
www.elektormagazine.com March & April 2017 23

The OCM combines the outputs of Timer3
and Timer4 — another Elektor Uno R4
exclusivity — and makes the result avail-
able on PD2, which is Arduino pin 2 and
MCU pin 32. Here, combining means
either AND-ing or OR-ing the two sig-
nals, as shown in Figure 1. The value of
register PORTD2 determines which oper-
ation is executed. If PORTD2 is set to ‘1’,
then OR-mode is selected; if PORTD2 is
set to ‘0’, AND-mode is what you get.
Signals similar to those from Figure 1

are commonly found in infrared remote
controls where they are used to modulate
the current through an IR LED.
My home, and yours too I reckon, is
littered with remote controls (RCs).
Some time ago when I needed a Philips
RC-5-compatible RC I had to try them
all only to discover that none of them
used the RC-5 protocol, not even my
Philips DVD player (using RC-6). Most
of my RCs appeared to use some variant
of the Japanese NEC protocol instead.
This is understandable as most of the
remote-controlled equipment in my
house, and yours too I reckon, was made

How to Produce NEC-style
Remote Control Signals
Exclusively for the Elektor Uno R4

By Clemens Valens (Elektor Labs)

The ATmega328PB micro at the heart of the Elektor Uno R4 is
equipped with a so-called Output Compare Modulator (OCM). This
peripheral, together with a few more, is not available on
other versions of the ATmega328 found in standard
Arduinos like the Uno R3. The OCM is great
for generating infrared (IR) remote
control signals.

PROJECTLABS

PROJECT INFORMATION
Elektor Uno R4

intermediate levelÆ
entry level

expert level

1 hour approximately

€25 / $30 / £20
approximately

computer with Arduino IDE
Elektor Uno R4

 Arduino
Remote Control

OCM
RC-5

24 March & April 2017 www.elektormagazine.com

 tx_index >>= 1; // Next bit.
 }
 else
 {
 if (OCR4A>=2*OCR4B)
 {
 OCR4A = OCR4B + 10; // Send closing burst.
 }
 else
 {
 // Done, clean up.
 TIMSK4 &= ~(1<<OCIE4B); // Disable interrupts.
 TIMER3_OFF;
 TIMER4_OFF;
 }
 }
}

void ir_send_code(uint32_t code)
{
 // Copy code to TX buffer.
 tx_buffer = code;
 tx_index = 0x80000000; // 32 bits.
 // Setup timer4 for preamble.
 OCR4A = 2*12*pulse;
 OCR4B = 2*8*pulse;
 TIFR4 = (1<<OCF4B); // Clear pending interrupts.
 TIMSK4 = (1<<OCIE4B); // Enable compare interrupt.
 // Go!
 TIMER3_ON;
 TIMER4_ON;
}

void setup(void)
{
 pinMode(ir_led,OUTPUT); // Enable output.
 digitalWrite(ir_led,LOW); // OCM in AND mode.
 // Timer3 mode 4 (CTC), toggle output on match.
 TCCR3A = (1<<COM3B0);
 TCCR3B = (1<<WGM32);
 OCR3A = 16000000/CARRIER/2; // Toggle at 76 kHz ->

38 kHz.
 OCR3B = OCR3A>>1; // 50% duty-cycle.
 // Timer4 mode 15 (Fast PWM), clear output on

match.
 TCCR4A = (1<<WGM41) | (1<<WGM40) | (1<<COM4B1);
 TCCR4B = (1<<WGM43) | (1<<WGM42);
 ir_send_code(RC_CODE);
}

void loop(void)
{
}

It all starts in the function setup with the declaration of pin 2
(PD2, to which the IR LED is to be connected) as an output. Skip
this step and nothing will ever come out of this pin. Making the

in Asia. So, now that we have this nice OCM peripheral, let’s
use it to produce NEC-compatible RC signals.
An NEC-type RC code starts with a preamble or burst of 9 ms,
followed by 4.5 ms of silence (a pause). Next the bits, 32 in total,
are transmitted one after the other. A ‘0’ consists of a burst and
a pause of both 562.5 µs (1,125 µs in total) and a ‘1’ is a burst
of 562.5 µs with a pause of 1,687.5 µs (2,250 µs in total). The
sequence must be terminated by a closing burst (postamble) to
‘close’ the last bit. All durations mentioned here are multiples
of 562.5 µs. In what follows, a ‘pulse’ is the duration of a burst,
and a ‘period’ is the duration of a burst + pause.
A burst is nothing more than a high-frequency signal, a carrier,
switched on and off by the modulator. We can use Timer3 to
generate a carrier and modulate it with Timer4. The other way
around is equally valid, but in life one is forced to make choices.
All timers in the ATmega328, including Timer3 and Timer4, are
capable of generating interrupts when they overflow or when
they exceed a certain value. This offers a nice mechanism to
easily modulate the carrier with the data we wish to transmit:
every time the interrupt fires, the next bit to transmit is read
from the TX buffer and used to determine the pulse and period
needed to send a zero or a one. The sketch that follows shows
how we can accomplish this.

/*
 * IR Transmitter
 * Uses Output Compare Module (OCM), ATmega328PB

only.
 */

#define CARRIER 38000
#define RC_CODE 0x6170807f

const int ir_led = 2;
const uint16_t pulse = 1125; // 2*562.5
uint32_t tx_buffer = 0;
uint32_t tx_index = 0;

#define TIMER3_ON TCCR3B |= (1<<CS30) /* prescaler
1 */

#define TIMER3_OFF TCCR3B &= ~(1<<CS30)
#define TIMER4_ON TCCR4B |= (1<<CS41) /* prescaler

8 */
#define TIMER4_OFF TCCR4B &= ~(1<<CS41)

ISR(TIMER4_COMPB_vect)
{
 if (tx_index!=0) // Any bits left?
 {
 OCR4B = pulse; // Set pulse length.
 if ((tx_buffer&tx_index)!=0)
 {
 OCR4A = OCR4B<<2; // Set '1' period.
 }
 else
 {
 OCR4A = OCR4B<<1; // Set '0' period.
 }

www.elektormagazine.com March & April 2017 25

Transmitting a code is fully interrupt-driven and the rest of the
program can do other things while this runs in the background.
The program can poll the OCIE4B bit in the TIMSK4 register to
check if the transmitter is still busy. Furthermore, as you can
see, there is no interaction whatsoever between the timers 3
and 4 except for the ISR switching them both off at the end
(which is optional), and there are no pins to be set or cleared.
Everything is handled directly by the hardware. The downside
of this simplicity is that it works on pin 2 only.

(160306)

Web Link

[1] www.elektormagazine.com/160306

output low not only switches off the LED, it also puts the OCM
in AND mode. Next we set up Timer3 in CTC (compare) mode 4
for a frequency of 38 kHz, a popular RC carrier frequency. Note
how the timer seems to be set up for twice this frequency, but
the factor of two is necessary to compensate for the toggling
of the output pin on every compare match, effectively dividing
the signal frequency by two and resulting in a 38-kHz signal
at the output. Pin 2 is the OC3B output controlled by OCR3B,
consequently we set this register to half the value of OCR3A to
obtain a duty-cycle of 50%. Timer4 is configured in Fast PWM
mode 14 where OCR4A determines the frequency and OCR4B
the duty-cycle. The rest of its configuration is delayed till the
function send_code.

This function starts by copying the code to transmit into the
32-bit TX buffer. Because a code starts with a preamble, the
corresponding pulse (9 ms) and period (13.5 ms) values are
loaded into the pulse (OCR4B) and period (OCR4A) registers.
Here a multiplication by two is needed because the pulse and
period are specified in microseconds, but since the MCU clock
is 16 MHz and the prescaler can only divide it by 1, 8, 64, 256
or 1024, not by 16, we are forced to use 8 instead and we’re
off by a factor of two. The next step is to prepare for interrupts
and start the timers.

The COMPB interrupt service routine is called at the end of a
pulse. When this happens, and all the bits haven’t been sent
yet, the timer needs to be reconfigured for a period of either
1,125 µs (if the bit to transmit is a ‘0’) or 2,250 µs (if the
bit to transmit is a ‘1’), and set the pulse length to 562.5 µs
(identical for ‘0’s and ‘1’s). As before, all the values are
multiplied by two to compensate for the prescaler value of 8
which we would have liked to be 16. The 32-bit code must be
terminated by a closing burst, otherwise the receiver can’t
tell if the last bit is a ‘0’ or a ‘1’. When tx_index equals zero
we know that all bits have been sent. We can now use the
OCR4A register, for instance, with a special value to send a
final burst, meaning that the ISR will run one more time.
If we choose a special value smaller than 1,125 µs
(but larger than OCR4B), this state will be
easy to detect by the ISR the next time it is
called. Naturally it is possible to use another
mechanism with a static variable or something
similar, but the register is available, so why not
use it? The last thing the ISR does after the pre-
amble, the 32 code bits and the stop burst have all
been sent, is switch off the lights, ermm, the timers
as they are no longer needed.
The function loop has remained empty because we send the
RC code only once after pressing the Reset button.

Figure 2. A scope plot of the signal on PD2 produced by the sketch.

SHOPPING LIST
ª150790-91
elektor Uno R4

Figure 1. In OCM mode PD2 outputs either OC3B OR OC4B (PORTD2 = 1)
or OC3B AND OC4B (PORTD2 = 0).

