
www.elektormagazine.com September & October 2017 73

Creating iPhone and
iPad Apps Made Easy
Control external devices using WiFi or BLE
By Hans Oppermann (Germany)

There are several obstacles to be overcome before you can start writing applications for iPhones and iPads,
and there are many cases where hobbyists who are just looking for a rudimentary app to control some

external hardware would welcome a
simple solution. Enter techBASIC:

this is a platform that enables you
to write your own iPhone and
iPad applications directly on your
mobile device, and it comes with
a suite of libraries covering a wide

range of functions.
In this article we
look at an example
application that
communicates with

the outside world using
BLE (Bluetooth Low
Energy).

74 September & October 2017 www.elektormagazine.com

What can techBASIC do?
As you might have guessed from the
name, techBASIC has very many sim-
ilarities to the old-school BASIC pro-
gramming language. However, when it
comes to the range of available func-
tions there is no comparison to the
original BASIC. The techBASIC Ref-
erence Manual [3] offers a complete
description of what is available: as well
as the usual mathematical and string
functions (such as LEFT$), techBASIC
sports a number of functions to sup-
port event handling. For example, it is
possible to have a program respond to
the press of a button on the screen.
There is also a range of functions to
support BLE and WiFi, allowing com-
munication with the outside world. BLE
and WiFi are also the only two commu-
nications protocols approved by Apple:
this is not the case for USB or Blue-
tooth 2.x. Thus BLE and WiFi are the
two wireless protocols of interest if we
are looking at connecting to external
sensors for applications such as IoT or
home automation.
WiFi is supported using the Comm
class. Using these functions it is
very easy to create a simple HTTP
client running on the iPhone or iPad.
As one example, I have developed
code (OnOffTemp.txt) that allows
you to control a boiler remotely
via an ESP8266 HTTP server. List-
ing 1 shows the part of the program
responsible for dealing with inputs
from the user interface; the complete
program can be downloaded from the
Elektor website [4].
There are also functions provided in
techBASIC to read values from the
device’s internal sensors, such as its
accelerometer and its GPS receiver.
There are graphics functions that allow
you to plot complex curves and other
graphical elements, but we will not look
at those in detail here.
Much more interesting to us (the iCing
on the iCake?) is the comprehensive
set of functions for building graphical
user interfaces (GUIs). With just a few
commands it is possible to create an
impressive array of widgets just like
those used in any commercial appli-
cation: buttons, sliders, date selectors
and so on. There is a demonstration
on the website of the makers of tech-
BASIC that shows all the available
widgets on the display of an iPhone
or iPad.

around US$20, downloadable from
the app store [2]. The demo version
only allows built-in demo programs to
be executed: is is not possible to write
your own programs or modify exist-
ing ones.
When the app is launched all the avail-
able programs (or demos) are dis-
played in a directory. It is possible to
run or edit programs from this listing.
It is also possible to convert a finished
program into a standalone app, which
requires the techBASIC App Builder
program (priced at US$49) and a Mac
computer on which the app is built.
However, for most hobbyists this is an
unnecessary overcomplication.
Developing programs on an iPhone
is far from ideal because of its small
display. An iPad with an external key-
board makes a much better platform
for writing code, whether the target
device is an iPad or an iPhone. It is of
course only necessary to purchase the
techBASIC app once.

Apple provides a free development
environment called Xcode for devel-
oping your own apps. Normally the
Swift programming language is used,
and the current version, which is
version 8, requires a Mac computer
with an up-to-date operating system.
Once the app has been built it can be
transferred directly from Xcode to the
mobile device.

The techBASIC app
Even if all you want to do is use your
smartphone to control an exter-
nal device and provide a simple and
straightforward user interface (plus the
specific code necessary to drive your
circuit), using Xcode is a lot of bother.
An interesting alternative is the ‘tech-
BASIC’ app by Byte Works [1].
The entire integrated development
environment (IDE) is contained within
its own app, which is available as a
demo version (called techSampler),
and as a full-featured version for

Listing 1. Processing user input: example of a WiFi client communicating
with an ESP8266.

! Handle pressed button
SUB touchUpInside (ctrl AS Button, time AS DOUBLE)
 http_string = "http://192.168.254.70/"

! Heizung EIN
 IF ctrl = Tag THEN
 http_string = http_string & "gpio/1"
 proc_http
 END IF
! Heizung AUS
 IF ctrl = Nacht THEN
 http_string = http_string & "gpio/0"
 proc_http
 END IF
! Lese Status
 IF ctrl = Status THEN
 http_string = http_string & "gpio/read"
 proc_http
 END IF
! Lese Vorlauftemperatur
 IF ctrl = VL_Temp THEN
 http_string = http_string & "temp"
 proc_http
 END IF
 IF ctrl = quit THEN
 STOP
 END IF
END SUB

www.elektormagazine.com September & October 2017 75

Example circuit
The example we are about to describe
shows how to read data from climate
sensors using techBASIC. The sensors
can measure temperature, humidity,
atmospheric pressure and UV intensity.
The readings are sent to an iPhone or
iPad, which runs a techBASIC program,
over BLE. For BLE communications we
will be using a BL600 module, which
will surely be familiar to many Elek-
tor readers. We will make use of two
breakout boards: an Adafruit Si1145
breakout board for UV intensity mea-
surement and a BME280 breakout
board for the other three quantities.
The whole thing will be powered from
a CR2032 coin cell: in my prototype
one cell has already given about ten
months of continuous operation.
The circuit is shown in Figure 1. If
desired, a ‘USB to UART converter’
can be attached at JP1 to allow pro-
gramming and debugging of the BL600
module. JP5 allows configuration of
the operating mode of the BL600: the
details have already been discussed
comprehensively in Elektor. In our
application the jumper must be fitted
in the ‘AUTORUN’ position. One special
feature is the button S1: this, in con-
junction with the software, is the key
to the low power consumption of the
device. Normally the device is in what
is called ‘deep sleep mode’, where the
current draw is very low indeed. Only
when button S1 is pressed will the
device wake up, read the sensors one
by one, and transmit the readings over
Bluetooth. After about two minutes the
BL600 returns to deep sleep mode. The
software for the BL600 ($autorun$.
klima.sb) is available for download
from the Elektor website [4].

Scanning for BLE devices
Now we turn to the other end of the
connection, the reception of sen-
sor readings using techBASIC on the
iPhone or iPad. Describing all the code
in this article would take up far too
much space; much of it, however, is
self-explanatory and can easily be
understood with a little study. Instead,
we will just take a look here at the few
lines of code that are needed to set up
a connection with a BLE device: see
Listing 2.
The function scanBLE is called when
the ‘Scan’ button in the GUI is pressed.
If the scan is successful then the call-

Listing 2. Scanning for nearby BLE devices in the sensor application.

!-------------------- scan for BLE Device

SUB scanBLE
! Start the BLE service and begin scanning for devices.
 BLE.startBLE
 BLE.startScan(uuid)
END SUB

! Called when a peripheral is found. If it is a LAIRD BL600, we
! initiate a connection to it and stop scanning for peripherals.
!
! Parameters:
! time - The time when the peripheral was discovered.
! peripheral - The peripheral that was discovered.
! services - List of services offered by the device.
! advertisements - Advertisements (information provided by the
! device without the need to read a service/characteristic)
! rssi - Received Signal Strength Indicator
!
SUB BLEDiscoveredPeripheral (time AS DOUBLE, peripheral AS
BLEPeripheral,
 services() AS STRING, advertisements(,)
AS STRING, rssi)
 PRINT peripheral.bleName
 IF peripheral.bleName = "LAIRD BL600" THEN
 bl600 = peripheral
 BLE.connect(bl600)
 BLE.stopScan
 END IF
END SUB

LED1

R1

68
R

JP4

1 2

JP2

1
2

S1

G1

CR2032H

JP1
1
2
3
4

JP5
1
2
3

red
black
white
green

red

black

CMD

AUTORUN
AUTORUN_SIO28

LAIRD BL600XX

RESET_SWDIO

SIO10_MOSI
SIO11_MISO
SIO12_CLK

NC_SWDCLK

RTS_SIO23
CTS_SIO24

SIO1_AIN
SIO2_AIN
SIO3_AIN
SIO4_AIN
SIO5_AIN
SIO6_AIN
SIO7_OTA
SIO8_SDA
SIO9_SCL

TX_SIO21
RX_SIO22

RF
_A

NT

SIO16

SIO13
SIO14
SIO15

SIO17
SIO18
SIO19
SIO20

SIO25
SIO26
SIO27

SIO29
SIO30

MOD1

SIO0

VC
C

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

GN
D

10

11 17

21

28 29

30

31 37 43

12
13
14
15
16
18
19
20
22
23

24
25
26
27
32
33
34
35
36
38
39
40
41
42
44

1

2

3

4
5
6
7
8
9

160202 - 11

-A10-GMR
SI1145

IC1 LED1SDA
DNC

DNC

SCL
VDD
INT

GND
VDD
VDD

10

91

5

2
3
4

8
7
6

BME280 BREAKOUT

SDA/MISO
SCL/SCK

MOSI

GND

VCC

B1

CS

Figure 1. The external hardware includes the sensors and the BLE module.

76 September & October 2017 www.elektormagazine.com

Listing 3. Definition of the user interface for the sensor application
(excerpt).

!------------------------- showGUI -------------------------------

SUB showGUI
 x_lab = 50
 y_lab = 50
 y_distance = 50

 DIM tempLabel AS Label
 !tempvar = "20"
 tempLabel = Graphics.newLabel(x_lab, y_lab, 100)
 tempLabel.setText("Temperatur: ")
 tempvarLabel = Graphics.newLabel(x_lab+200, y_lab, 100)
 tempvarLabel.setText(tempvar)
 tempvarLabel.setColor(1,0,0)

 y_lab = y_lab + y_distance

 DIM humLabel AS Label
 !humvar = "30"
 humLabel = Graphics.newLabel(x_lab, y_lab, 200)
 humLabel.setText("Relative Luftfeuchte: ")
 humvarLabel = Graphics.newLabel(x_lab+200, y_lab, 100)
 humvarLabel.setColor(0,0,1)

 y_lab = y_lab + y_distance

 DIM airpLabel AS Label

back function BLEDiscoveredPeriph-
eral will be invoked. This function
name, and indeed the names of all the
other functions that are called during
the process of setting up a connec-
tion, are fixed by techBASIC. There
is therefore no need for you to spec-
ify the name of the callback function
yourself, as is necessary in many other
programming languages. In the next
step the function BLEPeripheralInfo
is called. This retrieves a list of the
available services on the BLE device. If
you do not have this information in the
documentation of your BLE device, you
can use a techBASIC program called
‘sniffer’ to help: this will display a list
of all available BLE device services with
their UUIDs.
If the desired service (in this case
the ‘Virtual Serial Port’ service) is
selected in BLEPeripheralInfo,
then the ‘characteristic’ of the ser-
vice will be requested. The character-
istic will be received in the function
BLEServiceInfo and, at the same
time, the corresponding data will
be requested from the BLE device
using a ‘Notify Request’. The data
are in turn received in the function
BLECharacteristicInfo and writ-
ten to the appropriate variables to
update the GUI.

User interface
The function showGUI (see Listing 3)
creates the various widgets that com-
prise the GUI, in this case just but-
tons and labels, and configures them
to appear at the right positions on the
display of the iPhone or iPad. The func-
tion is called once, when the program
starts up.
It is worth noting that in no way did
I write this program starting from
scratch. It is simply a modification and
extension of one of the many example
programs that come with techBASIC.
In this case I used the ‘KeyFob’ pro-
gram as a template to start from. The
program here will work on an iPhone
as well as on an iPad: it includes the
necessary adaptations to the coordi-
nates of the graphical elements to suit
each device. The program can deter-
mine what type of device it is run-
ning on, and so only one version of the
code is required for the two devices.
The complete program (klima.txt) is
available for download from the Elek-
tor website [4].

Figure 2. Data are received by the iPhone over BLE and shown on the display.

www.elektormagazine.com September & October 2017 77

world of Android app development. In
future I will also not have to carry two
smartphones about, as all my Blue-
tooth applications will now run on the
iPhone. However, it does require me to
remove all the Bluetooth chips from my
existing projects and replace them with
Bluetooth 4.0 (BLE) equivalents; but
that should not be an enormous effort.
Any readers interested in studying this
topic in more depth are recommended
to read the book ‘Building iPhone and
iPad Electronic Projects: Real-World
Arduino, Sensor and Bluetooth Low
Energy Apps in techBASIC’ [5].

(160202)

application, and in the process I did
indeed get to know about Android and
the ‘Android Studio’ development envi-
ronment. However, the effort involved
was considerable in comparison to the
results achieved (reading values from a
couple of sensors and sending them out
over BLE). I must say, however, that the
graphical interface did look a bit pret-
tier than the techBASIC version (see
Figure 3).

Conclusion
It is a pity that I did not discover
techBASIC earlier, as it would have
spared me my lengthy foray into the

The Android original
A few years ago it was obligatory to reg-
ister with the Apple Developer Program
in order to gain permission to transfer
your own code onto your iPhone or iPad.
The program cost around US$100 per
year. For that reason I decided at that
point to develop the app under Android
(KLIMA.zip). As luck would have it, at
the same time there appeared in Elektor
a series of articles on the ‘BL600 e-BoB’
(starting in the March/April 2015 issue).
One of the example applications was in
temperature measurement. On the basis
of the program presented there I was
able to put together a suitable Android

 !airpvar = "40"
 airpLabel = Graphics.newLabel(x_lab, y_lab, 200)
 airpLabel.setText("Luftdruck: ")
 airparLabel = Graphics.newLabel(x_lab+200, y_lab, 100)
 airparLabel.setColor(0,0,1)

 y_lab = y_lab + y_distance

 DIM uviLabel AS Label
 !uvivar = "50"
 uviLabel = Graphics.newLabel(x_lab, y_lab, 200)
 uviLabel.setText("UV - Index: ")
 uviparLabel = Graphics.newLabel(x_lab+200, y_lab, 100)
 uviparLabel.setColor(0,0,1)

 !Create a scan button.
 scan = Graphics.newButton(but1_pos ,300)
 scan.setTitle("Scan")
 scan.setBackgroundColor(1, 1, 1)
 scan.setGradientColor(0.7, 0.7, 0.7)

 !Create a quit button.
 quit = Graphics.newButton(but2_pos ,300)
 quit.setTitle("Quit")
 quit.setBackgroundColor(1, 1, 1)
 quit.setGradientColor(0.7, 0.7, 0.7)

END SUB

Figure 3. For comparison: the example
application running on Android.

Web Links

[1] www.byteworks.us/Byte_Works/techBASIC.html

[2] https://itunes.apple.com/us/app/techbasic/id470781862?ls=1&mt=8

[3] www.byteworks.us/Byte_Works/Documentation_files/techBASIC%20Manual%203.3.1.pdf

[4] www.elektormagazine.com/160202

[5] http://shop.oreilly.com/product/0636920029281.do?sortby=publicationDate

