
13Electronics Projects vol. 26

In most applications, a microcon-
troller can satisfy all the system
requirements with no additional

integrated circuits. Due to their low
cost and a high degree of flexibility,
microcontrollers are finding way into
many applications that were previ-
ously accomplished by mechanical
means or combinational logic. One
such application is a real-time clock.

Here’s a real-time clock using At-
mel AT89S8252. The software for the
microcontroller is written in Bascom51

 K.S. Sankar

Microcontroller-based
Real-time clock

(a powerful BASIC compiler), which
is capable of creating a hex file. The
hex file code can be burnt into the
microcontroller using any commonly
available programmer or kit.

IC AT89S8252 is a low-power,
high-performance CMOS 8-bit micro-
controller. It is manufactured using
Atmel’s high-density non-volatile
memory technology and is compatible
with the industry-standard 80C51 in-
struction set and pin-out. The powerful
AT89S8252 microcontroller provides a
highly flexible and cost-effective solu-
tion to many embedded control appli-
cations. Its main features are:

1. Compatibility with MCS-51
products

2. 8kB in-system reprogrammable
downloadable Flash memory with SPI
serial interface for program download-
ing and

3. 2kB EEPROM with endurance of
100,000 write/erase cycles

4. 4V–6V operating range
5. Fully static operation: 0 Hz to

24 Mhz
6. Three-level program memory

lock
7. 256×8-bit internal RAM
8. 32 programmable I/O lines
9. Three 16-bit timer/counters
10. Nine interrupt sources
11. Programmable UART serial

channel
12. SPI serial interface
13. Low-power idle and power-

down modes
14. Interrupt recovery from power-

down
15. Programmable watchdog timer
16. Dual data pointer
17. Power-off flag
Fig. 1 shows the pin assignments of

AT89S8252.
Fig. 2 shows the block diagram of

the real-time clock using AT89S8252
microcontroller and a few exter-

nal components to
display the time in
HH.MM.SS format
on six 7-segment dis-
plays. Switches S2, S3,
S4 and S5 are used for
hour increment, hour
decrement, minute
increment and minute
decrement, respec-
tively, while switch
S6 is used for reset-
ting the clock display
to all zeroes.

Parts List
Semiconductors:
IC1	 -	 7805, 5V regulator
IC2	 -	 AT89S8252 microcontroller
IC3	 -	 74LS244 octal line driver
IC4	 -	 ULN2803 octal transistor

array
DIS1-DIS6	 -	 LTS543 commoncathode

7-segment display
LED1	 -	 Red LED
Resistors (all ¼-watt, ±5% carbon):
R1	 -	 1-kilo-ohm
R2	 -	 10-kilo-ohm
R3-R11	 -	 100-ohm
Capacitors:
C1	 -	 100μF, 25V electrolytic
C2	 -	 0.1μF ceramic
C3, C4	 -	 22pF ceramic
C5	 -	 10μF, 10V electrolytic
Miscellaneous:
XTAL	 -	 6MHz crystal
S1-S6	 -	 Push-to-on switch

Fig. 2: Block diagram of real-time clock using AT89S8252 microcontroller

Fig. 1: Pin assignments of AT89S8252

14 Electronics projects Vol. 26

Out of the three ports of the micro-
controller, one port is used for setting
the time and the other two ports are
used for displaying the time. Line
driver and Darlington driver array are
used to drive the segment data and
enable the 7-segment display, respec-
tively.

Ciruit discription
Fig. 3 shows the circuit of the real-time
clock built around AT89S8252 micro-
controller (IC2). The power supply
from the 9V battery is down converted
and regulated by IC 7805 (IC1) to pro-
vide regulated 5V to the circuit. Glow-
ing of LED1 indicates that power to the
circuit is switched on. Resistor R1 acts
as the current limiter.

Switch S1 is used to manually
reset the microcontroller, while the
power-on reset signal for the mi-
crocontroller is derived from the
combination of capacitor C5 and
resistor R2. EA/Vpp pin (pin 31) of
the microcontroller is connected to
Vcc to enable internal program ex-
ecution. Pins 19 and 18 are input and
output pins of the built-in inverting
amplifier, respectively, which can
be configured for use as an on-chip
oscillator. A 6MHz crystal is used to
generate the clock frequency for the
microcontroller.

AT89S8252 has four bidirectional
8-bit ports, of which only three ports
(0 through 2) have been used in this
circuit. Port 0 is an 8-bit open-drain
bidirectional I/O port. As an output
port, each pin can sink eight TTL in-
puts. Port 0 can also be configured as
the multiplexed low-order address/
data bus during accesses to the ex-
ternal program and data memory.
External pullups are required during
data outputs.

Port 0 is used to drive the seg-
ments of all the 7-segment common-
cathode displays. Pin 1 of the RNW1
resistor network is connected to Vcc
and pins 2 through 9 are connected
to port-0 pins 39 down through 32
of IC2 as external pull-ups. Pins 39
down through 32 of port 0 are also
connected to the input pins of octal Fi

g.
 3

: C
irc

ui
t o

f t
he

 re
al

-ti
m

e
cl

oc
k

bu
ilt

 a
ro

un
d

A
T8

9S
82

52
 m

ic
ro

co
nt

ro
lle

r

15Electronics Projects vol. 26

rent level. Resistors R5 through R11
limit the current through the 7-seg-
ment displays. Each display com-
prises seven light emitting diodes
(LEDs) with their common cathodes
connected together, hence termed
as the common-cathode, 7-segment
display.

Port 2 acts as the multiplexer to
select a particular 7-segment display
using octal Darlington transistor array
ULN2803 (IC4). Pins 21 through 26
of port 2 are pulled up by the RNW2
resistor network and also connected to
pins 1 through 6 of IC4. IC4 outputs a
low signal to light up the segments of
the 7-segment display selected by the
port-2 data.

Ports 0 and 2 provide the segment
data and enable signal simultaneously
for displaying a particular number on
the 7-segment display. Decimal-point
pin 5 of displays DIS2 and DIS4 is ena-
bled by Vcc through resistors R3 and
R4, respectively, to differentiate the
hour, minute and second.

Port 1 detects pressing of the
switches to increment/decrement
hours and minutes and reset the dis-
play to ‘00:00:00’ by pulling the port
pins to ground. The software detects
pressing of the switches and sets the
time accordingly. Pull-up resistors
on port 1 have been avoided since the
port already has internal pull-ups.

An actual-size, single-side PCB for
the real-time clock is shown in Fig. 4
and its component layout in Fig. 5.

Software
The software for the real-time clock

is written in Bascom51 version. Those
who have knowledge of Basic, Basic-A,
GW-Basic or QBasic language (used to
run on the good old 286 and 386 PCs
with DOS 2.x to 6.2) can understand
the program easily. The demo version
of Bascom-8051 is available on Website
‘www.mcselec.com/ download_8051.
htm.’

Fig. 6 shows the flow-chart of
the program. Step-wise explanation
of how the program works is given
below:

1. Define the port pins and where

Fig. 4: Actual-size, single-side PCB for the real-time clock using AT89S8252 microcontroller

Fig. 5: Component layout for the PCB

line driver IC 74LS244 (IC3).
Segments ‘a’ through ‘g’ of 7-seg-

ment displays DIS1 through DIS6 are
joined and connected to the output

pins of IC3 via resistors R5 through
R11, respectively. IC3 acts as an octal
buffer between the microcontroller
and the displays to increase the cur-

16 Electronics projects Vol. 26

Fig. 6: Flow-chart of the program

these are connected.
2. Include the header

file for the microcon-
troller

3. Define the crystal
speed.

4. Declare the vari-
ables as bits, bytes and
words.

5. Initialise all ports
to 0, except port 1, which
is turned high to act as
an input port.

6. Run a diagnos-
tic subroutine to test
the segments of all the
digits.

7. Configure the in-
ternal timer as an inter-
rupt generator to get
a one-second-activity
source.

8. Initialise hour,
minute and second vari-
ables to zero.

9. Get into a perpet-
ual Do loop to display
the time in ‘HH:MM:SS’
format. (Since there are
no BCDto-7-segment
converter ICs and no
latch ICs, it is up to the
software to show the
clock display without
being interrupted.)

10. Set the input
switches to activate the
respective subroutines
using the built-in com-

mand of Bascom’s key debounce state-
ment.

11. Check when second, minute
and hour variables exceed their limits
and increment them accordingly.

12. Activate the digits one by one
through port 2 and show the corre-
sponding number on the display using
port 0.

13. Declare subroutines for detec-
tion of the switches pressed to adjust
hours and minutes.

14. Declare the main display sub-
routine. Since we have not used a 7seg-
ment converter IC, a quick table check
using read and data concept in Basic is
performed to get the correct byte value
for the digit to be displayed.

15. Declare the internal timer inter-
rupt subroutine. This subroutine is
called 2000 times in a second using a
6MHz crystal, and to generate an ac-
curate one-second variable, we set the
flag only once every 2000 times. This
variable is used to detect the seconds
change and increment the time in the
main Do loop routine. The accuracy
of the clock depends on the timer sub-
routine.

Other possible uses
The circuit and the software can be im-
proved to convert this real-time clock
into an alarm clock. With port 3 acti-
vated, it can be used as a multichannel
industrial timer.

Download source code: http://
www.efymag.com/admin/issuepdf/
Real%20Time%20Clock.zip

EFYclk11.bas
‘--
‘ EFYclk.bas 18-10-04
‘ REAL TIME CLOCK DISPLAY ON six 7-SEG

DISPLAYS
‘ BY k.s.sankar www.mostek.biz for EFY
‘ written using BASCOM-51 from MSC electron-

ics Netherlands
‘--

‘Connect common cathode LED displays as
following :
‘ port-0 (red)
‘a = P0.0
‘b = P0.1
‘c = P0.2
‘d = P0.3
‘e = P0.4
‘f = P0.5
‘g = P0.6

‘dp= p0.7
‘

‘88 88 88
‘hh mm ss port-2 (green) p2.0 /1 : 2/3 : 4/5
‘12 34 56 digit number

‘ yellow port-1 set switches
‘P1.0=H+ P1.1=H-
‘P1.2=M+ P1.3=M-
‘P1.4= 00 00 00 (reset to 00 00 00)

‘--
$regfile = “89s8252.dat”
$crystal = 6000000
‘6 mhz crstal

Dim Once_a_sec As Bit
Dim Clock_word As Word
Dim Hours As Byte , Minutes As Byte , Seconds

As Byte
Dim Red As Byte , Green As Byte
Dim Count As Byte , X As Byte , Segment As Byte
Dim Number As Byte , Digit_select As Byte
Dim Del As Byte , Diagdelay As Byte
Dim Large As Word

Del = 1
‘ delay variable in milliseconds
‘ all ports 0
P0 = 0
‘red
P1 = 255
‘yellow all high for sw inputs
P2 = 0
‘green
P3 = 0
‘blue not used

Config Debounce = 30

17Electronics Projects vol. 26

‘ key debounce time in milli seconds
Config Timer0 = Timer , Gate = Internal , Mode

= 2
‘Timer0 use timer 0
‘Gate = Internal no external interrupt
‘Mode = 2 8 bit auto reload

Gosub Diag
‘ diagnostic routine

‘ set t0 internal interrupt
On Timer0 Timer_0_int
Load Timer0 , 250
Priority Set Timer0
Enable Interrupts
Enable Timer0
Start Timer0

Hours = 0
Minutes = 0
Seconds = 0
Clock_word = 0

Do
‘ yellow port-1 key inputs for setting
Debounce P1.0 , 0 , Hup , Sub
Debounce P1.1 , 0 , Hdown , Sub
Debounce P1.2 , 0 , Mup , Sub
Debounce P1.3 , 0 , Mdown , Sub
Debounce P1.4 , 0 , Zero , Sub

If Once_a_sec = 1 Then
‘ once_a_sec=calculation every second
Once_a_sec = 0
‘update hh mm ss

inc seconds
If Seconds = 60 Then
Seconds = 0
inc minutes
 If Minutes = 60 Then
 Minutes = 0
 inc hours
 If Hours = 24 Then
 Hours = 0
 End If
 End If
End If
End If

‘ display time constantly
‘ hours

Number = Hours / 10
P2 = 1
Gosub Disp
Waitms Del
P0 = 0
‘-------
Number = Hours Mod 10
P2 = 2
Gosub Disp
Waitms Del
P0 = 0
‘-------

‘minutes
Number = Minutes / 10
P2 = 4
Gosub Disp
Waitms Del
P0 = 0

‘-------

Number = Minutes Mod 10
P2 = 8
Gosub Disp
Waitms Del
P0 = 0
‘-------

‘SECONDS

Number = Seconds / 10

P2 = 16
Gosub Disp
Waitms Del
P0 = 0
‘-------

Number = Seconds Mod 10
P2 = 32
Gosub Disp
Waitms Del
P0 = 0
‘-------
Loop
‘ - - - - - - - - - - - - - - - - - -

‘ set keys below

Hup:
Incr Hours
If Hours >= 24 Then
 Hours = 0

End If
 Return

Hdown:
Decr Hours
If Hours = 255 Then
 Hours = 23
End If
 Return

Mup:
Incr Minutes
If Minutes >= 60 Then
Minutes = 0

End If
Return

Mdown:
Decr Minutes
If Minutes = 255 Then
Minutes = 59

End If
Return

Zero:

Hours = 0 : Minutes = 0 : Seconds = 0
Return

‘ - - - - - - - - -- - - - - - - -- - - - - -
Diag:
‘diagnostics

‘if zero button pressed then goto zero label and
return
Diagdelay = 121

For Seconds = 1 To 5

Diagdelay = Diagdelay - 20

P2 = 1
For Green = 0 To 5

P0 = 1
For Red = 0 To 7
Debounce P1.4 , 0 , Zero
 Waitms Diagdelay
Rotate P0 , Left

Next Red

Rotate P2 , Left
Next Green

Next Seconds

‘ next diag show 000000 to 999999 on all digits
‘ - - - - - - - -- - - - - -- - - - - - - -- - - -

For Number = 0 To 9
P2 = 1

For Large = 1 To 50

‘ approx 1 second time loop with 200 in large
For Green = 0 To 5
Debounce P1.4 , 0 , Zero
 Gosub Disp
Waitms Del
Rotate P2 , Left
Next Green
Next Large

Next Number

Return

‘Displaying routine

Disp:

Restore Tabela

‘ scan 7-seg table to get byte for the digit to
display
For X = 0 To 9
Read Segment
 If X = Number Then
 ‘if X = value to display
 P0 = Segment
 ‘then set this value to Port0-red
 Exit For
 ‘and exit FOR loop
 End If
Next

Return

‘ int subroutine -----------------
Timer_0_int:
Incr Clock_word

If Clock_word > 2000 Then
Clock_word = 0
Once_a_sec = 1
End If
Return

‘---- data for 7-seg LED display ------
Tabela:
Data 63 , 6 , 91 , 79 , 102 , 109 , 125 , 7 , 127 , 111
‘ end of program
‘ -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=



