
This month, we are looking at developing a project using
the AVR. The difference between this, and other articles

you are going to find in the magazine, is that we shall be
working through the project stages step by step. In this

way, you should be able to see how a project is developed,
so you can go off and try one on your own. The AVR lends

itself very well to this type of project development (i.e.,
learn as you go) because of the fact that it not only has in
system programming capability but also it has a 1,000

reprogramming lives, which is more than ample for most

he project itself is a mini
Te A PLC (Programmable

Logic Controller) is used in
industrial environments to
control machines. Very useful in
a domestic environment, huh?
In actual fact, they are, except
that they normally cost a couple
of hundred quid or so and so it
would be a little tricky getting
that one past the other half if
you wanted one to control your
trainset! This one should set you
back twenty quid or so and it
will be capable of providing the
sort of performance that you
can expect from the low end
commercial PLCs. You can use
the finished unit to control
virtually anything that can be
controlled digitally. Train layouts,
central heating, burglar alarms,

computer systems, school
experiments (it is perfect for
meeting the criteria of the

Figure 1a.
DC output circuit.

220K

OUTPUT

by Kevin Kirk

applications.

national curriculum for
Computer control) and robotics
spring to mind. In fact, its uses
are really only limited by your
ingenuity.

TRANSISTOR OUTPUT

O— +VE

OUTPUT

BD139

always the first step. The unit
itself is going to be a general
purpose digital controller, with
some analogue capability
thrown in. So first of all, we

need to look at the Input and
Output requirements.

The initial I/O spec looks
something like this:
Inputs: 6 Digital Inputs

2 Analogue
Comparator Inputs

1 Interrupt input /
uncommitted bit

Outputs: 6 Digital Outputs
This configuration has two

distinct advantages. The first is
that it gives you the maximum
flexibility, the second is that it
makes the software easier
because we'll effectively be using
one port for input and the other
for output (the interrupt is the
exception, but that’s easy to get
around).

The next stage is the actual
hardware functionality. Now, we
could opt for a very simple, non-
isolated, system where we just
feed in the digital inputs in raw
and drive ‘things’ with the
outputs, again, directly. The
advantage here is that it is
cheaper. However, it could give
you problems, especially if you
wanted to use this system to
control mains devices and also
in respect of common mode
offsets. So in retrospect, we'll
give the unit some isolation
from the outside world. The
easiest way to do this is via opto
isolators. On the outputs, we’ll
use stand alone packages, one
per Output. The reason for this
is that we can use either
transistor-based devices (for
controlling DC) or Zero
Crossing TRIAC versions (for
controlling mains). You just
choose the one you want at
build time, depending on your
requirements. Note that they
can be ‘mixed and matched’
with some DC and some AC
circuits. The circuit options are
shown in Figure 1a (for DC) and
Figure 1b (for AC).

Watch the creepage distances
if you are using mains though.
This is the minimum distance
you must allow between the The Hardware Design

Before we can rush off and
design things, we need to sort
out the specification of what we
want the unit to do. So, this is

Figure 1b.
AC output circuit.

OUTPUT

MOC3041

mains carrying tracks and the
rest of the circuit. BS EN 60950
gives the value as 4mm, but I
recommend you double that. It
goes without saying that you

December 1997 ELECTRONICS AND BEYOND €Ep

Outputs

Resonator

C1
ae med el

should keep your fingers off it
while it is live! The inputs will
also be isolated but here, we'll
just use multiple opto isolator
packages. Incidentally, because of
the opto isolators, we now look
for a ‘0’ being a true value (i.e.,
ON) and a ‘1’ as a false (ie.,
OFF). This is the case for both
inputs and outputs. So, we clear
(set to a 0) to switch on and set
(set to a 1) to switch off. Now,
we'll choose ourselves a clock.
Timing is not super critical in this
application, so we can live with a
ceramic resonator, rather than a
crystal. To keep the maths easy,
we'll choose an 8MHz version
(Scientific, isn’t it?).

The programming interface is
next. Ideally, we should have the
capability of swapping the
programming port to general I/O
for normal use; we need some
sort of multiplexing. This is not
as nasty as it sounds. We just
need to divert 3 signals so we
can plonk a 3-pole changeover
switch in the circuit that is
controlled from the
microcontroller reset line (which
the programmer itself uses to
switch the microcontroller into
programming mode). For this,
we'll use a standard CMOS part
called the 4053. Now we have

90S1200

U SE

C2

GND 10

Constant
Current o

Source

10k
Analogue Input —L__

IC1

Figure 2. Basic circuit diagram of the
Programmable Logic Controller.
A suitable 5V power supply is required.

AVR itself is CMOS and it is NOT
a good idea to leave inputs
floating.
We could add an analogue-to-

digital convertor (ADC) if we
wanted. This could be a very
simple circuit based on the single
slope principle. Essentially, all
you do is to feed a capacitor with
a constant current supply, which
results in a straight line charge
slope (rather than the rather
nasty logarithmic slope that
capacitors prefer). You then
compare this constantly
changing value with the input
and when it exceeds (slightly)
the input, then you know the
value. To get the value, you
simply set a timer running when
the capacitor starts charging and
then stop it when you reach the
crossover point. This timer can
be in software if you want,
however, we have got a perfectly
serviceable timer in the AVR
itself, so we'll be using that. We’ll
cover this next month, but in the
meantime, you can look at the
components that the ADC uses,
which are shown on the circuit
diagram inside the dotted lines.

Program Design
Now, the tricky bit! There is one
golden rule that you should bear

Programming
Interface

MOSI 1

PscK7]°
|
pases

through so that it covers all
eventualities, because if they
encounter something we hadn’t
planned for, then they’d just
wander off and do their own
thing (i.e., they’ll crash!). Now, at
this point, we could leap off into
reams of flow diagrams, project
planning, etc. We could, but we
won't, because there is very little
need in this case (I can hear the
howls of protests from the micro
teachers from here). What we
will do is create a simple
flowchart (without the symbols)
that gives us a broad overview of
what the system is trying to
achieve, which will give us a
framework around which we can
plan the various software
modules. To give it its scientific
name, this is called ‘top down
design’. It looks something like
this:

Set up
Scan inputs
Set outputs
Loop to Scan Inputs
It looks suspiciously simple,

doesn’t it? There is a very good
reason for that, it is simple. All a
PLC does is to look at the inputs
then to change the outputs

[]R2 [] RS [] RA
. re Ute Lik

rok
+

R
__.—- —

1SQ74 (Or Equivalent)

+

| LASS] =
150R

4
1SD74 (Or Equivalent)

150K

based on the combinational
effects of the inputs. For
example, if you have a machine
with two protective safety guard:
on it, then you want to only
switch the output on when the
guards are in place AND the star
button has been pressed AND
NOT if the stop button has been
pressed. This is a straight
Boolean function which can be
expressed as:

(Guardl . Guard2. Start) . !Stop
(‘. is the symbol for AND and ‘!’ i
the symbol for NOT — incidentall
‘+’ is the symbol for OR)

This can be rendered into the
following software expression
(assuming port D bit 0 is the
Output and port B bits 0 and 1
are the guards, bit 2 is the start
and bit 3 is the stop):

This piece of code, which at
first glance looks complicated,
will actually cover the last three
‘sections’ of our functional |
flowchart. It needs a few bells
and whistles to set it up and to
provide some protection against
noise spikes invading the circuit,
but in essence, that’s all it needs
to perform the task. It may be
worthwhile, if you are new to

sswitch output off — 1 is off —
the capability of programming in ¢ :
system so we can ‘play’ with the
code to our heart’s content.
Finally, a power supply. A
standard 5V regulator will fit the
bill nicely, so we'll drop one of
those in. The basic circuit diagram
is shown in Figure 2. Note that
the unused inputs are pulled
high via a relatively high value
resistor. The reason is that the

;see if start button has been head
;loop if it isn’t
sis guard 1 in place?
;No! so loop until it is

in mind when working with
microcontrollers, and that is that
they are stupid. That’s why we
love ’em. They will only do what
they are told to do and they will
get all sulky if you don’t give
them something to do (thinking
about it, they are the exact
opposite of teenagers). So, we
have to think the software

sis guard 2 in place?
_;No! so loop
;Has stop been pressed?
s3es so switch off and wait for start again
lf not then switch on
;Then check for guards and stop switch again:

ID December 1997 ELECTRONICS AND BEYOND

is game, to read the code and
ok up what each instruction is
bing (the full instruction set
as in last month’s magazine) so
bu can get a ‘feel’ for it. Note
at the label (i.e., loop1) is on

e left and is delimited with a
blon, the operator (i.e., the
hstruction) Comes next and is
ndented (or tabbed) and finally,
e operand (i.e., what it is
rorking on and where it should

mick the result).
The I/O ports on the AVR are
ue tri-state devices. That means
at they have 3 possible states a

, a0 or off. The latter may be
onfusing until you realise that it

s being driven neither high nor
bw but it is merely floating, ie.,
will follow whatever value is
resented to it, in other words,
is is the input state. The AVR
ses a special register called the
Data Direction Register to

Hetermine whether the port is
sed for input or output. A 0 in
his register will set the
orresponding port pin up as an
nput and a 1 will set it up as an
butput. You may have noted that
he code refers to the input
ports as Pins whereas the
Hutputs are Ports. The reason for
hat is that the port is actually a
atch and is a mirror of the
butput, whereas the pin reads
he pin itself.
So, to start off, we need to set

p the relevant ports as inputs or
butputs. We'll use one of the
Peneral purpose registers to
assemble the bytes required. As
he top 16 (of 32) registers are
apable of being used to load
mmediate values and for directly
accessing the I/O, we will use
R16. Incidentally, we'll be using
the lower 16 registers for
Scratchpad (temporary) storage
as the project progresses. So, the
first thing we do after a reset is
Set up the watchdog. This system
is designed for control use and
he last thing you want when you
are controlling something is for it
to go berserk. Thus, we use a
watchdog to keep it in check. In
this instance, we can live with
the maximum prescaler value on
offer which is /2,048, which with
its 1MHz clock, gives us a

;set up values for watchdog
;Put them into watchdog control register
,Set port b to inputs (this is reset value!)

__ Set port d to outputs except bit 2

lf not then switch on

timeout of around 2ms. We are
not in any particular hurry, so this
is fine. We will need to keep it
sweet by resetting it and the less
we have to do it, the better. Our
start up code now looks like this:

(interrupt)

There are a couple of points to
note. The first is that the code, as
it stands, makes no allowance for
the interrupt vectors, which have
been omitted for clarity, and
which would normally require a
jump from the reset vector
(Vector is a Techie way of saying
address) to the start of the code.
The other is that if you add the
previous piece of code to this
end of this, then it will nearly
work. What we need to do is to
add our Watchdog reset
instruction and we are in
business. You need to add it into
your main loop(s) so the
following instruction must be
added to the previous code:

;switch output off — 1 is off

The system will now work. In
fact, because of the way the code
has been written, you could
actually leave the watchdog reset
instruction (WDR) out of the
code after the first instruction
line. Can you see why? I'll leave
you to work that one out.

The unit will, so far, perform
the same task as a piece of relay-
based ladder logic, but it can
have extra functions added
without having to resort to a
soldering iron. It takes a lot less
power too.

Next month, we will look at
adding extra functionality such as
an ADC and we'll also look at
writing specific code to perform
your own control tasks. Finally, it
would be a worthwhile
investment to get hold of the
Atmel AVR data book, which fully
describes all of the functions of
the various registers, etc. The
Maplin Order Code is NR22Y
and the price is £11.75.
Alternatively, there is also a fully
fledged training system available
for the device called the AVR
Explorer (Order Code NR41U)
which is on page 931 of the
catalogue and is priced at a
whisker under £99. This takes
you from zero to full speed and
comes complete with hardware,
software and coursework. Tai1A

...ANOTHER GREAT IDEA FROM MINICRAFT..../™

VERSATILE 12v
POWER KITS

From beginners to
experienced users Minicraft

has the right kit for you

ULTIMATE PRECISION DRILL KIT (MB8571) The top-of-the-range kit

is suitable for use by all hobby enthusiasts and professional users. Ideal for

various model-building and repairing work. It combines the MB1012 100 watt

high precision drill with the MB730 variable speed transformer and now with 40

selected accessories for drilling, grinding, cutting, routing, shaping, polishing and

sanding. Includes a chuck key and comes in handy carrry and storage case.

THE HOBBY KIT (mB1000)

An excellent starter kit for various

hobby & craft activities.

The Hobby Kit, now with more

power includes the MB150 High

Torque Drill with modern pencil

grip design, plug-in mini-

transformer and 20 accessories for

drilling, grinding, routing and

shaping. Packed in a tough plastic

Carrying case.

ENGRAVING AND SECURITY KIT (mB186) An ideal kit for the craft

enthusiast and householder. This simple-to-use engraving kit comes with

lightweight pen-styled engraver (MB 185), — : a

plug in transformer, 1 diamond bit and

two grinding stones. The set also includes

a paper stencil for craft engraving on

glass and a plastic stencil for security

marking on valuables e.g. videos,

cameras, car radios. Comes in handy

Carry and storage case.

For FREE catalogue & stockists call: 01388 420535
Minicraft, 1&2 Enterprise City, Meadowfield Ave. Spennymoor, Co. Durham DL16 6JF UK

USA 606-334-4331 - AUSTRALIA 08-262-7113

Precision Tools for the Perfectionist

December 1997 ELECTRONICS AND BEYOND @¥

