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Flexible Hopfield neural-network

ADCs quash noise

Paul J Rose, PhD, Mental Automation, Renton, WA
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format and can perform associative
recalling, signal estimation, and com-
binatorial optimization similar to the

way a human retina performs first-lev- |
el signal processing. This Design Idea .
explores the Hopfield-neural-network !

paradigm for ADCs.

Simple converters comprise one-lay-
er neurons that accept analog inputs
and generate digital-bit outputs; such

neurons make up one form of adap- :

tive- and distributive-processing net-

works. These neurons comprise voltage

comparators driving either analog in-

verters or followers and fully connect- |

ed feedback resistors from the analog

outputs of the inverters or followers !

to the comparators (figures 1 and 2).
Reference and analog-input voltages
drive the neural networks, and digital

outputs come from the comparators in !
the networks. Hopfield networks have |

learning capabilities; the circuit in this
Design Idea can apply different adap-

A Hopfield network can con- |
vert analog signals into digital |

TABLE 1 INPUT VOLTAGE VERSUS OUTPUT WORD
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tive-learning rules by using alternative |

comparator-inverter/comparator-fol-

lower schemes, conductance-node-lay- |

N |
i out schemes—reciprocals of the feed- |

back resistances—between the input ;

comparators, and bit-order readouts.

As the analog-input voltage in- |

creases, the circuit can produce either
monotonically increasing (from a com-

parator-inverter scheme) or decreasing |

(from a comparator-follower scheme)
bit-word outputs. Decreasing outputs
are the complements of increasing out-
puts and suggest subtractive-bit opera-
tions. Further, you can shape the digi-

tal responses of the converters to ana- |

log-input voltages in varying degrees
using different conductance-node lay-
outs as part of rule adaptation. For fur-

| ther flexibility, reversing bit order for
. digital readouts allows for reftection of

circuit responses about analog-input/
digital-output characteristics.

You can simply state a few symbols
and their meanings to construct the

! two converters. For energy functions,

Input analog voltage (V) \ Output binary word
Average
Normalized normalized

Raw range range range Raw Normalized
010 0.189 0 to 0.2855 0.1427 O = it 0
0.189 to0 0.265 0.2855 to 0.3429 1000 0.5333

0.4003
0265100378 | 04003 to 0.4856 1100 08

0.571
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the resistive network conductances—
synapse weightings (S) in the form of
reciprocal resistances (R)—have the
designations SU=1[RU, where I is the
Ith input comparator, ] is the Jth feed-
back path to the Ith comparator, and
1 does not equal ]—that is, there is no
self-feedback path of the comparator
to itself. The conductance between
the input terminal of the Ith compara-
tor and the reference voltage, V,, has
the designation S;=1/R;. The con-
ductance between the input terminal
of the Ith comparator and the analog-
input-signal voltage, V, has the desig-
nation S ;=1/R ..

For graphical curve fittings, Y is
the normalized output-bit variable,
and X is the normalized input analog
voltage from a nonzero average val-
ue (less than one) to one. A, B, and
C are curve-fitting constants in the
curve equation Y=1—-AX(1-X)*
and the complementary-curve equa-
tion Y=AX(1—X), where A is a co-
efficient, B is the lower limit for X and
is less than one, and C is a power con-
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Figure 1 This Hopfield neural ADC provides a robust output in the presence of noise.

stant. For bit-pattern readout rever-

sals, you can have the curve equation
Y=AX(X—B)"and the complementa-
ry-curve equation Y=1—AX(X—B)".

Figure 1 shows a 4-bit neural ADC
employing voltage inverters that com-
parators feed. The comparators con-
nect with their positive terminals
joined to input nodes and with their
negative terminals grounded. The bas-
es of this network are inverse factors
of one-half—that is, reciprocal fac-
tors of two—input-node conductances
SU=— 1X24717D where the —1 factor
comes from negative feedback through
the related resistor; S =2""2"; and
S=21"Y. To determine node resis-
tances, choose a maximum node re-
sistance of 1000Q) corresponding to a
minimum conductance of 0.0078125,
and a minimum node resistance of
7.8125) corresponding to a maximum
conductance of one. Calculate all oth-
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er resistances from the ratios between
the extremes of conductances. Using
these values, you can construct Table
1. The table lists bits ranging from the

| most significant bit to the least signifi-

cant. The table shows that the digiti-
zation process is inaccurate in that it is
not linear with input voltage and with
many intermediate bit words missing.

But the process is precise because it ;
is repeatable over sizable input-volt-
age ranges. From the table, you can -

derive the following curve-fitting
equation: Y=1—1.6243X(1—=X)*13%,
When X is over the normalized range

of 0.1427 to 1, A=1.6243, B=0.1427, |
and C=3.1508. The Y equation is es- |

sentially cubic, and it quantitatively
shows the highly nonlinear nature of
the digitization process. You can ob-
tain a “flipped” mirror—that is, not a
true mirror, or pseudoscopic—version
of the curve of the straight line on a

normalized graph by reversing the bit-
order readout from the circuit so that
the resulting curve equation would be:
Y=1.6243%(X—0.1427)>15%,

Without analog-input-voltage trans-
formation, such as the use of look-up
tables or logarithmic amplifiers to pro-
cess the input voltage, or digital cor-
rective logic, digital responses from
simple Hopfield neural converters
are nonlinear and crude. However,
these responses are still possibly use-
ful for such applications as associative
memory and pattern classification be-
cause of robustness in output preci-
sion.

Indeed, because of output digital
stability, the Hopfield neural convert-
er can allow for unwanted analog-in-
put-signal noisiness or variations. This
scenario is in strong contrast to con-
ventional interface circuits between

analog-transmission media and digital-
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computing machines. This Design [dea = ADCs depending on a designer’s needs | layouts; comparator/inverter and com-
shows that flexible circuit adaptability | for neural-network-signal processing. | parator/follower combinations; and the
can exist in producing various forms = This adaptability can be in the forms = selected order of bit-readout patterns
of stable digital outputs from neural = of various input-node-conductance  from the comparators.Er
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Frgure 2 This version of the Hopfield neural ADC features inverted bit outputs.

A



