
26 Everyday Practical Electronics, January 2018

Arduino meets the
ATtiny85
Microcontroller  
No doubt you have seen heaps of interesting applications for Arduino boards.
But what if you want to use some of those ideas in a design of your own using
the Atmel ATtiny85 microcontroller? It’s actually quite easy – and you can
use Arduino software. Interested? Lawrence Billson takes up the story.

The ATtiny microcontrollers from Atmel are an ideal
way to add simple programmable logic to your cir-
cuits. For example, the ATtiny85: it costs just a pound

or two, and with only eight pins it is an easy way to get
started by adding a microcontroller to your own design.

And if you are not a software guru, the chip can be
programmed using the free Arduino IDE (integrated de-
velopment environment), making short work of simple
electronics projects.

The ATtiny85 chip has five general-purpose input-output
(GPIO) pins. Three of them are capable of reading analogue
voltages while the other two are capable of ‘analogue’ out-
put – more on that later.

Other than writing your program to the chip’s built-in
Flash memory, all it really needs is a ground (0V) connec-
tion and a voltage of +2.7 to +5.5V on its Vcc pin (8).

With a few lines of code, the ATtiny85 can replace nu-
merous analogue or digital ICs and give your design the
flexibility of being reprogrammable.

Although the Arduino IDE allows you to program in C
(technically C++), knowing the language isn’t critical. With
the very large ‘community’ built around the platform, many
applications can be programmed using ‘cut and paste’ meth-
ods. Much of the Arduino code you find on the ‘net will
run on the ATtiny85 with little or no modification at all.

On paper, the ATtiny85 specs may seem underwhelming.
It is an 8-bit micro with 8KB of rewritable Flash memory for
storing and executing your program, 512 bytes of EEPROM
for storing things like configuration or calibration variables
from your project and another whopping 512 bytes of RAM.

But don’t let the meagre-sounding specs fool you. Using
the freeware Arduino IDE, your code (or cut and paste ef-
fort) is transformed into tight, fast machine language using
the built-in avr-gcc compiler.

In times gone past, a compiler for embedded processors
was difficult to use and cost thousands of dollars – a huge
barrier to entry. As well as being free, the Arduino software
hides all of the ‘engine room’ parts like the compiler, chip
‘fuses’ and linker scripts.

Although the Arduino IDE is tailored for Arduino (or
clone) boards, with only a few minor tweaks, it’ll program
your ATtiny chips nicely.

Development history
The ATtiny85 is based around Atmel’s AVR architecture. This
began life as a project by two students from the University of
Norway in 1996. They were looking to build a microcontroller
that was based around Flash memory. Using Flash memory
allows a microcontroller’s code to be changed without need-
ing to expose chips to UV light or replace external ROMs.

We found this diagram on the net*
and it shows the various uses for
each pin on the ATtiny85 (and
also the ATtiny45). If you don’t
understand all the abbreviations
and jargon, don’t worry: it will be
much easier to understand as you
start playing with the ATtiny85.
(*www.instructables.com/id/Using-
the-Arduino-Uno-to-program-
ATTINY84-20PU/)

Arduino Meets The ATtiny (MP 1st) JAN 2018.indd 26 20/11/2017 11:34

Everyday Practical Electronics, January 2018 27

Another advantage was that a product could be manufac-
tured with a blank chip and programmed in the factory or
field. If you pull apart many mass-produced products you
may well find ICSP (In-Circuit Serial Programming) pads
or pins on circuit boards for just this purpose.

Another problem the Norwegian students were attempt-
ing to solve was that of ‘compiler bloat’. Chips like the Intel
8051, which was the dominant microcontroller at the time,
use a complex instruction set (CISC) architecture.

While lending themselves to being programmed with as-
sembly language, compiled languages would often become
bloated as the compiler turned the program into machine
language. This ‘bloat’ caused two problems: the code would
become quite large and also quite slow to run.

As the AVR architecture took shape, the students worked
closely with the authors of a professional compiler named
‘IAR’. Being developed in parallel, the AVR evolved to be
very good for running high-level compiled languages.

Classified as a RISC (reduced instruction set computer),
it allows for most instructions to be executed in a single
clock cycle and it hasn’t changed much in the last 20 years.

Knowing that Flash memory was a key component in
their design, the students from Norway knew they would
need to take their chip design to a company that had ex-
perience making Flash memory. At the time, there were
two – one based in Japan and Atmel in the United States.
The Norwegians decided they spoke better English than
Japanese and therefore approached Atmel.

Since their release in 1997, Atmel have sold hundreds
of millions of AVRs. They are among the most popular mi-
crocontrollers being used by industry, and rival company
Microchip (makers of the successful PIC microcontrollers)
struck a deal to buy Atmel.

The ATtiny family is designed to be embedded into things.
Tear apart a toaster or cordless drill and there’s every chance
you’ll find one inside. They are available in DIP (through-
hole) or a variety of surface-mount packages, and are equally
at home on a breadboard or a mass-produced product.

In an interview on the excellent ‘embedded.fm’ podcast,
Atmel’s Andreas Eieland talks about millions of their
smaller chips finding their way into home pregnancy test-
ers, of all things!

So what can you do with it? Controlling things like step-
per motors and servos is easy, as is gathering data from
temperature or humidity sensors. The ATtiny85 shines at
smaller automation jobs. Instead of a 555 timer or some
logic gates, I’ll often grab an ATtiny85 for the same job.
As a rule of thumb, if the application has only a couple of
inputs and outputs, it might be a good choice.

If your application needs more pins or support for more
complicated programs, the Micromite or larger AVR chips
may be a better choice.

Getting started – what you’ll need
You will need an AVR-specific ICSP programmer. Usually
in the form of a USB-attached gizmo, the ICSP allows the
Arduino software on your computer to write its compiled
program into the memory of your chip. The Freetronics
unit will do the job well – see below.

As its name implies, the ICSP allows you to program your
chip while it’s in circuit. But this is not really practical
in the case of the ATtiny85 since most of the I/O pins are
used by the ICSP and this will limit what you can connect
to them. So it’s best to program the chip on a breadboard
before embedding it into your circuit.

The 6-way connector that’s standard on typical ICSPs
isn’t particularly breadboard-friendly. So we will make
up a simple 6-pin header as an adaptor to connect it to a
breadboard.

You’ll also need a computer (laptop or desktop) on which
to write your programs – any PC that runs Windows, Linux
of Mac OSX will be fine. The Arduino IDE can be freely
downloaded from: arduino.cc. Other than that, you’ll need
some ATtiny85 chips and you’re ready to get started.

Your first ATtiny85 project
We start with the simple circuit shown in Fig.1. It uses four
of the ATtiny85’s I/O pins to connect to the ICSP header
socket and one of the remaining I/O pins to drive an LED.

The first program you will use will simply flash that
LED, and that’s all. But you have to start somewhere. The
circuit of Fig.1 needs to be made using a small breadboard
and we have shown the component layout in Fig.2. So get
your parts and a breadboard together!

Note that you will need to solder six insulated wires to
a 6-pin DIL header and that will provide the connection
to the ICSP programmer.

Now you need to program the ATtiny85. Begin by down-
loading and installing the latest release of the Arduino IDE.
Be sure to say ‘yes’ to installing all of the recommended
drivers that are included with it.

The Arduino software comes ready to work with their
officially branded boards. As we’ll be using it to program an
ATtiny85 chip, we’ll need to include support for it. You’ll
only need to do this once.

Once Arduino is installed, open the Preferences
window and find the section for ‘Additional Boards
Manager URLs’ – paste in https://raw.githubusercon-
tent.com/damellis/ATtiny/ide-1.6.x-boards-manager/
package=damellis=ATtiny=index.json and click OK.

Under the ‘Tools’ menu, select ‘Board:’ , then click on
‘Boards Manager’. Type ATtiny in the search box. Select
the ATtiny library by David A. Mellis, and click ‘Install’.

From now on, your Arduino IDE will know about the
ATtiny85 chips and be ready to program them.

A

K

�

IC1
ATtiny85

IC1
ATtiny85

1

2

3

4

5

6

7

8

PB5/RESET

PB2

PB0PB4

PB3

PB1

GND

VCC

20 71
SC
� YOUR FIRST AT PROJECT85TINY

1 2

3 4

5 6

LED1

470�

VCCMISO

MOSI

GND

SCK

RST

ICSP
HEADER

K

A

LED
100nF

Fig.1: one chip, one LED and one resistor – you can hardly
go wrong! At right is the layout on a mini breadboard.

The breadboard, plugged into our
home-made adaptor plugged into the
Freetronics USB Programmer – which
connects to a computer USB socket.

YOUR FIRST ATTINY85 PROJECT

Arduino Meets The ATtiny (MP 1st) JAN 2018.indd 27 20/11/2017 11:35

28 Everyday Practical Electronics, January 2018

You’ll need to tell Arduino about the chip we want to
program. Under the ‘Tools’ menu, select ‘Board <Name>’
and you’ll now see ‘ATtiny’ as an option. Select this. You
must now go back in and give it some more details – in
this example set:

 Board - ATtiny
 Processor - ATtiny85
 Clock - 8MHz (internal)

For each new chip, you’ll need to set its fuses. This
tells the chip how to behave before it starts running any
programs (eg, to use the 8MHz internal oscillator). Click
on ‘Tools’ then ‘Burn Bootloader’. Keep an eye out for
error messages.

If all has gone well so far, it’s time to write your code
to the chip. Connect your ICSP programmer to the 6-pin
header from the breadboard and connect the programmer
to your PC. Holding down shift, click on the green arrow.
This will compile your code and write it to the chip using
the ICSP programmer.

If all has gone well, you’ll have a blinking LED on your
breadboard. Congratulations.

LED strobe
Our next circuit and program is for a simple LED strobe
light. You have a wide choice of high-brightness LEDs of
various colours for this job, but I chose a Jansjo 2W LED
lamp from Ikea. It comes with a handy plugpack power
supply, to provide the LED with 4.5V DC.

Our ATtiny85 can modulate with an N-channel FET and
the circuit is shown in Fig.3. Pin 4 of the ATtiny85 drives
the gate of the MOSFET, whereas in the previous circuit
it just drove an LED via a 470Ω current-limiting resistor.
The software is ‘Ikea_Strobe.ino’.

But before you wire up the strobe circuit on a breadboard,
as shown in Fig.4, you have to load the strobe software
into the ATtiny85 using the breadboard layout of Fig.2.
In fact, we suggest you keep that Fig.2 breadboard as your
dedicated ATtiny85 programmer.

6-PIN DIL HEADER
()MATES WITH ICSP CABLE

1 2
3 4
5 6

()MISO

()SCK()SCK

()RST

()GND

()MOSI

()VCC

100n

LED1470�

RESISTOR

100nF
CAPACITOR

ATtiny85ATtiny85

11

LINKLINK

AK

Fig.2: here’s the breadboard layout for the Flashing LED
project overleaf (Fig.1), along with the wiring for a 6-pin DIL
header for programming.

Freetronics USB ICSP Programmer for AVR and
Arduino. The six-pin socket on the end of the IDE
cable mates with the 6-pin ICSP header pin ‘plug’
we will show you how to make later. This board
then plugs into your PC via the micro-USB socket
(left edge) and enables you to program the ATtiny85.
(www.freetronics.com/usbasp).

Be sure to select the internal clock. If you accidentally
select an external clock your ATtiny85 can’t be programmed
unless you connect an external crystal.

Now we need to tell Arduino what type of ICSP we’ll be
using. For the Freetronics XC4237, select ‘USBasp’. Next,
go to ‘File’, select ‘Examples’, ‘Basics’, and open ‘Blink’.

The blink program normally tries to blink an LED con-
nected to pin 13. But your ATtiny85 doesn’t have quite that
many! We have connected our LED to pin 4 (as in Fig.1), so
you will need to change all of the references from ‘13’ to ‘4’.

MISO connects to MISO, MOSI connects to MOSI. Some
programmers won’t supply any power to the board so you
may also need to connect up a power supply or batter-
ies. Other programmers may have a jumper marked VOUT
which you can short, thus powering your board from the
ICSP. Check with a multimeter to verify your VCC line is
between 2.5 and 5.5V.

Arduino Meets The ATtiny (MP 1st) JAN 2018.indd 28 20/11/2017 11:35

Everyday Practical Electronics, January 2018 29

Before uploading the strobe code, don’t forget to ‘burn
bootloader’ to your new chip to set its fuses. Once the fuses
are set, you can upload your code.

The strobe software task is divided into ‘start’ and ‘loop’
sections. When power is first applied to the micro, the start
section is executed – this sets pin 0 as an output and pin
4 as an analogue input.

The loop section is then executed. In this, the micro sets
pin 0 high (switching on the MOSFET, allowing current to
pass from the lamp to the power supply). The micro waits
for 5ms and sets pin 0 low; turning off the lamp.

The micro then measures the voltage at the potentiome-
ter wiper. Depending on the position of the potentiometer,
the value measured will be between 0 and 1023. The micro
then waits for that same number (ie, between 0 and 1023)
of milliseconds, allowing the strobe to vary its ‘off time’.
As soon as this completes, the loop begins anew.

So having built the strobe breadboard of Fig.4, you can
plug in your freshly programmed ATTtiny85 chip and you
are ready to go.

Audio Thermometer
This project makes use of the DS18B20 digital thermometer
chip (or probe). Rather than displaying the temperature
as a number, it plays a tone corresponding to the relative
temperature it measures.

The DS18B20 is available in different package types
– most commonly a TO-92 which looks just like a small
transistor. It’s also available in a waterproof probe suitable
for immersion into liquids up to about 120°C.

The circuit of the Audio Thermometer is shown in Fig.5
and the breadboard layout is Fig.6.

In this case we are using a 9V battery to power the cir-
cuit and this is reduced to 5V for the ATtiny85 and the
DS18B20 thermometer.

The data line from the DS18B20 is fed into the PB3 input,
pin 3 and also pulled high with a 4.7kΩ resistor.

As with most Arduino programs, the Audio Thermometer
code is divided into the ‘Start’ and ‘Loop’ sections. An ex-
ternal library of functions is also loaded, to communicate
with the DS18B20 thermometer. We simply tell the library
which pin it’s connected to, and request a temperature
reading whenever we want.

The ‘Start’ routine runs once as the chip is powered on. It
initialises the DS18B20 and sets the PB1 pin (6) connected
to the piezo to be an output. It also sets the pin connected
to the potentiometer wiper as an analogue input – this is
used to vary the range of the tones.

IC1
ATtiny85

IC1
ATtiny85

1

2

3

4

5

6

7

8

PB5/RESET

PB2

PB0PB4

PB3

PB1

GND

VCC

20 71
SC
� AT BASED STROBE LAMPTINY85

1k�VR1
10k�

FROM
POWER
SUPPLY

Q1
540IRF

TO
LAMP

G
S

D

++

––

+5V

G
D

D

S IRF540

100nF

Fig.3: instead of flashing an LED directly, the strobe circuit
drives a MOSFET which in turn drives a more powerful LED.
VR1 varies the rate of the flashing LED.

ATtiny85 pin functions
Digital: All of the I/O pins are capable of digital input

and output. They can be set either high (VCC) or
low (0V). They can also read a digital high or low.

Analog in: These pins are capable of reading a
voltage of between 0 and your VCC voltage,
providing a 10-bit number: 0V reads as ‘0’ while
VCC reads as ‘1023’. If you need to measure higher
voltages, you can use a voltage divider circuit to
reduce the voltage going into this pin.

PWM: pulse-width modulation (PWM) output
– these pins can simulate an analogue volt-
age output by using PWM. Instead of adjusting
the voltage, they can send shorter or longer
pulses, thereby changing the average voltage.
For applications like motors or lights this works well.
You can set these pins to an 8-bit value (ie, 0 to 255).
When set to a value of 0, the pin has a 0% duty
cycle and is equivalent to 0V. At 255, it has 100%
duty cycle and is equivalent to your VCC voltage.

ICSP Pins: Connect your ICSP to these pins to
program your chip. MISO and MOSI stand for
‘master in, slave out’ and ‘master out, slave in’
respectively. SCK is the ‘chip select’ that tells the
chip the programmer is talking to it.

Reset: This is normally held high (ie, at 5V or
whatever VCC is) by the chip. When pulled briefly
to ground, the chip resets and starts running its
program again.

You’ll note the pin numbers in software don’t
correspond with the physical pin numbers of the chip.
This diagram will help translate between the software
world and the real world.

1

2

3

4

8

7

6

5

Reset Vcc (+2.5 to +5.5V)

Digital 3, Analog in 3 Digital 2, Analog in 1, SCK

Digital 4, Analog in 2

Ground Digital 0, PWM 0, MOSI

Digital 1, PWM 1, MISO

MISO

SCK

Reset

VCC

MOSI

Ground

Dot to mark pin 1

PINS ON THE ATTiny85

ICSP PINOUTS
(Top view, looking at

a rogrammer)p

The ‘Loop’ function starts by requesting the temperature
from the DS18B20. It then measures the analogue value from
the potentiometer wiper. The temperature value (reported
in °C) can go as low as –55°C. As we’ll be turning it into a

ATTINY85 BASED STROBE LAMP

Arduino Meets The ATtiny (MP 1st) JAN 2018.indd 29 20/11/2017 11:35

30 Everyday Practical Electronics, January 2018

6-PIN DIL
HEADER

1 2
3 4
5 6

AT MISOtiny85 pin 6 ()

AT SCKtiny85 pin 7 ()

AT RSTtiny85 pin 1 ()

AT GNDtiny85 pin 4 ()

AT MOSItiny85 pin 5 ()

AT VCCtiny85 pin 8 ()

(1) Cut off a 3 x 2-way length of
pin header and solder six wires
to it. A red wire connects to the +
terminal and a black to – (other
colours can be what you have
available).

(2) Apply a glob of hot melt glue (or
silicone sealant if you don’t have hot
melt) over the soldered pins and back
up the wires to keep the wires in
position when it is being used.
Allow to dry.

(3) Cover with a length of heatshrink tubing,
right down onto the glue. This will stop it trying
to pull apart as it is inserted and removed
from the socket.

(4) Slide some short lengths of white heatshrink over
each wire towards the plug, and some longer lengths of
heatshrink over the opposite ends of each wire to make
them stiffer. With a multimeter, identify which pin goes to
which wire and write it on the white heatshrink. Shrink
all heatshrink . . . and it’s finished!

How to make the 6-way ICSP connector

  



1

2

3

4

8

7

6

5

Reset Vcc (+2.5 to +5.5V)

Digital 3, Analog in 3 Digital 2, Analog in 1, SCK

Digital 4, Analog in 2

Ground Digital 0, PWM 0, MOSI

Digital 1, PWM 1, MISO

MISO

SCK

Reset

VCC

MOSI

Ground

Dot to mark pin 1

PINS ON THE ATTiny85

ICSP PINOUTS
(Top view, looking at

a rogrammer)p

VR1
10k�

100n

1k�

RESISTOR
1k�

RESISTOR

100nF
CAPACITOR

ATtiny85ATtiny85

11

TO
LAMP

FROM
POWER
SUPPLY

Q1
540IRF

Q1
540IRF

+
+ –
–

G
D

S

frequency, we need to ensure it is a positive number. We
do this by adding 60. We then multiply this number by
the value of the pot to derive a frequency in hertz.

The tinyTone function is then called to output this
frequency to the piezo speaker for 600ms before the loop
restarts. As its name implies, tinyTone is a function that
generates square wave tones. It does this by setting a pin
high, waiting for a number of microseconds, then setting
it low before waiting and repeating.

Want it to tell you the temperature in morse code? Want
it to play different tones if the temperature is lower than
35.9° or above 36.7°C (armpit temperature)? With a little
experimentation, either of these is quite simple.

As before, you will need to program the ATtiny85 with
the breadboard of Fig.1 and then transfer it to the bread-
board layout of Fig.6.

Next steps
Looking under the Examples in the
file menu, you’ll see some easy-to-
follow examples. Because the ATtiny85
doesn’t have many pins or built in
peripherals (like SPI or I2C), some of
those programs won’t work, but they
can still give you many examples to
copy to your code.

Now is a good time to take a look at the
Arduino community for other sources of
inspiration and problem solving.

If you’re having a problem with
something, it’s almost certain that
you’re not the first person to come
across it and someone else will prob-
ably have solved it.

It’s easy to make a connector for the ICSP – all you need is a length
of 2-way pin header (eg, Altronics P-5410) and carefully remove
a 3-pin length. The wiring we used came from a length of 4-wire
discarded telephone cable (yep, we never throw anything out!) It
has colours of red and black (ideal for power) and blue and white
(for everything else). You could also use female-male jumper leads
and avoid some soldering.

Colours shown here are for clarity only!

Fig.4: breadboard layout (top) along with a matching photo (below) for the ATtiny85
Strobe Lamp. Remember that all of the north-south holes (in groups of 5) are
connected inside the breadboard; all of the east-west holes are not.

Reproduced by arrangement
with SILICON CHIP

magazine 2017.
www.siliconchip.com.au

Arduino Meets The ATtiny (MP 1st) JAN 2018.indd 30 20/11/2017 11:35

Everyday Practical Electronics, January 2018 31

IC1
ATtiny85

IC1
ATtiny85

1

2

3

4

5

6

7

8

PB5/RESET

PB2

PB0PB4

PB3

PB1

GND

VCC

20 71
SC
� AT BASED AUDIO THERMOMETERTINY85

4.7k�

VR1
10k�

TO
PIEZO

SOUNDER

+5V

1 F�

GND

INOUT

9V
BATTERY

S1 POWERREG1 7805

1

2

3IC2
DS18B20
DIGITAL

THERMOMETER

IC2
DS18B20
DIGITAL

THERMOMETER GND

DQ

Vcc

MAXIM18B20
GND

DQ VDD OUTGND

GND
IN

7805DS18B20

+

–

VR1
10k�

4.7k�

RESISTOR 1 F�

CAPACITOR
ATtiny85ATtiny85

11

TO PIEZO
SOUNDER

1
F

�

REG1
7805
REG1
7805IC2

18B20DS
(FLAT SIDE

)UPPERMOST

VC
C

VC
C

D
Q

D
Q

G
N

D
G

N
D

+
9V BATTERY

S1S1S1

BATTERY SNAP

+
–

INOUT

Fig.5 (above): the Thermometer uses
a DS18B20, small solid-state digital
thermometer chip, which will feed
a number sequence to the ATtiny85
representing the temperature it is
sensing. The ATtiny85 then generates a
tone for the piezo sounder corresponding
to the temperature.

Fig.6 (left): the breadboard layout for
the audio thermometer. It’s a little more
complex so make sure the components
and wire links are in the right place.
You can also refer to the matching
photograph (below).

Parts you will need
First of all, you need the Freetronics ICSP
Programmer for Arduino, which you can buy on
Freetronics’ website (www.freetronics.com.au)
for £12 plus shipping
See: www.freetronics.com.au/blogs/news/8607215

It comes with a ribbon header cable (6-pin to 6-pin)
and a short USB cable (type A to micro-B). And they’ll
throw in a mini protoboard for only £2 more – just
what you need!

By the way, Freetronics also provide a PDF guide to
using their programmer, which readers may wish to use
in conjunction with the description provided above.
Other main parts (Not a complete list... These
components will allow you to build any one of the projects
here but some components are common to all three).
1 Atmel ATtiny85 microcontroller
1 DS18B20 digital thermometer chip
1 IRF540N N-channel MOSFET

1 7805 5V regulator
1 red LED
1 Jansjo 2W LED lamp and 4.5V DC plugpack from Ikea
1 1µF 10V electrolytic capacitor
1 100nF polyester capacitor
1 470Ω resistor
1 1kΩ resistor
1 4.7kΩ resistor
1 10kΩ potentiometer
1 x 2 pin DIN plug
1 x 2 pin DIN socket
1 x 8 pin IC Socket
6 300mm lengths single-core copper or tinned copper

wire (‘bell wire’)
1 2x3-way DIL pin header (may to be cut down from

larger – eg 2x10-way
(If not obtained above from Freetronics): 1 small

breadboard (protoboard)

Download the required code (programs) from the EPE
website (www.epemag.com).

References
www.atmel.com/images/doc0943.pdf – shows how to use ICSP
with other things connected to the pins. Embedded.fm episode 15

http://embedded.fm/www.instructables.com/id/Using-the-Ardui-
no-Uno-to-program-ATTINY84-20PU/ – not the exact chip we’re
using here, but gives a lot more information about programming
the ATtiny series using Arduino.

ATTINY85 BASED AUDIO THERMOMETER

Arduino Meets The ATtiny (MP 1st) JAN 2018.indd 31 20/11/2017 11:36

