinear Amplifier Gain 

Amplifiers designed in CMOS processes suffer especially from a low value of 
the DC gain caused by reduced output impedance of MOS transistors. This af­
fects the transfer function of the SC integrator by an incomplete discharge of 
the sampling and DAC capacitors, Cs and Cfb in Fig. 12, during the integration 
phase. The input capacitance of the opamp also becomes important in high-speed 
CMOS processes. With the input capacitance of the opamp Cp, a more accurate 
expression of the integrator's output at the end of the integration phase can be 
calculated: 

Vaut = z-l (VinCs + VRCjb) . 
C- ((1 + _l_Ci+CS+Cfb+CP) _ z-l (1 + _l_ Ci+Cp )) 

l ADe Ci ADe Ci 

(19) 

This expression can be placed in time-domain simulations of L:~ ADCs to 
show the impact of the finite amplifier DC gain on the conversion performance. 
Since Eq. 19 shows that a real integrator introduees both a gain and a pole error 
eompared to the ideal integrator in Eq. 17, the finite amplifier DC gain affeets the 
NTF eharaeteristie and therefore decreases the DR. 

Traditionally, is said that gain linearity is not important in SC integrators. 
This is true as long as the DC gain of the amplifier is large enough to keep a 
low voltage at its inputs after the integration phase or as long as the gain, even if 
small, does not vary with the output voltage. Both these assumptions tend to be 
diffieult to attain in high-speed CMOS proeesses. 

4.1.2. Finite Amplifier Bandwidth and Slew-Rate 

Switched-eapacitor circuits count on fast eharge transfer from the sampling and 
DAC eapaeitors to the integrating capacitor, and so far, this transfer has been 
eonsidered to be mueh faster than the sampling speed. This is only true if the 
unity-gain frequency of the amplifier (loaded with all the switehing eapaeitors) 
is extremely large eompared to the sampling frequeney, which is almost never 
the ease. In SC cireuits, the limited amplifier bandwidth and slew-rate introduce 
errors at eaeh integration and sampling phase, in the form of harmonie distortion. 
In practieal circuits the amplifier bandwidth is minimized to reduee power eon­
sumption, and the lower limit is set by the total harmonie distortion which can be 
introduced by the integrator. The distortion introduced by each integrator has to 
be analyzed separately and considering the associated loop gain. 

Settling errors are introduced both during sampling and integrating phases. 
In designs with statie biasing and docked with 50% duty cyde, the capacitive 
load of the amplifier during the integration phase is always larger than the load 
during the sampling phase so the former phase (which constitutes the worst case) 
must be analyzed to determine the settling properties of the integrator. 
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4.2. Power Consumption Analysis 

The transconductance of the opamp inside a SC integrator is a good model of 
the power consumption of the integrator, especially if the amplifier is a one-stage 
design. Starting from the noise budget available for the integrator, one can calcu­
late the capacitors building the I:ß coefficients. With the capacitor values and the 
distortion requirements (translated in settling constraints), the 9m of the opamp's 
input stage can be calculated. 

4.2.1. Noise 

The noise budget allocated to each integrator (based on designer expertise or by 
CAD) is consumed by two components: the switch noise (kT/C noise) and the 
opamp noise. For a one-stage amplifier with a large input transconductance 9m, 
the noise power depends only on the capacitive load 

Po _ 2kT, 
n amp - C 

el 
(20) 

with, the noise enhancement factor for short-channel transistors [3] (applicable 
for opamp input devices). The total noise power (wide-band) at the input of the 
SC integrator is 

(21) 

with 
C C C C C Cl( Cs + Cp + Cfb) 

el = s + p + fb + I + Ci (22) 

where Cl is a fraction of the integration capacitor (parasitic capacitance of Ci) 
connected at the opamp's output 

(23) 

with a a technology-dependent percentage. Cp is also proportional to Ci (for a 
given Vgs - VT and UGB): 

(24) 

The Cs and C fb capacitors are related to the integration capacitor through the I:ß 
loop coefficients supplied by the architecture design (see Fig. 9) 

(25) 

and using these proportionalities the load capacitance can be written as a function 
of the integration capacitor, technology parameters and I:ß loop coefficients 

Cel = Ci ((a + af + T}) (1 + a) + a) . (26) 
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Combining the expression of the noise power with the compact expression of the 
load capacitance, an expression of the integration capacitor as a function of the 
noise budget of the integrator can be written 

4KT (1 ry) 
Ci=-p;: ~(1+f)+2((a+af+1])(1+o:)+o:) . (27) 

As part ofthe total noise budget (allocated for the entire converter), the noise 
power inside the signal bandwidth is referred at the input of the ~ß converter 
using Eq. 13. 

4.2.2. Distortion 

Starting from a specification of harmonie distortion IH D3 1 (only the third one 
since differential circuits are used), the linearity ofthe integrator can be expressed 
in bits as [14] 

(28) 

The number of bits B is then used to calculate the number of time constants 
required by a single-pole system to settle to B bits [14] 

NT = Bln(2) (29) 

whieh, for a settling time Tsettle requires an UGB 

UGB=~. 
Tsettlc 

(30) 

The concept of the single-pole system is true for single-stage amplifiers and is 
also a good approximation of the behavior of two-stage amplifiers with enough 
phase margin. 

4.2.3. Required OpAmp Transconductance 

The gm is then calculated from the required UGB, as 

NT 
gm = 2n-Gcl UGB = 2nCcl--

Tsettle 
(31) 

For a slewing followed by settling model [3] the time available for settling is 

TCLK 
Tsettle = -2- - T s1ew (32) 

with T s1ew being the time needed for the opamp to recover from non-linear be­
havior. Hence, the expression of gm results in 

2nCcl (NT - 1) 
gm = Th.M. _ V+~ (33) 

2 f 10 
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where 10 is the biasing current (tail current) of the opamp MOS input pair and 
V/ is the voltage at the input of the opamp at the beginning of the integration 
phase, and after passive charge re-distribution [3]. 

If MOS transistors operated in weak inversion are used in the input stage of 
the opamp, 9m = 1010, and a compact expression for 9m is obtained 

47rCcl (( ) +) 9m = TCLK NT - 1 + lOVf . (34) 

5. Continuous-Time Circuits 

5.1. Integrator Topology 

A fully-differential active-RC integrator for use in ~6. ADC design is shown in 
Fig. 13. Apart from the input signal path, Vzn with VII conversion performed 
by Ri, there is a second path which implements the ~6. DAC, in this case only 
one-bit, with the pair of resistors Rdac. The current from both paths is integrated 
on Ci. The opamp keeps a null voltage difference between its inputs, hence the 
integrated current is 

v+ - v- V+ - V-
I . - in in ± ref ref 

Cl -
2Ri 2 Rdac 

(35) 

The sign of the summation is decided based on the decision of the ~6. quantizer, 
represented in the schematic by the logic bit BO. Ifthe decision BO is logic-High, 
it means the output of the integrator is too large and Vref is switched to reduce 
the output voltage. 

The noise power at the input of the integrator is given by the input and DAC 
resistors and the 9m of the opamp's first stage 

_ R; ~ 
PCTnoise - 8kTBW(Ri + --+-) 

R dac 49m 
(36) 

As opposed to SC integrators, there is no noise aliasing since no noise sampling 
is taking place. 

c; 

Vin+ R; 

Vin- R; 

Rdac 
c; 

Rdac 

Figure 13: Active RC integrator with DAC resistors 
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The integrator using OAC resistors can be extended for multi-bit OACs by 
adding OAC paths, independently connected to the same Vref 

5.2. Effects of Circuit Non-Idealities 

In comparison with a switched-capacitor (SC) integrator, the only active element 
in a CT integrator with resistive OAC is the operational amplifier. In such integra­
tor topologies the opamp is the circuit element limiting integrator's performance, 
assuming highly linear on-chip passive components are available. 

5.2.1. Finite, Nonlinear Opamp Gain 

The finite gain of the opamp used inside the CT integrator affects the transfer 
function of the integrator, in a similar manner as in the case of SC integrators. Yet 
its effect is different in the CT integrator. The transfer function of the integrator 
with an opamp exhibiting finite OC gain is 

1 H(s)ADC = ---,-----­
_1_ + sR-G 
ADC 'z 

(37) 

for a finite opamp OC gain of A DC . This equation shows that both the OC gain 
of the integrator and its pole are affected by the finite OC gain of the amplifier. 
These changes in integrator transfer functions are expected to cause loss of I;L}. 

conversion performance mainly in terms of resolution, by introducing changes 
in the designed NTF likely to increase quantization noise inside the signal band­
width. 

5.2.2. Finite, Nonlinear OpAmp Transconductance 

With a voltage input, the active-RC CT integrator still integrates a current. The 
major non-linearity, analyzed here, is introduced by opamp's finite and strongly 
nonlinear transconductance gm' A simplified model of a single-stage amplifier 
can be used for this analysis, yielding results that can also be applied to more 
complex opamp designs by replacing the gm in this model with the equivalent 
gm of a multi-stage, correctly-compensated (approximately single-pole behavior) 
amplifier. 

5.2.3. Finite Opamp Bandwidth and Slew-Rate 

Compared to SC integrators, the finite bandwidth of the amplifier in a CT inte­
grator does not affect the linearity of the integration but the in-band quantization 
noise power by changing the NTF shape. For a single-pole opamp with a unity­
gain bandwidth of Wo and OC voltage gain ADC , the frequency-dependent voltage 
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gain A( s) can be used in Eq. 37 to find the transfer function of a CT integrator 
containing the bandwidth-limited opamp 

H(s)GBW = 1 1 
A(s) + sRiCi 

1 
(38) 

_1_ + s (-.L + Re.) 
ADe Wo ~ ~ 

The equation above shows that, in order to have a good approximation of the 
ideal integrator function, 

H(S)ideal = _1_ (39) 
sRiCi 

not only the DC gain A DC should be much larger than 1/ IsRiCil, but also the 
unity-gain bandwidth of the opamp should be much higher than the unity-gain 
bandwidth of the integrator 

1 
wo» RiCi (40) 

To compare the result in the equation above with the sampling frequency 
fCLK of the ~ß ADC, the value of the loop coefficient associated with the inte­
grator should be used 

1 
ai=--~-

RiCdcLK 
(41) 

For typical ai values of 0.1 to 0.3 results that 

Wo 2: fCLK··· 3fcLK (42) 

The exact value depends on the overall tolerance to in-band noise leakage and it 
scales with the fill factor for a return-to-zero (RTZ) DAC shape, that changes the 
1/ RdacCi to 0/ RdacCi, with 0 the RTZ fill factor. 

The second issue associated with a limited opamp bias current is the slew­
ing of the amplifier's output stage. Since the signal processed is the integrated 
current, a limitation of this signal would introduce distortion in the overall AID 
conversion. Therefore, a hard limit can be found for the biasing current of the 
output stage of the opamp as the peak of the integrated current during nominal 
operation of the ~ß ADC. This is usually not a very restrictive limit. 

5.3. Power Consumption Analysis 

A good estimate ofthe CT integrator's power consumption can be obtained from 
the required opamp transconductance. For each integrator in a ~ß. ADC, the 
input and DAC resistors, as weIl as the integration capacitor, are ca1culated from 
the noise budged of the integrator and its associated loop coefficients. The values 
of the passive components are in turn used to ca1culate the opamp' s 9m required to 
keep the distortion lower than the limit allocated to the integrator. The integrator 
is assumed to be a active-RC, fully differential design with both input and DAC 
resistive paths, as shown in Fig. 13. 
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5.3.1. Noise Performance 

For the differential CT integrator in Fig. 13 the noise budget is distributed among 
the two pairs of resistors R i and Rdue. and the operation al amplifier's transcon­
ductance grn, resulting (Eq. 36), for a signal bandwidth BW, 

Rr r 
PCTnoise = 8kT BW(Ri + -R + -) (43) 

dac 4grn 

The equation above can be written in a more compact form if the expressions 
connecting the ~.6. loop coefficients with the passive circuit components are used 
(see Fig. 9) 

a= 1 ,f=~ 
R i Ci fc}( Rduc 

(44) 

to write PCTnoise only as function of Ci and Ri 

8kTBW ( r ) 
PCTnoise = C f 1 + f + -4 R 

a iJC}( grn i 
(45) 

To quickly estimate Ci, the last term of the equation above can be ignored or 
be allocated a (small) fraction of the noise budget. Knowing Ci, the resistors 
can be calculated and used to calculate gm from the distortion specification. AI­
tematively, an optimized set of circuit parameters can be calculated if first the 
distortion specification is used to extract an expression for the gmRi product, free 
from other circuit parameters. 

5.3.2. Distortion Performance 

Assuming the opamp has a large gm [2], third-order harmonie distortion is given 
by the amplitude of the input signal VA, the nonlinear component of the opamp 
transconductance g3, and the equivalent resistor connected at the input of the 
opamp, R, 

1 1 1 V 2 
- = - + - H D 3 = A (46) 
R R, Rdac' 24g3R3 

the distortion results to only depend on the non-linear component of the opamp's 
transconductance, g3. The expression of g3 is calculated as the third derivative 
of the residual input voltage which, for a MOS input pair with transistors sized 
W / L in strong inversion, is 

while, for weak inversion transistors, it is 

~WI = nVTln (h + Ii) 
h - I i 

(47) 

(48) 
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Derivatives of these expressions yield the transeonduetanee eomponents gm and 
g3. Considering the expression of R, the third harmonie distortion beeomes, for 
strong inversion transistors, 

H DfI = Vl~gt3 (1 + Ri ) 
32RJb Rdac 

(49) 

and, respeetively, for weak inversion, 

HDfI = Vl~V~ (1 +~) 
6Ri Ib Rdac 

(50) 

5.3.3. Required OpAmp Transconductance 

From the equations above and using Eqs. 44, a eompaet expression of the re­
quired gm for transistors in strong inversion 

SI 1 3 ~J (1 + f) 
gm = Ri 32Vg~H D3 

and, respectively, for weak inversion 

WI 1 3 

gm = Ri 

~J (1 + f) 
48n2V:j.HD3 

(51) 

(52) 

Both expressions yield a value for the product gmRI which is free of other design 
parameters 

(53) 

The factor K gm can be calculated before the optimization of each integrator takes 
place, from L:Ll loop coefficients, performance requirements, MOS transistor 
parameters, and a design decision for Vgt when strong inversion is used. 

With K grw the integration capacitor Ci can be calculated from the noise bud­
get 

Ci = 8kTBW (1 + f + _1_) 
aPCTnoisefcK 4Kgm 

(54) 

and, using Eq. 44, the resistors ~ and Rdac are calculated. With Ri , gm is 
calculated from Eq. 53 or directly from Eqs. 51 and 52. 

6. Computer-Aided Design of Sigma-Delta ADCs 

Since no accurate analytical model is available for L:Ll ADCs in general, there is 
need to simulate different possible solutions before deciding which one has the 



316 

potential to be the optimal one. This Section presents a systematic procedure to 
exhaustively explore the design space of ~~ ADes, by automatically designing 
and evaluating a large number of candidate solutions based on behavioral sim­
ulations. Two design examples are also shown, to illustrate the advantages and 
limitations of this procedure. 

6.1. Filter-Level Design 

A fast design spaee exploration is performed at filter-level, using a linearized 
model of the ~~ ADe. The goalofthis search is to quickly evaluate all solutions 
in the design space and seleet only candidates that ean attain the target dynamic 
range (DR). The search algorithm is shown in Fig. 14. The entire ~~ ADe 
design space is split in two sub-spaces, the topology sub-space and the parameter 
sub-space. The topology design sub-space is defined by the ORDER, number of 
eascaded LOOPS and number of BITS, while the parameter design sub-space is 
defined by the oversampling ratio OSR and peak NTF (noise transfer funetion) 
magnitude. Multiple parameter sub-space elements can be associated with every 
topology sub-space element, changing the performance of the final solution while 
keeping a fixed physical implementation. All dimensions of the search space are 
browsed using eonstant stepping, linearly in topology spaee and exponentially in 
parameter space. 

At each step a set of two filter transfer functions are generated, the NTF and 
the signal transfer function (STF). Filter generation can also optimize in-band 

Figure 14: Filter-level exploration algorithm 
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zeros for the NTF (to reduce total in-band noise power [4]) and off-band zeros 
for the STF (to reduce in-band gain ripple and increase off-band rejection). After 
the two filter transfer functions are generated the in-band noise power is estimated 
to find the DR. A test is applied with two thresholds derived from the target DR 
(in dB) 

DRtarget + DRlower :::; DR :::; DRtarget + DRupper (55) 

The lower limit tests if, after the circuit (white) noise is added, the converter 
still reaches the final target DR. The upper limit is set to reject power-hungry 
solutions which offer more quantization-noise DR than actually needed. If the 
test is passed, the solution is saved in a database. 

For single-Ioop solutions the algorithm stops when a combination of mini­
mal OSR and NTF is found. For cascaded designs however, because significant 
architectural details are not available at the filter level, the algorithm continues 
searching for solutions even after finding the first valid one. This insures that no 
valid solution is prematurely rejected. 

The limits within which NTF is browsed are decided based on a database 
stored on disk containing, for each set of (ORDER, BITS), the value of the over­
loading level. This database is built by applying the entire design procedure ex­
plained in this section (both filter-level and architecture-Ievel design) to the entire 
topology design sub-space with the LOOPS constrained to I (OVL of cascaded 
solution is ultimately decided by the a single loop). In the parameter sub-space, 
NTF is sampled in a wide range while OSR is set to 64, because OSR does not 
affect the overloading level. The use of the NTF database results drastically 
reduces run-time because the solutions considered as possible candidates are ac­
tually guaranteed to yield stable :E~ loops. 

6.1.1. NTF Database 

The one performance parameter of:E~ ADes that cannot be predicted accurately 
by linear modeling is the overloading level (OVL) [1]. In the algorithm presented 
here, the overloading levels for each single-Ioop :E~ ADe are computed once 
from time-domain simulations and stored in a database. The peak magnitude 
of NTF is varied in a wide range. Each single-Ioop :E~ ADe is designed and 
optimized in a range of input signal values for each NTF peak magnitude. The 
overloading level is detected as the input signal which causes integrator c1ipping. 

Fig. 15 shows the entry in the peak NTF database for the single-bit, fourth­
order :E~ ADe. It shows the variation of overloading level OVL, peak output of 
the last integrator Out4 and the peak SNDR in the NTF range where the loop can 
be stabilized. The decision that the loop can be stabilized is taken by comparing 
the values of integrator coefficients against a bottom value. If all integrator co­
efficients are larger than the bottom value and integrator outputs are smaller than 
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the Vclip value, the loop can be designed stable and there exists a dB-negative 
overloading level. 

Because of this tight relationship between the OVL value and the ratio of the 
c1ipping voltage over reference voltage, the database has to be generated for each 
different ratio of Vdip/VRej. The same database can be used for any target DR 
(SNDR) design as long as the Vclip/VRej ratio does not change . 

... 
LI'Cl '-20 

Figure 15: Peak NTF magnitude database entry exampZe 

6.1.2. Dynamic Range Estimation 

A fast yet accurate method to estimate the DR is used. It overcomes the draw­
backs of both time-domain simulations, which are sIow, and cIassicaI DR esti­
mation using a formula which is inaccurate especially for high-order L:ß loops 
[1]: 

DR = ~ 2L + 1 OSR2L+1(2 B _ 1)2 (56) 
2 7["2L 

First the magnitude of NTF is calculated in n points equally spaced from DC 
to 1s/2 from its polynomial form, in Z domain. Considering the total power of 
quantization noise [1] if the quantizer step is ß, the (white) quantization noise 
amplitude in each bin i from DC to 18/2 (from 0 to n), referred to v;.ej 

ß(2B - 1)/2, is 

Sqn,BU' ~ 2010910 ( I!) -20(B - 1)10910(2) [dBR] (57) 

if the quantizer has B bits. 
The value of the NTF magnitude, expressed in dB, is added to the value of 

Sqn,Bbit and a curve showing the quantization noise amplitude in each bin is 
drawn. Its integral in the band of interest yields the estimated DR value. Fig. 
16 shows the estimated (Zeft) and time-domain simulated (right) spectrum of the 
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NonnaIized Iraqusncy lIts 

Figure 16: Estimated (left) vs. time-domain simulated (right) noise shaping 

output of a fourth-order, one-bit, single-Ioop ~ß ADC. The two graphs show 
the good accuracy of this estimation method for high-order loops. An extended 
comparison between the classical formula and the polynomial estimation method 
applied to single-Ioop ~ß ADCs shows that the estimation error is always less 
than 4dB, as opposed to the error yielded by calculating the DR using the clas­
sical formula which can be comparable to the target DR itself. The polynomial 
estimation method also works better than the calculation for cascaded loops. 

6.2. Architecture-Level Design 

The architecture-Ievel exploration algorithm evaluates the performance of the 
filter-level solutions mapped on a specific architecture, as shown in Fig. 17. If 
a single-Ioop solution is processed, an architecture is generated with the feedfor­
ward and feedback connectivity specified by the user. An initial set of coefficients 
are then calculated and simulations are performed with a wide range of input sig­
nal amplitudes to determine the OVL. Because the initial set of coefficients are 
not optimized they can cause premature overloading if integrator clipping to the 
supply rails is simulated. Therefore, for these simulations the clipping voltage 
is considered to be many times larger than the actual value. Since the reference 
voltage remains the same, this simulation setup is equivalent to using no-clipping 
integrator outputs. Single-tone input signals produce frequency-dependent OVL 
values, so the input signal applied at this design stage is a pulse, a good approxi­
mation of a busy signal [1] which produces a frequency-independent OVL. 

The next step is the coefficient optimization, performed at the OVL previ­
ously detected by observing the peak output of each integrator and by correcting 
the associated loop coefficient accordingly. The SNDR and DR variations as a 
function of the input signal are then simulated using a sine input signal. The 
two curves are tested for performance and passing solutions are saved for further 
processing. 



320 

NTFm",! """''''''''--_~_~~~~~I OB r-

BITS<:B 

New ORDERS 

Figure 17: Architecture-Ievel design space exploration 

For the cascaded ~~ ADes the only architectural details predefined at filter 
level are the number of loops and the number of bits in the last loop. Therefore, 
the filter orders of individual cascaded loops are generated as one additional de­
sign space dimension named ORDERS in Fig. 17. Another new design space 
dimension is the number of BITS in the first loop of the cascade. For simplicity, 
the last n - 1 loops in a cascade of n loops have the same number of bits as the 
last one. Each derivative of the input solution in the extended design space is 
analyzed as a possible solution. The architectural derivative is built starting from 
the parameters supplied in the filter-level solution, namely the peak NTF and the 
number of quantizer bits for the last loop in the cascade. The peak NTF in the 
filter-level solution is the product of peak NTF values in each loop. 

The generation of a cascaded design architecture consists of finding the I NT F I 
value that yields stable NTFs for all the loops in the cascade, considering their in­
dividual order and quantizer bits. The individual orders and quantizer bits are set 
at this stage by the filter-level solution and the ORDERS and first quantizer BITS 
design parameters, so the range of common stable NTFs is found by performing 
a logical-AND between the stable ranges of each loop in the cascade, as extracted 
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from the peak NTF database. There are cases when the logical-AND yields a null 
range and the architectural derivative is then dropped. Each individual loop in 
the cascade is then designed following the procedure described for single-loop 
solutions. The coefficients connecting the loops are derived from corresponding 
loop coefficients [6]. 

6.2.1. Performance Test 

Performance testing is based on statistics of SNDR and DR curves as functions of 
input signal level. Linear regressions are performed on each curve, from SNDR 
zero-crossing to the overloading level. The slope of SNDR is tested to be dose 
enough of the desired conversion gain (typicaIly unity). A slope outside this 
range shows a strong dependency of quantization noise power of the input signal 
level, which is not desired. The intercept of the DR curve is then tested against 
the target DR value to insure the target DR is attained in the worst condition. 
Finally, the peak regression residual of the DR curve is tested to be lower than 
6dB (1 bit) to insure the required integral non-linearity (INL). 

SN DR(~n) and DR(~n) curves for an architecture rejected by perfor­
mance test algorithm are shown in Fig. 18. The dotted lines are the linear re­
gression fitted values for both simulated curves. The drop in DR at high input 
levels (larger than -20dB) shows that the NTF aggressiveness needed to reach 
the target DR is too high [4]. The peak SNDR which still keeps a good overall 
INL is about 85dB instead of almost 95dB, as shown by its absolute peak value. 
Based on the fact that the decrease in peak SNDR already disqualifies this solu­
tion, the simple yet effective criterion of peak regression residuallimiting is used 
as rejection criterion. The slope of DR fitted line shows that the test for DR inter­
cept works toward rejecting the solution as weIl, even if peak regression residual 
would be passing its test. The test for SNDR slope also works toward rejecting 
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Figure 18: SNDR and DR curves for a rejected architecture 
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the solution. 

6.2.2. Estimation of Power Consumption 

Each integrator in the loop has its power consumption characterized by the 9m of 
the operational amplifier insuring the required integration linearity. To calculate 
the total 9m for a designed architecture-Ievel solution, the passive components 
(resistors and capacitors) in each integrator have to be ca1culated from the noise 
budget and placed in the power models developed in previous Sections for SC 
and CT circuits respectively. 

The noise budget of each integrator is allocated based on evaluation of total 
power consumption as a function of noise budget distribution across the con­
verter. A part R of the noise power of the previous integrator is allocated to the 
next in the loop 

(58) 

and the value of R is chosen to minimize total power consumption. Up to 25% 
reduction in current consumption by optimization of R has been observed on 
practical designs. 

6.2.3. Yield Analysis and Optimization 

From the accepted solutions, a top-ten set is chosen based on the ratio of peak 
SNDR and the power consumption in opamps measured by the total 9m. For each 
top-ten solution, a Monte-Carlo analysis varies the I:~ ADC coefficients using 
a normal distribution with the standard error supplied by the user. The user can 
also specify a spread 30- value along with the coefficient-to-coefficient mismatch 
30- value. The spread is used in the case of CT designs to simulate the effect 
of RC product spread over design performance. A few hundreds Monte-Carlo 
simulation steps are ron for the top-ten solutions and the performance tests are 
applied. The sing1e-Ioop solutions can be designed from the early stages to give 
100% yield with relaxed matching requirements by controlling the difference be­
tween the quantization noise power and in-band white noise power. For cascaded 
solutions however, the yield can be corrected by increasing the number of bits in 
the first loop. This decreases the quantization noise power in the first loop and 
therefore the power of the mismatch-induced, low-order shaped noise leaking to 
the output. When the yield is lower than 90% the number of bits in the first loop 
in the cascade is increased and another Monte-Carlo yield analysis is started. 

6.3. Design Examples 

Two examples are presented to show the effectiveness of global optimization 
through exhaustive design-space exploration. The first one is an audio I:~ ADC 
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powered at I.5V with rail-to-rail input and I.5V reference voltage. A designed 
circuit has been reported [17] which consumes O.95mW for a DR of 98dB and 
peak SNDR of 89dB at a signal bandwidth of 20kHz. The second one is an ADe 
for xDSL applications, powered at 2.5V, also with rail-to-rai! input and reference 
voltage equal to the supply voltage. The signal bandwidth is 2MHz. A design 
has been reported which consumes 90m W in the analog circuits to attain 95dB 
DR and 90dB peak SNDR. 

The designs mentioned above are state-of-the art examples. The results pre­
sented here show that other architectures can offer better peak SNDR versus sup­
ply power consumption ratios (here used as figure of merit FOM) but these de­
signs are still among the best options. 

6.3.1. Audio Sigma-Delta ADe 

The search for an optimal audio :E~ has been first performed in the entire design 
space, to find the global optimum. The global optimization results are shown in 
Table 1. It is worth noting the massive presence of cascaded solutions. The col­
umn LOOPS shows each cascaded loop's order in parentheses, while the column 
BITS contains the number of bits in the first loop in parentheses. The solutions 
have virtua1ly the same figure-of-merit FOM. All solutions have OSR=32 and a 
large number of bits in the first loop, which increases the FOM value by increas­
ing the overloading level with no additional power costs (in the power model used 
here). 

Table 1: Global solutions for Audio :E~ ADe 

ORDER LOOPS BITS OSR SNDR FOM 
4 2 (2-2) 2 (6) 32 97.5 119.8 
4 3 (2-1-1) 2 (5) 32 97.3 119.5 
5 3 (2-1-2) 1 (7) 32 98.5 120.2 
5 2 (2-3) 4 (7) 32 98.5 119.8 
5 2 (2-3) 5 (7) 32 98.1 119.5 

Table 2 contains the optimization results for a set of solutions restricted by 
the number of loops (LOOPS=I). The best solution is the third order, 4-bit loop, 
again working at OSR=32. This solution is also remarkable by its low number of 
bits compared to the other top performers. 

Further design space restriction to I-bit single-Ioop architectures yields only 
the state-of-the-art fourth-order, single-Ioop solution with OSR=64 reported in 
[17]. The solution is chosen from a set of four possible, three of which do not 
pass the yield test. 
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Table 2: Audio ADCs with LOOPS=1 

ORDER BITS OSR SNDR FOM 
3 6 16 95.3 117.6 
3 8 16 96.3 117.8 
3 4 32 95.5 118.4 
4 8 8 95.6 116.4 
4 5 16 96.0 117.8 
5 4 16 95.4 116.5 
5 6 16 96.2 115.9 

6.3.2. Delta-Sigma ADe for xDSL Applications 

The results of global optimization for a 4MS/s I;ß ADC are shown in Table 3. 
Again a third-order solution with OSR=32 and 4-bits quantizer has good perfor­
mance, but most of the solutions operate at 16 times oversampling. They also 
have large number of bits in the (first loop) quantizer to attain high overloading 
levels. 

Table 3: Global solutions for xDSL I;ß ADC 

ORDER LOOPS BITS OSR SNDR FOM 
3 1 4 32 96.5 102.7 
4 2 (2-2) 4 (8) 16 97.4 103.1 
4 3 (2-1-1) 4(7) 16 98.1 102.7 
5 2 (2-3) 3 (8) 16 96.6 102.1 
5 2 (2-3) 4 (6) 32 97.1 101.7 
6 3 (2-2-2) 2 (8) 16 97.4 102.6 

To avoid solutions like the ones requiring 32 times OSR, the search space 
is limited, by (ORDER=5, OSR=16). Furthermore, the maximal number of bits 
can be limited, for example to 6, to keep a low DAC complexity. The solu­
tions for this search are shown in Table 4. They are all cascaded I;ß ADCs ex­
cept two which, even with their low-FOM, can be good choices for low-voltage, 
mismatch-tolerant designs. The best are the three-Ioops with a 2-2-1 configu­
ration. The state-of-the-art solution reported so in [15] is among them. During 
initial optimization stages, only 3 bits were needed in the first loop, but yield op­
timization reached the 5-bit solution reported in [15], the increase being needed 
to accommodate capacitor/capacitor mismatch effects. 
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Table 4: xDSLADCs with ORDER=5, OSR=16 

LOOPS BITS SNDR FOM 
2 (4-1) 2 (5) 93.1 98.0 

3 (2-2-1) 2 (6) 97.1 102.6 
3 (2-2-1) 3 (5) 95.7 101.0 
3 (2-2-1) 4 (6) 97.8 102.5 

1 5 96.6 100.4 
3 (2-2-1) 5 (5) 98.1 102.6 

1 6 96.5 99.6 
3 (2-2-1) 6 (6) 98.2 101.7 
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