LM628 Programming Guide

INTRODUCTION

The LM628/LM629 are dedicated motion control proces-
sors. Both devices control DC and brushless DC servo mo-
tors, as well as, other servomechanisms that provide a
quadrature incremental feedback signal. Block diagrams of
typical LM628/LM629-based motor control systems are
shown in Figures 1 and 2.

As indicated in the figures, the LM628/LM629 are bus pe-
ripherals; both devices must be programmed by a host proc-
essor. This application note is intended to present a con-
crete starting point for programmers of these precision mo-
tion controllers. It focuses on the deveiopment of short pro-
grams that test overall system functionality and lay the
groundwork for more complex programs. It also presents a
method for tuning the loop-compensation PID filter.

Nationa! Semiconductor
Application Note 693
Steven Hunt

REFERENCE SYSTEM

Figure 18 is a detailed schematic of a closed-loop motor
control system. All programs presented in this paper were
developed using this system. For application of the pro-
grams in other LM628-based systems, changes in basic
programming structure are not required, but modification of
filter coefficients and trajectory parameters may be re-
quired.

. PROGRAM MODULES

Breaking programs for the LM628 into sets of functional
blocks simplifies the programming process; each block exe-
cutes a specific task. This section contains examples of the
principal building blocks (modules) of programs for the
LMé28.
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FIGURE 1. LM628-Based Motor Control System
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FIGURE 2. LM629-Based Motor Control System

fNote: For the remainder of this paper, all statements about the LM628 also apply to the LM629 unless otherwise noted.
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BUSY-BIT CHECK MODULE

The first module required for successful programming of the
LM628 is a busy-bit check module.

The busy-bit, bit zero of the status byte, is set immediately
after the host writes a command byte, or reads or writes the
second byte of a data word. See Table /. While the busy-bit
is set, the LM628 will ignore any commands or attempts to
transfer data.

A busy-bit check module that polls the Status Byte and
waits until the busy-bit is reset will ensure successful
host/LM628 communications. /t must be inserted after a
command write, or a read or write of the second byte of
a data word. Flow diagram 1 represents such a busy-bit
check module. This module will be used throughout subse-
quent modules and programs.

Reading the Status Byte is accomplished by executing a
RDSTAT command. RDSTAT is directly supported by
LM628 hardware and is executed by pulling CS, PS, and RD
logic low.

Flow Diagram 1. Busy-bit Check Module
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INITIALIZATION MODULE

In general, an initialization module contains a reset com-
mand and other initialization, interrupt control, and data re-
porting commands.

The example initialization module, detailed in Figure 3, con-
tains a hardware reset block and a PORT 12 command.

TL/H/10860-3

Hardware Reset Block

Immediately following power-up, a hardware reset must be

executed. Hardware reset is initiated by strobing RST (pin

27) logic low for a minimum of elght LM628 clock peri-

ods. The reset routine begins after RST is returned to logic

high. During the reset execution time, 1.5 ms maximum, the

LM628 will ignore any commands or attempts to transfer

data.

A hardware reset forces the LM628 into the state described

in what follows.

1. The derivative sampling coefficient, dg, is set to one, and
all other filter coefficients and filter coefficient input buff-
ers are set to zero. With dg set to one, the derivative
sampling interval is set to 2048/fc k.

2. All trajectory parameters and trajectory parameters input
buffers are set to zero.

3. The current absolute position of the shaft is set to zero
(“home”).

4. The breakpoint interrupt is masked (disabled), and the
remaining five interrupts are unmasked (enabled).

5. The position error threshold is set to its maximum value,
7FFF hex.

6. The DAC output port is set for an 8-bit DAC interface.

Flow diagram 2 illustrates a hardware reset block that in-
cludes an LM628 functionality test. This test should be com-
pleted immediately following all hardware resets.

Flow Diagram 2. Hardware Reset Block
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Read the Status Byte.
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logic low for 8 clock
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Status Byte
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Wait 1.5ms after RST
logic level returned
high, reset execution
time.

CONTINUE

y

Read the Status Byte.

Status Byte
= C4 or 84

Reset interrupts.

TL/H/10860-5

Reset Interrupts

An RSTI command sequence allows the user to reset the
interrupt flag bits, bits one through six of the status byte.
See Table /. It contains an RSTI command and one data
word.

The RSTI command initiates resetting the interrupt flag bits.
Command RSTI also resets the host interrupt output pin (pin
17).

924




Port Bytes Command Comments

Strobe RST, pin 27, logic
low for eight clock periods
minimum.

(Note 4) hardware
reset

The maximum time to
complete hardware reset
tasks is 1.5 ms. During this
reset execution time, the
LM628 will ignore any
commands or attempts to
transfer data.

This command reads the
status byte. It is directly
supported by LM628
hardware and can be
executed at any time by
pulling CS, PS, and RD logic
low. Status information
remains valid as long as RD
is logic low.

If the status byte is C4 hex
or 84 hex, continue.
Otherwise loop back to
hardware reset.

wait

c XX RDSTAT

(Note 1) (Note 2)

decision

c 1D RSTI  This command resets only
the interrupts indicated by
zeros in bits one through six
of the next data word. It also|
resets bit fifteen of the
Signals Register and the
host interrupt output pin

(pin 17).
Busy-bit Check Module
d XX HB don’t care
(Note 3)
d 00 LB Zeros in bits one through six
indicate a// interrupts will be
reset.

Busy-bit Check Module

RDSTAT This command reads the
status byte.

If the status byte is CO hex
or 80 hex, continue.
Otherwise loop back to
hardware reset.

The reset default size of the
DAC port is eight bits. This
command initializes the
DAC port for a 12-bit DAC. I
should not be issued in
systems with an 8-bit DAC.

decision

PORT12

Busy-bit Check Module

FIGURE 3. Initialization Module (with Hardware Reset)

Note 1: The 8-bit host I/0 port is a dual-mode port; it operates in command
or data mode. The logic level at PS (pin 16) selects the mode. Port ¢ repre-
sents the LM628 command port-commands are written to the command port
and the Status Byte is read from the command port. A logic level of “0” at
PS selects the command port. Port d represents the LM628 data port—data
is both written to and read from the data port. A logic level of “1” at PS
selects the data port.

Note 2: x - don’t care

Note 3: HB - high byte, LB - low byte

Note 4: All values represented in hex.

Immediately following the RSTI command, a single data
word is written. The first byte is not used. Logical zeros in
bits one through six of the second byte reset the corre-
sponding interrupts. See Table /.. Any combination of the
interrupt flag bits can be reset within a single RSTI com-
mand sequence. This feature allows interrupts to be serv-
iced according to a user-programmed priority.

In the case of the example module, the second byte of the
RSTI data word, 00 hex, resets a/ interrupt flag bits. See
Figure 3.

TABLE . Status Byte Bit Allocation

71654 31211{0

Motor Excessive Index Command

off Position Pulse Error
Error Observed (Interrupt)
(interrupt) (Interrupt)

Breakpoint ~ Wrap-around Trajectory Busy=bit

Reached Occurred Complete

(Interrupt) (Interrupt) (Interrupt)

TL/H/10860-6
TABLE Il. Interrupt Mask/Reset Bit Allocations

high byte

1511413 ]12 111101 9| 8

not used
TL/H/10860-7

low byte

716|5]|4 3121110

not used Position
Error
Interrupt

I
| | not used
Index Command
Pulse Error
Interrupt Interrupt

Trajectory
Complete
Interrupt

TL/H/10860-8

Breakpoint
Interrupt

Wrap=
around
Interrupt

DAC Port Size

During both hardware and software resets, the DAC output
port defaults to 8-bit mode. If an LM628 control loop utilizes
a 12-bit DAC, command PORT12 should be issued immedi-
ately following the hardware reset block and all subsequent
resets. Failure to issue command PORT12 will result in er-
ratic, unpredictable motor behavior.

If the control loop utilizes an 8-bit DAC, command PORT12
must not be executed; this too will resuit in erratic, unpre-
dictable motor behavior.

An LM629 will ignore command PORTS (as it provides an
8-bit sign/magnitude PWM output). Command PORT12
should not be issued in LM629-based systems.
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Software Reset Considerations

After the initial hardware reset, resets can be accomplished
with either a hardware reset or command RESET (software
reset). Software and hardware resets execute the same
taskst and require the same execution time, 1.5 ms maxi-
mum. During software reset execution, the LM628 will ig-
nore any commands or attempts to transfer data.

The hardware reset module includes an LM628 functionality
test. This test is not required after a software reset.

Figure 4 details an initialization module that uses a software
reset.

1In the case of a software reset, the position error threshold remains at its
pre-reset value.

Port Bytes Command
c 00 RESET

wait

Comments

See Initialization Module text.

The maximum time to
complete RESET tasks is
1.5 ms.

The RESET default size of
the DAC port is eight bits.
This command initializes the
DAC port for a 12-bit DAC. It
should not be issued in a
system with an 8-bit DAC.

Busy-bit Check Module
RSTI This command resets only

the interrupts indicated by
zeros in bits one through six
of the next data word. It also
resets bit fifteen of the
Signals Register and (pin 17)
the host interrupt output pin.

Busy-bit Check Module
d XX HB Don't care

d 00 LB

PORT12

c 1D

Zeros in bits one through six
indicate af/ interrupts will be
reset.

Busy-bit Check Module

FIGURE 4. Initialization Module (with Software Reset)
Comments

Figure 5 illustrates, in simplified block diagram form, the
LM628. The profile generator provides the control loop in-
put, desired shaft position. The quadrature decoder pro-
vides the control loop feedback signal, actual shaft position.
At the first summing junction, actual position is subtracted
from desired position to generate the control loop error sig-
nal, position error. This error signal is filtered by the PID filter
to provide the motor drive signal.

After executing the example initialization module, the foliow-
ing observations are made. With the integration limit term
(i) and the filter gain coefficients (kp, ki, and kg) initialized to
zero, the filter gain is zero. Moreover, after a reset, desired
shaft position tracks actual shaft position. Under these con-
ditions, the motor drive signal is zero. The control system
can not affect shaft position. The shaft should be stationary
and “free wheeling”. If there is significant drive amplifier
offset, the shaft may rotate slowly, but with minimal torque
capability.

Note: Regardless of the free wheeling state of the shaft, the LM628 continu-
ously tracks shaft absolute position.

FILTER PROGRAMMING MODULE

The example filter programming module is shown in Figure
6.

Load Filter Parameters (Coefficients)

An LFIL (Load FILter) command sequence includes com-
mand LFIL, a filter control word, and a variable number of
data words.

The LFIL command initiates loading filter coefficients into
input buffers.

The two data bytes, written immediately after LFIL, com-
prise the filter control word. The first byte programs the de-
rivative sampling coefficient, ds (i.e. selects the derivative
sampling interval). The second byte indicates, with logical
ones in respective bit positions, which of the remaining four
filter coefficients will be loaded. See Tables /// and /V. Any
combination of the four coefficients can be loaded within a
single LFIL command sequence.

Immediately following the filter control word, the filter coeffi-
cients are written. Each coefficient is written as a pair of
data bytes, a data word. Because any combination of the
four coefficients can be loaded within a single LFIL com-
mand sequence, the number of data words following the
filter control word can vary in the range from zero to four.
In the case of the example module, the first byte of the filter
control word, 00 hex, programs a derivative sampling coeffi-
cient of one. The second byte, x8 hex, indicates only the
proportional gain coefficient will be loaded.

Immediately following the filter control word, the proportion-
al gain coefficent is written. In this example, kp is set to ten
with the data word 000A hex. The other three filter coeffi-
cients remain at zero, their reset value.

Update Filter

The update filter command, UDF, transfers new filter coeffi-
cients from input buffers to working registers. Until UDF is
executed, the new filter coefficients do not affect the trans-
fer characteristic of the filter.
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FIGURE 5. LM628—Simplified Biock Diagram Form
TABLE IIL. Filter Control Word Bit Aliocation
high byte

15114113 112111101 9| 8

Derivative=term Sampling Interval
selection code

low byte
716154 31211160
| T
I | 1 |

not used

logical 1 = corresponding coefficient
will be loaded

logical 0 = corresponding coefficient
will not be loaded

TABLE IV. Derivative—Term Sampling Interval Selection Codes

TL/H/10860-9

TL/H/10860-10

Filter Control Word Bit Position d Selected Derivative-Term

15 | 14 | 13 | 12 [ 11 ] w0 | o | s ¢ Sampling Interval—Ty
0 0 0 0 0 0 0 0 1 Te
0 0 0 0 0 0 0 1 2 2T
0 0 0 0 0 0 1 0 3 3T,
0 0 0 0 0 0 1 1 4 4T,

[ ] L] L ]

. . .

0 . .
1 1 1 1 1 1 1 1 256 256T

1
Tg = (2048) X (———) System Sample Period
foLk

Tg=dg X Tg

Derivative-term Sampling Interval
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Port Bytes Command Comments

c 1E LFIL

This command initiates
loading the filter coefficients
input buffers.

Busy-bit Check Module

d 00 HB These two bytes are the filter

d x8 LB control word. A 00 hex HB
sets the derivative sampling
interval to 2048/fc| k by
setting dg to one. A x8 hex LB
indicates only kp will be
loaded. The other filter
parameters will remain at
zero, their reset default value.

Busy-bit Check Module
d 00 HB These two bytes set kp
d 0A LB to ten.

Busy-bit Check Module
UDF This command transfers new

filter coefficients from input
buffers to working registers.
Until UDF is executed,
coefficients loaded via the
LFIL command do not affect
the filter transfer
characteristic.

Busy-bit Check Module

FIGURE 6. Filter Programming Module

Comments

After executing both the example initialization and example
filter programming modules, the following observations are
made. Filter gain is nonzero, but desired shaft position con-
tinues to track actual shaft position. Under these conditions,
the motor drive signal remains at zero. The shaft should be
stationary and “free wheeling”. If there is significant drive
amplifier offset, the shaft may rotate slowly, but with minimal
torque capability.

Initially, kp should be set below twenty, ds should be set to
one, and k;, kg, and ij should remain at zero. These values
will not provide optimum system performance, but they will
be sufficient to test system functionality. See Tuning the PID
Filter.

TRAJECTORY PROGRAMMING MODULE

Figure 7 details the example trajectory programming mod-
uie.

Load Trajectory Parameters.

An LTRJ (Load TRaJectory) command sequence includes
command LTRJ, a trajectory control word, and a variable
number of data words.

The LTRJ command initiates loading trajectory parameters
into input buffers.

The two data bytes, written immediately after LTRJ, com-
prise the trajectory control word. The first byte programs,
with logical ones in respective bit positions, the trajectory
mode (velocity or position), velocity mode direction, and
stopping mode. See Stop Module. The second byte indi-
cates, with logical ones in respective bit positions, which of
the three trajectory parameters will be loaded. It also indi-
cates whether the parameters are absolute or relative. See
Table V. Any combination of the three parameters can be
loaded within a single LTRJ command sequence.

Immediately following the trajectory control word, the trajec-
tory parameters are written. Each parameter is written as a
pair of data words (four data bytes). Because any combina-
tion of the three parameters can be loaded within a single
LTRJ command sequence, the number of data words fol-
lowing the trajectory control word can vary in the range from
2zero to six.

In the case of the example module, the first byte of the
trajectory control word, 00 hex, programs the LM628 to op-
erate in position mode. The second byte, OA hex, indicates
velocity and position will be loaded and both parameters are
absolute. Four data words, two for each parameter loaded,
follow the trajectory control word.

Start Motion Control

The start motion control command, STT (STarT), transfers
new trajectory parameters from input buffers to working reg-
isters and begins execution of the new trajectory. Until STT
is executed, the new trajectory parameters do not affect
shaft motion.

Note: At this point no actual trajectory parameters are loaded. Calculation of
trajectory parameters and execution of example moves is left for a
later section.

Table V. Trajectory Control Word Bit Allocation

high byte
1511411312 1j10})19]8
not not not Forward Stop
used used used Direction Abruptly
(Velocity Mode
only)
Velocity Mode Stop Turn off
Smoothly Motor
TL/H/10860-11
low byte
716]5]|4 32110
not not Acceleration Velocity Position
used used data is will be will be
relative loaded loaded
Acceleration Velocity Position
will be loaded date is data is

relative
TL/H/10860-12

relative
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Port Bytes Command Comments
c iF LTRJ This command initiates
loading the trajectory
parameters input buffers.
Busy-bit Check Module
d 00 HB These two bytes are the
d 0A LB trajectory control word. A 0A
hex LB indicates velocity and
position will be loaded and
both parameters are
absolute.
Busy-bit Check Module
d XX HB Velocity is loaded in two data
d XX LB words. These two bytes are
the high data word.
Busy-bit Check Module
d XX HB velocity data word (low)
d XX LB
Busy-bit Check Module
d XX HB Position is loaded in two data
d XX LB words. These two bytes are
the high data word.
Busy-bit Check Module
d XX HB position data word (low)
d XX LB
Busy-bit Check Module
c 01 STT STT must be issued to
execute the desired
trajectory.
Busy-bit Check Module

FIGURE 7. Trajectory Programming Module

STOP MODULE

This module demonstrates the programming flow required
to stop shaft motion.

While the LM628 operates in position mode, normal stop-
ping is always smooth and occurs automatically at the end
of a specified trajectory (i.e. no stop module is required).
Under exceptional conditions, however, a stop module can
be used to affect a premature stop.

While the LM628 operates in velocity mode, stopping is al-
ways accomplished via a stop moduie.

The example stop module, shown in Figure 8, utilizes an
LTRJ command sequence and an STT command.

Load Trajectory Parameters

Bits eight through ten of the trajectory control word select
the stopping mode. See Table V.

In the case of the example module, the first byte of the
trajectory control word, x1 hex, selects motor-off as the de-
sired stopping mode. This mode stops shaft motion by set-
ting the motor drive signal to zero (the appropriate offset-bi-
nary code to apply zero drive to the motor).

Setting bit nine of the trajectory control word selects stop
abruptly as the desired stopping mode. This mode stops
shaft motion (at maximum deceleration) by setting the target
position equal to the current position.

Setting bit ten of the trajectory control word selects stop
smoothly as the desired stopping mode. This mode stops
shaft motion by decelerating at the current user-pro-
grammed acceleration rate.

Note: Bits eight through ten of the trajectory control word must be used
exclusively; only one of them should be logic one at any time.

Start Motion Control

The start motion control command, STT, must be executed
to stop shaft motion.

Comments

After shaft motion is stopped with either an “abrupt” or a
“smooth” stop module, the control system will attempt to
hold the shaft at its current position. If forced away from this
desired resting position and released, the shaft will move
back to the desired position. Unless new trajectory parame-
ters are loaded, execution of another STT command will
restart the specified move.

After shaft motion is stopped with a ‘“‘motor-off”’ stop mod-
ule, desired shaft position tracks actual shaft position. Con-
sequently, the motor drive signal remains at zero and the
control system can not affect shaft position; the shaft
should be stationary and free wheeling. If there is significant
drive amplifier offset, the shaft may rotate slowly, but with
minimal torque capability. Unless new trajectory parameters
are loaded, execution of another STT command will restart
the specified move.

Port Bytes Command Comments

c 1F LTRJ This command initiates
loading the trajectory
parameters input buffers.

Busy-bit Check Module

d x1 HB These two bytes are the

d 00 LB trajectory control word. A x1
hex HB selects motor-off as
the desired stopping mode. A
00 hex LB indicates no
trajectory parameters will be
loaded.

Busy-bit Check Module
c 01 STT The start motion control

command, STT, must be
executed to stop shaft
motion.

Busy-bit Check Module

FIGURE 8. Stop Module (Motor-Off)

Il. PROGRAMS

This section focuses on the development of four brief
LM628 programs.

LOOP PHASING PROGRAM

Following initial power-up, the correct polarity of the motor
drive signal must be determined. If the polarity is incorrect
(loop inversion), the drive signal will push the shaft away
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from its desired position rather than towards it. This results
in “motor runaway”, a condition characterized by the motor
running continuously at high speed.

The loop phasing program, detailed in Figure 9, contains
both the example initialization and filter programming mod-
ules. It also contains an LTRJ command sequence and an
STT command.

Note: Execution of this simple program is only required the first time a new
system is used.

Load Trajectory Parameters

An LTRJ (Load TRaJectory) command sequence includes
command LTRJ, a trajectory control word, and a variable
number of data words.

In the case of the Loop Phasing Program, the first byte of
the trajectory control word, 00 hex, programs the LM628 to
operate in position mode. The second byte, 00 hex, indi-
cates no trajectory parameters will be loaded (i.e. in this
program, zero data words follow the trajectory control
word). The three trajectory parameters will remain at zero,
their reset value.

Start Motion Control

The start motion control command, STT (STarT), transfers
new trajectory parameters from input buffers to working reg-
isters and begins execution of the new trajectory. Untit STT
is executed, the new trajectory parameters do not affect
shaft motion.

Port Bytes Command Comments

Initialization Module
Fitter Programming Module

c 1F LTRJ This command initiates
loading the trajectory
parameters input buffers.

Busy-bit Check Module

d 00 HB These two bytes are the

d 00 LB trajectory control word. A 00
hex LB indicates no trajectory
parameters will be loaded.

Busy-bit Check Module
c 01 STT STT must be issued to

execute the desired

trajectory.
FIGURE 9. Loop Phasing Program

Comments

Execution of command STT results in execution of the de-
sired trajectory. With the acceleration set at zero, the profile
generator generates a desired shaft position that is both
constant and equal to the current absolute position. See
Figure 5. Under these conditions, the control system will
attempt to hoid the shaft at its current absolute postion. The
shaft will feel lightly “‘spring loaded”. If forced (CAREFUL-
LY) away from its desired position and released, the shaft
will spring back to the desired position.

If the polarity of the motor drive signal is incorrect (loop
inversion), motor runaway will occur immediately after exe-
cution of command STT, or after the shaft is forced (CARE-
FULLY) from its resting position.

Loop inversion can be corrected with one of three methods:
interchanging the shaft position encoder signals (channel A
and channel B), interchanging the motor power leads, or
inverting the motor command signal before application to
the motor drive amplifier. For LM629 based systems, loop
inversion can be corrected by interchanging the motor pow-
er leads, interchanging the shaft position encoder signals,
or logically inverting the PWM sign signal.

SIMPLE ABSOLUTE POSITION MOVE

The Simple Absolute Position Move Program, detailed in
Figure 13, utilizes both the initialization and filter program-
ming modules, as well as, an LTRJ command sequence and
an STT command.

Factors that influenced the development of this program in-
cluded the following: the program must demonstrate simple
trajectory parameters calculations, the program must dem-
onstrate the programming flow required to load and execute
an absolute position move, and correct completion of the
move must be verifiable through simpie observation.
Move: The shaft will accelerate at 0.1 rev/sec2 until it
reaches a maximum velocity of 0.2 rev/sec, and then decel-
erate to a stop exactly two revolutions from the starting po-
sition. See Figure 10.

Note: Absolute position is position measured relative to zero (home). An
absolute position move is a move that ends at a specified absolute
position. For example, independent of the current absolute position of
the shaft, if an absolute position of 30,000 counts is specified, upon
completion of the move the absolute position of the shaft will be
30,000 counts (i.e. 30,000 counts relative to zero). The example pro-
gram calls for a position move of two revolutions. Because the start-
ing absolute position is 0 counts, the move is accomplished by speci-
fying an absolute position of 8000 counts. See Figure 13.

The Quadrature Incremental Encoder

As a supplement to the trajectory parameters calculations, a
brief discussion is provided here to differentiate between
encoder /ines and encoder counts.

A quadrature incremental shaft encoder encodes shaft rota-
tion as electrical pulses. Figure 11 details the signals gener-
ated by a 3-channel quadrature incremental encoder. The
LM628 decodes (or “counts™) a quadrature incremental sig-
nal to determine the absolute position of the shaft.

Velocity (RPS)
0.2 +—

0.1 RPS?

* 1.6 revolutions traveled

01 while at maximum velocity

T
12 t (seconds)

i RO

TL/H/10860-13
FIGURE 10. Velocity Profile for Simple
Absolute Position Move Program
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FIGURE 11. 3-Channel Quadrature Encoder Signals

The resolution of a quadrature incremental encoder is usu-
ally specified as a number of /ines. This number indicates
the number of cycles of the output signals for each com-
plete shaft revolution. For example, an N-line encoder gen-
erates N cycles of its output signals during each complete
shaft revolution.

By definition, two signals that are in quadrature are 90° out
of phase. When considered together, channels A and B
(Figure 11) traverse four distinct digital states during each
full cycle of either channel. Each state transition represents
one count of shaft motion. The leading channel indicates
the direction of shaft rotation.

Each line, therefore, represents one cycle of the output sig-
nals, and each cycle represents four encoder counts.

The reference system uses a one thousand line encoder.

( 000 CYCLES ) % ( COUNTS) — 4000 COUNTS
1000 ZEVOLUTION CYCLE REVOLUTION
Sample Period

Sampling of actual shaft position occurs at a fixed frequen-
¢y, the reciprocal of which is the system sample period. The
system sample period is the unit of time upon which shaft
acceleration and velocity are based.

Tg = (2048) X ( ) System Sample Period

feLock
The reference system uses an 8 MHz clock. The sample
period of the reference system follows directly from the defi-
nition.

SECONDS
SAMPLE

Ts = (2048) X ( ) =256 X 10—6

1
8 x 106 Hz

Trajectory Parameters Calculations

The shaft will accelerate at 0.1 rev/sec? until it reaches a
maximum velocity of 0.2 rev/sec, and then decelerate to a
stop exactly two revolutions from the starting position.

Trajectory parameters calculations for this move are de-
tailed in Figure 12.

Comments

After completing the move, the control system will attempt
to hold the shaft at its current absolute position. The shaft
will feel lightly ““spring loaded”. If forced away from its de-
sired resting position and released, the shaft will move back
to the desired position.

(Maevormen) < (e ) - v
A= (4000%) X (256 X 10—3%%)2 ( B%J(;J—;IDOZM:) =262 X 10‘5%’3’%
A= (2.62 X 10—5 %) X (65,536) = 1.718% Acceleration Scaled
A= %:LTESZ Acceleration Rounded
A = 00000002 hex%
V= (4000-%%) X (256 X 10-6%%) X (O.ZB—E\SIEIC';(UD—LK;NS) = 0.2048%’:1-:
V= (0.2048 %) X (65,536) = 13,421.77% Velocity Scaled
V= 13,422%;—}:— Velocity Rounded
V =00 00 34 6E hex%‘:{:
P= (4000 %;—i%) X (2.0 REVOLUTIONS) = 8000 COUNTS
P = 00 00 1F 40 hex COUNTS

FIGURE 12. Calculations of Trajectory Parameters for Simple Absolute Position Move
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Port Bytes Command Comments

Initialization Module
Filter Programming Module

c 1F LTRJ This command initiates
loading the trajectory
parameters input buffers

Busy-bit Check Module

d 00 HB These two bytes are the

d 2A LB trajectory control word. A 2A
hex LB indicates
acceleration, velocity, and
position will be loaded and all
three parameters are
absolute.

Busy-bit Check Module

d 00 HB Acceleration is loaded in two

d 00 LB data words. These two bytes
are the high data word. In this
case, the acceleration is 0.1
rev/sec2,

Busy-bit Check Module
d 00 HB acceleration data word (low)
d 02 LB

Busy-bit Check Module

d 00 HB velocity is loaded in two data

d 00 LB words. These two bytes are
the high data word. In this
case, the velocity is 0.2 rev/
sec.

Busy-bit Check Module
d 34 HB velocity data word (low)
d 6E LB

Busy-bit Check Module

d 00 HB Position is loaded in two data

d 00 LB words. These two bytes are
the high data word. In this
case, the position loaded is
eight thousand counts. This
results in a move of two
revolutions in the forward
direction.

Busy-bit Check Module
d 1F HB position data word (low)
d 40 LB

Busy-bit Check Module
c 01 STT STT must be issued to

execute the desired
trajectory.

FIGURE 13. Simple Absolute Position Move Program

SIMPLE RELATIVE POSITION MOVE

This program demonstrates the programming flow required
to load and execute a relative position move. See Figure 14.
Move: Independent of the current resting position of the
shaft, the shaft will complete thirty revolutions in the reverse
direction. Total time to complete the move is fifteen sec-
onds. Total time for acceleration and deceleration is five
seconds.

Note: Target position is the final requested position. If the shaft is stationary,
and motion has not been stopped with a “motor-off”’ stop module, the
current absolute position of the shaft is the target position. If motion
has been stopped with a “motor-off" stop module, or a position move
has begun, the absolute position that corresponds to the endpoint of
the current trajectory is the target position. Relative position is posi-
tion measured relative to the current target position of the shaft. A
relative position move is a move that ends the specified “relative”
number of counts away from the current target position of the shaft.
For example, if the current target position of the shaft is 10 counts,
and a relative position of 30,000 counts is specified, upon completion
of the move the absolute position of the shaft will be 30,010 counts
(i.e. 30,000 counts relative to 10 counts).

Load Trajectory Parameters

The first byte of the trajectory control word, 00 hex, pro-
grams position mode operation. The second byte, 2B hex,
indicates all three trajectory parameters will be loaded. it
also indicates both acceleration and velocity will be abso-
lute values while position will be a relative value.

Trajectory Parameters Calculations

Independent of the current resting position of the shaft, the
shaft will complete thirty revolutions in the reverse direction.
Total time to complete the move is fifteen seconds. Total
time for acceleration and deceleration is five seconds.

The reference system utilizes a one thousand fine encoder.
The number of counts for each complete shaft revolution
and the total counts for this position move are determined.

CYCLES ) x( COUNTS) = 4000 COUNTS
REVOLUTION CYCLE REVOLUTION

COUNTS
REVOLUTION

With respect to time, two-thirds of the move is made at max-
imum velocity and one-third is made at a velocity equal to
one-half the maximum velocity.T Therefore, total counts
traveled during acceleration and deceleration periods is
one-fifth the total counts traveled. See Figure 15.

120,000 COUNTS _ total counts traveled during
5 =24,000 COUNTS  eleration and deceleration

(1000

(4000 ) X (30 REVOLUTIONS) = 120,000 COUNTS

24,000 COUNTS _ counts traveled during
_ 2 =12,000 COUNTS acceleration

The reference system uses an 8 MHz clock. The sample
period of the reference system is determined.

SECONDS

8% 106Hz SAMPLE

The number of samples during acceleration (and decelera-
tion) is determined.

Ts = (2048)><< )=256><10-6

2.5 SECONDS = number of samples
6 SECONDS 9766 SAMPLES ing acceleration
256 X106 ———
5610 SAMPLE

Using the number of counts traveled during acceleration
and the number of samples during acceleration, accelera-
tion is determined.

= 3_'2 distance traveled during
2 timetatacceleration a

(2) X {12,000 COUNTS) _ COUNTS
(9766 SAMPLES)2 0.000252 o pLE?
Total counts traveled while at maximum velocity is four-fifths
the total counts traveled.
X
(4) (120,020 COUNTS) _ 96,000 COUNTS

FAverage velocity during acceleration and deceleration periods is one-half
the maximum velocity.

_2s

2
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Port Bytes Command

Comments

c 1F
d 00
d 2B
d 00
d 00
d 00
d 1
d 00
d 02
d 75
d 3F
d FF
d FE
d 2B
d 40
c o

Initialization Module
Filter Programming Module

LTRJ This command initiates
loading the trajectory

parameters input buffers.

Busy-bit Check Module

HB These two bytes are the

LB trajectory control word. A 2B
hex LB indicates all three
parameters will be loaded
and both acceleration and
velocity will be absolute
values while position will be a

relative value.
Busy-bit Check Module
HB Acceleration is loaded in two
LB data words. These two bytes

are the high data word. In this
case, the acceleration is 17

counts/sample2.
Busy-bit Check Module
HB acceleration data word (low)

LB

Busy-bit Check Module
HB Velocity is loaded in two data
LB words. These two bytes are
the high data word. In this
case, velocity is 161,087

counts/sample.
Busy-bit Check Module
HB velocity data word (low)
LB
Busy-bit Check Module
HB Position is loaded in two data
LB words. These two bytes are
the high data word. In this
case, the position loaded is
—120,000 counts. This
results in a move of thirty
revolutions in the reverse
direction.
Busy-bit Check Module
HB position data word (iow)
LB
Busy-bit Check Module
81T STT must be issued to
execute the desired
trajectory.

FIGURE 14. Simple Relative Position Move Program

counts )
sample

Velocity (

48,828 58,594
i !

t (samples)

=2.548 ++

TL/H/10860-15
FIGURE 15. Velocity Profile for Simple
Relative Position Move Program

The number of samples while at maximum velocity is deter-
mined.

10 SECONDS = number of samples while at
. SECONDS = 39,062 SAMPLES " O e velocity
256 X 1070 "SAMPLE.

Using the total counts traveled while at maximum velocity
and the number of samples while at maximum velocity, ve-
locity is determined.

96,000 COUNTS _ , . COUNTS
39,062 SAMPLES " SAMPLE
Both acceleration and velocity values are scaled.

COUNTS COUNTS
. X = 16. ————
(o 000252 AMPLEZ) (65,536) = 16515 oo
COUNTS COUNTS
(2.4sem) X (65,536) = 161,087.488 ==

Acceleration and velocity are rounded to the nearest integer
and all three trajectory parameters are converted to hexa-
decimal.

COUNTS

SAMPLE2

COUNTS

SAMPLE

P = —120,000 = FF FE 2B 40 hex COUNTS

BASIC VELOCITY MODE MOVE WITH BREAKPOINTS

This program demonstrates basic velocity mode program-
ming and the (typical) programming flow required to set both
absolute and relative breakpoints. See Figure 17.

Move: The shaft will accelerate at 1.0 rev/sec? until it
reaches a maximum velocity of 2.0 rev/sec. After complet-
ing twenty forward direction revolutions (including revolu-
tions during acceleration), the shaft will accelerate at 1.0
rev/sec? until it reaches a maximum velocity of 4.0 rev/sec.
After completing twenty forward direction revolutions (in-
cluding revolutions during acceleration), the shaft will decel-
erate (at 1.0 rev/sec?) to a stop. See Figure 16.

A =17 = 000000 11 hex

V = 161,087 = 00 02 75 3F hex
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4.0

Velocity (RPS)

3.0 +

2.0 +

|| Il

[N A
.

| [l
T T T
" zol 2 t (seconds)

20.5
TL/H/10860-16

FIGURE 16. Velocity Profile for Basic Velocity Mode with Breakpoints Program

Mask interrupts

An MSKI command sequence allows the user to determine
which interrupt conditions result in host interrupts; interrupt-
ing the host via the host interrupt output (pin 17). It contains
an MSKI command and one data word.

The MSKI command initiates interrupt masking.

Immediately following the MSKI command, a single data
word is written. The first byte is not used. Bits one through
six of the second byte determine the masked/unmasked
status of each interrupt. See Table //. Any zeros in this 6-bit
field mask (disable) the corresponding interrupts while any
ones unmask (enable) the corresponding interrupts.

In the case of the examlple program, the second byte of the
MSKI data word, 40 hex, enables the breakpoint interrupt.
All other interrupts are disabled (masked).

When interrupted, the host processor can read the Status

Byte to determine which interrupt condition(s) occurred. See

Table 1.

Note: Command MSKI controls only the host interrupt process. Bits one
through six of the Status Byte reflect actual conditions independent of
the masked/unmasked status of individual interrupts. This feature al-
lows interrupts to be servicad with a polling scheme.

Set Breakpoints (Absolute and Relative)

An SBPA command sequence enables the user to set
breakpoints in terms of absolute shaft position. An SBPR
command sequence enables setting breakpoints relative to
the current target position. When a breakpoint position is
reached, bit six of the status byte, the breakpoint interrupt
flag, is set to logic high. If this interrupt is enabled (un-
masked), the host will be interrupted via the host interrupt
output (pin 17).

An SBPA (or SBPR) command initiates loading/setting a
breakpoint. The two data words, written immediately follow-
ing the SBPA (or SBPR) command, represent the break-
point position.

The example program contains a relative breakpoint set at
80,000 counts relative to position zero (the current target
position). This represents a move of twenty forward direc-
tion revolutions. When this position is reached, the LM628
interrupts the host processor, and the host executes a se-
quence of commands that increases the maximum velocity,
resets the breakpoint interrupt flag, and loads an absolute
breakpoint.

The example program contains an absolute breakpoint set
at 160,000 counts. When this absolute position is reached,
the LM628 interrupts the host processor, and the host exe-
cutes a Smooth Stop Module.

Breakpoint positions for this example program are deter-
mined.

COUNTS
REVOLUTION

— relative
= 80,000 COUNTS breakpoint

(4000 ) X (20 REVOLUTIONS)

COUNTS
REVOLUTION

- absolute
= 160,000 COUNTS breakpoint

(4000 ) X (40 REVOLUTIONS)

Load Trajectory Parameters

This example program contains two LTRJ command se-
quences. The trajectory control word of the first LTRJ com-
mand sequence, 1828 hex, programs forward direction ve-
locity mode, and indicates an absolute acceleration and an
absolute velocity will be loaded. The trajectory control word
of the second LTRJ command sequence, 180C hex, pro-
grams forward direction velocity mode, and indicates a rela-
tive velocity will be loaded. See 7able V.

Trajectory parameters calculations follow the same format
as those detailed for the simple absolute position move.
See Figure 12.
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Port Bytes Command

a

a

a

Q

Comments

40

21

00
01

38
80

1F

18
28

00
00

00
"

00

02

oC
4A

Initialization Module
Filter Programming Module

MSKI Mask interrupts.
Busy-bit Check Module
HB don't care

LB A 40 hex LB enables
(unmasks) the breakpoint
interrupt. All other interrupts
are disabled (masked).

Busy-bit Check Module
SPBR This command initiates
loading a relative breakpoint.
Busy-bit Check Module
HB A breakpoint is loaded in two
LB data words. These two bytes
are the high data word. In this
case, the breakpoint is
80,000 counts relative to the
current commanded target
position (zero).
Busy-bit Check Module
HB breakpoint data word (low)
LB

Busy-bit Check Module
LTRJ Load trajectory.

Busy-bit Check Module
HB These two bytes are the
LB trajectory control word. A 18
hex HB programs forward
direction velocity mode
operation. A 28 hex LB
indicates acceleration and
velocity will be loaded and
both values are absolute.
Busy-bit Check Module
HB Acceleration is loaded in two
LB data words. These two bytes
are the high data word. In this
case, the acceleration is 1.0
rev/sec2,
Busy-bit Check Module
HB acceleration data word (low)
LB
Busy-bit Check Module
HB Velocity is loaded in two data
LB words. These two bytes are
the high data word. In this
case, velocity is 2.0 rev/s.

Busy-bit Check Module

HB velocity data word (low)
LB
Busy-bit Check Module

Port Bytes Command

[+

[~

Q

Comments

01

1F

18
oC

00
02

0C
4A

01

00

20

00
02

71
00

STT Start motion control.

Busy-bit Check Module
LTRJ This command initiates
loading the trajectory
parameters input buffers.

Busy-bit Check Module

HB These two bytes are the

LB trajectory control word. A 18
hex HB programs forward
direction velocity mode
operation. A 0C hex LB
indicates only veiocity will be
loaded and it will be a relative
value.

Busy-bit Check Module

HB Velocity is loaded in two data

LB words. These two bytes are
the high data word. In this
case, velocity is 2.0 rev/s.
Because this is a relative
value, the current velocity will
be increased by 2.0 rev/s.
The resultant velocity will be

4.0rev/s.
Busy-bit Check Module
HB velocity data word (low)
LB
wait This wait represents the host
processor waiting for an

LM#628 breakpoint interrupt.
STT Start motion control.
Busy-bit Check Module
RSTI Reset interrupts.
Busy-bit Check Module

HB don’t care
LB Zeros in bits one through six
reset all interrupts.
Busy-bit Check Module
SPBA This command initiates
loading an absolute
breakpoint.
Busy-bit Check Module

HB A breakpoint is loaded in two

LB data words. These two bytes
are the high data word. In this
case, the breakpoint is
160,000 counts absolute.

Busy-bit Check Module
HB breakpoint data word (low)
LB

wait This wait represents the host
processor waiting for an
LM628 breakpoint interrupt.

“Smooth” Stop Moduie

FIGURE 17. Basic Velocity Mode Move with Breakpoints Program
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S

11l. TUNING THE PID FILTER

BACKGROUND

The transient response of a control system reveals impor-
tant information about the “quality” of control, and because
a step input is easy to generate and sufficiently drastic, the
transient response of a control system is often character-
ized by the response to a step input, the system step re-
sponse.
In turn, the step response of a control system can be char-
acterized by three attributes: maximum overshoot, rise time,
and settling time. These step response attributes are de-
fined in what follows and detailed graphically in Figure 19.
1. The maximum overshoot, Mp, is the maximum peak val-
ue of the response curve measured from unity. The
amount of maximum overshoot directly indicates the rel-
ative stability of the system.
2. The rise time, t;, is the time required for the response to
rise from ten to ninety percent of the final value.
3. The settling time, g, is the time required for the response
to reach and stay within two percent of the final value.
A critically damped control system provides optimum per-
formance. The step response of a critically damped control
system exhibits the minimum possible rise time that main-
tains zero overshoot and zero ringing (damped oscillations).
Figure 20 illustrates the step response of a critically damped
control system.

c(l) 'S

T Allowable tolerance
a /\ l. : 0.02
1op—t T \tj

0.5

Y

TL/H/10860-17
FIGURE 19. Unit Step Response Curve Showing
Transient Response Attributes

c(t)

1.0

-»
t

TL/H/10860-18
FIGURE 20. Unit Step Response of a
Critically Damped System

INTRODUCTION

The LM628 is a digital PID controller. The loop-compensa-
tion filter of a PID controller is usually tuned experimentally,
especially if the system dynamics are not well known or
defined.

The ultimate goal of tuning the PID filter is to critically damp
the motor control system—provide optimum tracking and
settling time.

As shown in Figure 5, the response of the PID filter is the
sum of three terms, a proportional term, an integral term,
and a derivative term. Five variables shape this response.
These five variables include the three gain coefficients (kp,
ki, and kg), the integration limit coefficient (ij), and the deriv-
ative sampling coefficient (ds). Tuning the filter equates to
determining values for these variable coefficients, values
that critically damp the control system.

Filter coefficients are best determined with a two-step ex-
perimental approach. In the first step, the values of kp, k;
and kg (along with ij and dg) are systematically varied until
reasonably good response characteristics are obtained.
Manual and visual methods are used to evaluate the effect
of each coefficient on system behavior. In the second step,
an oscilloscope trace of the system step response provides
detailed information on system damping, and the filter coef-
ficients, determined in step one, are modified to critically
damp the system.

Note: In step one, adjustments to filter coefficient values are inherently
coarse, while in step two, adjustments are inherently fine. Due 1o this
coarse/fine nature, steps one and two complement each other, and
the two-step approach is presented as the “best” tuning method.
The PID filter can be tuned with either step one or step two alone.

STEP ONE—MANUAL VISUAL METHOD

Introduction

In the first step, the values of kp, k;, and kq (along with ij and
dg) are systematically varied until reasonably good response
characteristics are obtained. Manual and visual methods are
used to evaluate the effect of each coefficient on system
behavior.

Note: The next four numbered sections are ordered steps to tuning the PID
filter.

1. Prepare the System

The initialization section of the filter tuning program is exe-
cuted to prepare the system for filter tuning. See Figure 22.
This section initializes the system, presets the filter parame-
ters (kp, ki, il = 0, kg = 2, ds = 1), and commands the
control loop to hold the shaft at the current position.

After executing the initialization section of the filter tuning
program, both desired and actual shaft positions equal zero;
the shaft should be stationary. Any displacement of the
shaft constitutes a position error, but with both kp, and k; set
to zero, the control loop can not correct this error.

2. Determine the Derivative Gain Coefficient

The filter derivative term provides damping to eliminate os-
cillation and minimize overshoot and ringing, stabilize the
system. Damping is provided as a force proportional to the
rate of change of position error, and the constant of propor-
tionality is kq X ds. See Figure 21.

Coefficients kq and dg are determined with an iterative pro-
cess. Cosfficient kg is systematically increased until the
shaft begins high frequency oscillations. Coefficient dg is
then increased by one. The entire process is repeated until
dg reaches a value appropriate for the system.
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The system sample period sets the time interval between
updates of position error. The derivative sampling interval is
an integer multiple of the system sample period. See Table
/V. It sets the time interval between successive position
error samples used in the derivative term, and, therefore,
directly affects system damping. The derivative sampling in-
terval should be five to ten times smaller than the system
mechanical time constant — this means many systems will
require low ds. In general, however, kg and dg should be set
to give the largest kg X dg product that maintains accept-
ably low motor vibrations.

Note: Starting kg at two and doubling it is a good method of increasing ky.
Manually turning the shaft reveals that with each increase of kg, the
resistance of the shaft to turning increases. The shaft feels increas-
ingly sluggish and, because kg provides a force proportional to the
rate of change of position error, the faster the shaft is turned the more
sluggish it feels. For the reference system, the final values of kg and
ds are 4000 and 4 respectively.

Proportional Term

4 output

mo:kp

error

TL/H/10860-19

Integral Term

A output

ky x i 4=

TL/H/10860-20
Derivative Term

A output

Ty
mcxkdxds:kax].—s

>

-~

>
Aerror

TL/H/10860-21
FIGURE 21. Proportional, Integral, and
Derivative (PID) Force Components

Port Bytes Command

[o]

Comments

00

06

XX
00

1C

04

1E

00
x2

00
02

RESET
wait

PORT12

See Initialization Module Text

The maximum time to
complete RESET tasks is 1.5
ms.

The RESET default size of
the DAC port is eight bits.
This command initializes the
DAC port for a 12-bit DAC. It
should not be issued in
systems with an 8-bit DAC.

Busy-bit Check Module

RSTI

This command resets only
the interrupts indicated by
zeros in bits one through six
of the next data word. It also
resets bit fifteen of the
Signals Register and the host
interrupt pin (pin 17).

Busy-bit Check Module

HB
LB

don’t care

Zeros in bits one through six
indicate all interrupts will be
reset.

Busy-bit Check Module

MSKI

This command masks the
interrupts indicated by zeros
in bits one through six of the

next data word.

Busy-bit Check Module

HB don’t care
LB A 04 hex LB enables

(unmasks) the trajectory
complete interrupt. All other
interrupts are disabled
(masked). See Table /l.

Busy-bit Check Moduie

LFIL This command initiates

loading the filter coefficients
input buffers.

Busy-bit Check Moduie

HB
LB

These two bytes are the filter
control word. A 00 hex HB
sets the derivative sampling
interval to 2048/fc| by
setting dg to one. A x2 hex LB
indicates only kg will be
loaded. The other filter
parameters will remain at
zero, their reset default value.

Busy-bit Check Module

HB
LB

These two bytes set kg to
two.

Busy-bit Check Module

FIGURE 22. Initialization Section—
Filter Tuning Program
(Continued on Next Page)
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Command Comments

UDF

Port Bytes
c 04

This command transfers new
filter coefficients from input
buffers to working registers.
Until UDF is executed,
coefficients loaded via the
LFIL command do not affect
the filter transfer
characteristic.

Busy-bit Check Module

LTRJ This command initiates

loading the trajectory

parameters input buffers.

Busy-bit Check Module

00 HB These two bytes are the

d 00 LB trajectory control word. A 00
hex LB indicates no trajectory
parameters will be loaded.

Busy-bit Check Module

STT

a

STT must be issued to
execute the desired

trajectory.

FIGURE 22. Initialization Section—
Filter Tuning Program (Continued)

3. Determine the Proportional Gain Coefficient
Inertial loading causes following (or tracking) error, position
error associated with a moving shaft. External disturbances
and torque loading cause displacement error, position error
associated with a stationary shaft. The filter proportional
term provides a restoring force to minimize these position
errors. The restoring force is proportional to the position
error and increases linearly as the position error increases.
See Figure 21. The proportional gain coefficient, ky, is the
constant of proportionality.
Coefficient kp is determined with an iterative process—the
value of k;, is increased, and the system damping is evaluat-
ed. This is repeated until the system is critically damped.
System damping is evaluated manually. Manually turning
the shaft reveals each increase of k increases the shaft
“stiffness”. The shaft feels spring loaded, and if forced
away from its desired holding position and released, the
shaft “springs” back. If kp is too low, the system is over
damped, and the shaft recovers too slowly. If kp is too large,
the system is under damped, and the shaft recovers too
quickly. This causes overshoot, ringing, and possibly oscilla-
tion. The proportional gain coefficient, k, is increased to the
largest value that does not cause excessive overshoot or
ringing. At this point the system is critically damped, and
therefore provides optimum tracking and settling time.
Note: Starting kp at two and doubling it at each iteration is a good method

of increasing kp. The final value of kp for the reference system is 40.
4. Determine the Integral Gain Coefficient
The filter proportional term minimizes the errors due to iner-
tial and torque loading. The integral term, however, provides
a corrective force that can eliminate following error while
the shaft is spinning and the deflection effects of a static
torque load while the shaft is stationary. This corrective
force is proportional to the position error and increases lin-
early with time. See Figure 21. The integral gain coefficient,
ki, is the constant of proportionality.
High values of k; provide quick torque compensation, but
increase overshoot and ringing. in general, k; should be set
to the smallest value that provides the appropriate compro-

mise between three system characteristics: overshoot, set-
tiing time, and time to cancel the effects of a static torque
load. In systems without significant static torque loading, a ki
of zero may be appropriate.

The corrective force provided by the integral term increases
linearly with time. The integration limit coefficient, i, acts as
a clamping value on this force to prevent integral wind-up, a
backlash effect. As noted in Figure 21, i) limits the summa-
tion of error (over time), not the product of k; and this sum-
mation. In many systems i| can be set to its maximum value,
7FFF hex, without any adverse effects. The integral term
has no effect if i is set to zero.

For the test system, the final values of k; and ij are 5 and
1000 respectively.

STEP TWO—STEP RESPONSE METHOD

Introduction

The step response of a control system reveals important
information about the “quality” of control—specifically, de-
tailed information on system damping.

In the second step to tuning the PID filter, an oscilloscope
trace of the control system step response is used to accu-
rately evaluate system damping, and the filter coefficients,
determined in step one, are fine tuned to critically damp the
system.

Software Considerations

The step generation section of the filter tuning program pro-
vides the control loop with a repetitive small-signal step in-
put. This is accomplished by repeatedly executing a small
position move with high maximum velocity and high acceler-
ation. See Flow Diagram 3 and Figure 23.

‘ START ’

Y

Load Trajectory
Parameters.

Y
g

A

Start the step.

&

Read the Status Byte.

Trajectory—
Complete bit set
?

Reset interrupts.

Wait.

TL/H/10860-22
Flow Diagram 3. Step Generation
Section of Filter Tuning Program
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Port Bytes Command

c

Comments

1F

00
2B

00
04

93
EO

00
07

Al
20

00
00

00
cs

LTRJ This command initiates
loading the trajectory

parameters input buffers.

Busy-bit Check Module

HB These two bytes are the

LB trajectory control word. A 2B
hex LB indicates
acceleration, velocity, and
position will be loaded and
both acceleration and
velocity are absolute while
position is relative.

Busy-bit Check Module

HB Acceleration is loaded in two
LB data words. These two bytes
are the high data word.
Busy-bit Check Module
HB acceleration data word (low)
LB

Busy-bit Check Module
HB Velocity is loaded in two data
LB words. These two bytes are

the high data word.

Busy-bit Check Module
HB velocity data word (low)
LB

Busy-bit Check Module
HB Position is loaded in two data
LB words. These two bytes are

the high data word.
Busy-bit Check Module
HB position data word (low)

LB

Port Bytes Command

Comments

c 01
c XX
c 1D
d XX
d 00

Busy-bit Check Module
STT STT must be issued to
execute the desired
trajectory.

Busy-bit Check Module

RDSTAT  This command reads the
Status Byte. It is directly
supported by LM628
hardware and can be
executed at any time by
pulling CS, PS, and RD logic
low. Status information
remains valid as long as RD is
logic low.

If the Trajectory Complete
interrupt bit is set, continue.
Otherwise loop back to
RDSTAT.

This command resets only
the interrupts indicated by
zeros in bits one through six
of the next data word. It also
resets bit fifteen of the
Signals Register and the host
interrupt pin (pin 17).

HB don’t care

LB Zeros in bits one through six
indicate all interrupts will be
reset.

wait This wait block inserts a delay
between repetitions of the
step input. The delay is
application specific, but a
good range of values for the
delay is 5 ms to 5000 ms.
loop Loop back to STT.

decision

RSTI

FIGURE 23. Step Generation Section—Filter Tuning Program
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Hardware Considerations

For a motor control system, an oscilloscope trace of the
system step response is a graph of the real position of the
shaft versus time after a small and instantaneous change in
desired position.
For an LM628-based system, no extra hardware is needed
to view the system step response. During a step, the volt-
age across the motor represents the system step response,
and an oscilloscope is used to generate a graph of this re-
sponse (voltage).
For an LM629-based system, extra hardware is needed to
view the system step response. Figure 24 illustrates a circuit
for this purpose. During a step, the voltage output of this
circuit represents the system step response, and an oscilio-
scope is used to generate a graph of this response.
The oscilloscope trigger signal, a rectangular pulse train, is
taken from the host interrupt output pin (pin 17) of the
LM628/LM629. This signal is generated by the combination
of a trajectory complete interrupt and a reset interrupts
(RSTI) command. See Flow Diagram 3.
Note: The circuit of Figure 24 can be used to view the step response of an
LM628-based system.
Observations

What follows are example oscilloscope traces of the step
response of the reference system.
Note 1: All traces were generated using the circuit of Figure 24.

Note 2: All traces were generated using the following “'step” trajectory pa-
rameters: relative position, 200 counts; absolute velocity, 500,000
counts/sample; acceleration, 300,000 counts/sample/sample.
These values generated a good small-signal step input for the ref-
erence system; other systems will require different trajectory pa-
rameters. [n general, step trajectory parameters consist of a small
relative position, a high velocity, and a high accsleration.

The position parameter must be relative. Otherwise, a define home
command (DFH) must be added to the main loop of the step gener-
ation section—filter tuning program. See Flow Diagram 3.

The circuit for viewing the system step response uses an 8-bit ana-
log-to-digitai converter. See Figure 24. To prevent converter over-
flow, the step position parameter must not be set higher than 200
counts.

Note 3: The circuit of Figure 24 produces an “inverted” step response

graph. The oscilloscope input was inverted to produce a positive-

going (more familiar) step response graph.
Figure 25 represents the step response of an under damped
control system; this response exhibits excessive overshoot
and long settling time. The filter parameters used to gener-
ate this response were as follows: kp, 35; k;, 5; kg, 600; ds,
4; i, 1000. Figure 25 indicates the need to increase kg, the
derivative gain coefficient.
Figure 26 represents the step response of an over damped
control system; this response exhibits excessive rise time
which indicates a sluggish system. The filter parameters
used to generate this response were as follows: kp, 35; kj, 5;
kg, 10,000; dg, 7; i|, 1000. Figure 26 indicates the need to
decrease kq and d.
Figure 27 represents the step response of a critically
damped control system; this response exhibits virtually zero
overshoot and short rise time. The filter parameters used to
generate this response were as follows: kp, 40; ki, 5; kg,
4000; dg, 4; i, 1000.

+Sv HCTL - 2000 Dacosoo 12V -1V
quadrature digital-to~analog 4.99kn
decoder converter Ay
16 9 5 13
Voo 07 Bt MSB V¥
3 10 6 3
SEL 06 B2 2 o uF +5v 2
6 1 7 16 .
phases A A D5 B85 coMP B, ok - ’
and B from 7 12 8 14 249k LM 10 | oscilloscope
B D4 B4 Vet input
encoder R P!
5 13 9 + [
RST D3 85 lout 7
2] ek o2 |4 L1 PN | Z
4 15 1 0T [ys 249k 5 g 8
i3 D1 B7 Vo A 3 299ka
8 1 12
GND D0 B8 LSB &
S 249ka
— ‘)
—— L e

e system clock divided by four

to scope trigger
&

4+

———04——0— from LM628/LM629 pin 17 (host intsrrupt output)

TL/H/10860-23

FIGURE 24. Circuit for Viewing the System Step Response with an Oscilloscope
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100 mSEC/div

Trigger Signal +
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TL/H/10860-24
FIGURE 25. The Step Response of an Under Damped Control System

T

| 5v/dv i ]
100 mSEC/div

CH1

Trigger Signal +
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TL/H/10860-25
FIGURE 26. The Step Response of an Over Damped Control System
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FIGURE 27. The Step Response of a Critically Damped Control System
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1.0 INTRODUCTION

1.1 Application Note Objective

This application note is intended to explain and complement
the information in the data sheet and also address the com-
mon user questions. While no initial familiarity with the
LM628/629 is assumed, it will be useful to have the
LM628/629 data sheet close by to consult for detailed de-
scriptions of the user command set, timing diagrams, bit
assignments, pin assignments, etc.

After the following brief description of the LM628/629, Sec-
tion 2.0 gives a fairly full description of the device’s opera-
tion, probably more than is necessary to get going with the
device. This section ends with an outline of how to tune the
control system by adjusting the PID filter coefficients.

Section 3 “User Command Set” discusses the use of the
LM628/629 commands. For a detailed description of each
command the user should refer to the data sheet.

Section 4 “Helpful User Ideas” starts with a short descrip-
tion of the actions necessary to get going, then proceeds to
talk about some performance enhancements and follows on
with a discussion of a couple of operating constraints of the
device.

Section 5 “Theory” is a short foray into theory which relates
the PID coefficients that would be calculated from a continu-
ous domain control loop analysis to those of the discrete
domain including the scaling factors inherent to the
LM628/629. No attempt is made to discuss control system
theory as such, readers should consult the ample refer-
ences available, some suggestions are made at the end of
this application note. Section 5 concludes with an example
trajectory calculation, reviving those perhaps forgotten
ideas about acceleration, velocity, distance and time.

Section 6 “Questions and Answers”, is in question and an-
swer format and is born out of and dedicated to the many
interesting discussions with customers that have taken
place.

1.2 Brief Description of LM628/629

LM628/629 is a microcontroller peripheral that incorporates
in one device all the functions of a sample-data motion con-
trol system controller. Using the LM628/629 makes the po-
tentially complex task of designing a fast and precise motion
control system much easier. Additional features, such as
trajectory profile generation, on the “fly” update of loop
compensation and trajectory, and status reporting, are in-
cluded. Both position and velocity motion control systems
can be implemented with the LM628/629.

8 o
Y
TRAJECTORY L HosT 5 HOST
GENERATOR « INTERFACE PROCESSOR
>
4 MOTOR DRIVE OPTIONS
FOR LM628 or LM629
16 PID FILTER 8 8- or 12-BIT
(Loop Compensator) i DAC N
LM628 DAC0800 or LM12
or DAC1208
LM629
A .
POSITION 8-BIT PWM l . BRIDGE —
DECODER DRIVER L e DC MOTOR
LM18293
LM18298
LMD18200 OPTICAL
LM628 or LM629 POSITION =
ENCODER

TL/H/11018-1

FIGURE 1. LM628 and LM629 Typical System Block Diagram
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LM628/629 is itself a purpose designed microcontroller that
implements a position decoder, a summing junction, a digital
PID loop compensation filter, and a trajectory profile gener-
ator, Figure 1. Output format is the only difference between
LM628 and LM629. A paraliel port is used to drive an 8- or
12-bit digital-to-analog converter from the LM628 while the
LM629 provides a 7-bit plus sign PWM signal with sign and
magnitude outputs. Interface to the host microcontrolier is
via an 8-bit bi-directional data port and six control lines
which includes host interrupt and hardware reset. Maximum
sampling rates of either 2.9 kHz or 3.9 kHz are available by
choosing the LM6268/9 device options that have 6 MHz or
8 MHz maximum clock frequencies (device -6 or -8 suffixes).
In operation, to start a movement, a host microcontroller
downloads acceleration, velocity and target position values
to the LM628/629 trajectory generator. At each sample in-
terval these values are used to calculate new demand or
“set point” positions which are fed into the summing junc-
tion. Actual position of the motor is determined from the
output signals of an optical incremental encoder. Decoded
by the LM628/629's position decoder, actual position is fed

to the other input of the summing junction and subtracted
from the demand position to form the error signal input for
the control loop compensator. The compensator is in the
form of a “three term” PID filter (proportional, integral, deriv-
ative), this is implemented by a digital filter. The coefficients
for the PID digital fiiter are most easily determined by tuning
the control system to give the required response from the
load in terms of accuracy, response time and overshoot.
Having characterized a load these coefficient values are
downloaded from the host before commencing a move. For
a load that varies during a movement more coefficients can
be downloaded and used to update the PID filter at the mo-
ment the load changes. All trajectory parameters except ac-
celeration can also be updated while a movement is in prog-
ress.

2.0 DEVICE DESCRIPTION

2.1 Hardware Architecture

Four major functional blocks make up the LM628/629 in
addition to the host and output interfaces. These are the
Trajectory Profile Generator, Loop Compensating PID Filter,
Summing Junction and Motor Position Decoder (Figure 1).

> ALU MPY
CONTROL
¥ v 1
atmp acc -
7] 1]
=] ROM 2 RAM s:11) 16 216y 14/
2 1k x 16 < 16 x16 /1 4 s
PC acctmp
A F N h -~
Mo Al As A L——
, « < 16-BIT
1 DATA BUS y
At AG. 1115 As At At
A 4 A 4 A 4 A
SEQUEN{CER PLA PWM
HOST PARALLEL DAC POSITION
i/0 OUTPUT DECODER
oR AND
8 8 2 T T T
M1 M2 N
T0 HOST T0 DAC SIGN FROM
0 MAG/ INCREMENTAL
ENCODER

TL/H/11018-2

FIGURE 2. Hardware Architecture of LM628/629
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Details of how LM628/629 is implemented by a purpose
designed microcontroller are shown in Figure 2. The control
algorithm is stored in a 1k x 16-bit ROM and uses 16-bit
wide instructions. A PLA decodes these instructions and
provides data transfer timing signals for the single 16-bit
data and instruction bus. User variable filter and trajectory
profile parameters are stored as 32-bit double words in
RAM. To provide sufficient dynamic range a 32-bit position
register is used and for consistency. 32 bits are also used
for velocity and acceleration values. A 32-bit ALU is used to
support the 16 x 16-bit multiplications of the error and PID
digital filter coefficients.

2.2 Motor Position Decoder

LM628/629 provides an interface for an optical position
shaft encoder, decoding the two quadrature output signals

one

to provide position and direction information, Figure 3. Op-
tionally a third index position output signal can be used to
capture position once per revolution. Each of the four states
of the quadrature position signal are decoded by the
LM628/629 giving a 4 times increase in position resolution
over the number of encoder lines. An “N” line encoder will
be decoded as “4N” position counts by LM628/629.

Position decoder block diagram, Figure 4, shows three lines
coming from the shaft encoder, M1, M2 and Index. From
these the decoder PLA determines if the motor has moved
forward, backward or stayed still and then drives a 16-bit up-
down counter that keeps track of actual motor position.
Once per revolution when all three lines including the index
line are simultaneously low, Figure 3, the current position
count is captured in an index latch.

t*— encoder —|
line state | A | B
A 1140 "
positive
2] 1 1
310 1
direction
410 ]
B 1{1]o
negative
2|1 1
112|3[4]1]2] 3| 4}|=«——STATES 3]0 1
v— e ——————
IN
—4 le— Index pulse=A B IN

TL/H/11018-3

FIGURE 3. Quadrature Encoder Output Signals and Direction Decode Table

FROM OPTICAL ENCODER

M1 M2 INDEX
INC
MOTOR RELATIVE POSITION
POSITION DEC COUNTER
DECODER e
PLA
LATCH POSITION INDEX
e LATCH LATCH
A A
A v

MAIN PROCESSOR BUS 16 BITS

TL/H/11018-4

FIGURE 4. LM628/629 Motor Positlon Decoder
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The 16-bit up-down counter is used to capture the differ-
ence in position from one sample to the next. A position
latch attached to the up-down counter is strobed at the
same time in every sample period by a sync pulse that is
generated in hardware. The position latch is read soon after
the sync pulse and is added to the 32-bit position register in
RAM that holds the actual current position. This is the value
that is subtracted in the summing junction every sample in-
terval from the new desired position calculated by the tra-
jectory generator to form the error input to the PID filter.

Maximum encoder state capture rate is determined by the
minimum number of clock cycles it takes to decode each
encoder state, see Figure 3, this minimum number is 8 clock
cycles, capture of the index pulse is also achieved during
these 8 clock cycles. This gives a more than adequate 1
MHz maximum encoder state capture rate with the 8 MHz
foLk devices (750 kHz for the & MHz fg k devices). For
example, with the 1 MHz capture rate, a motor using a 500
line encoder will be moving at 30,000 rpm.

There is some limited signal conditioning at the decoder
input to remove problems that would occur due to the asyn-
chronous position encoder input being sampled on signal
edges by the synchronous LM628/629. But there is no
noise filtering as such on the encoder lines so it is important
that they are kept clean and away from noise sources.

2.3 Trajectory Profile Generator

Desired position inputs to the summing junction, Figure 1,
within the LM628/629 are provided by an internal indepen-
dent trajectory profile generator. The trajectory profile gen-
erator takes information from the host and computes for
each sample interval a new current desired position. The
information required from the host is, operating mode, either
position or velocity, target acceleration, target velocity and
target position in position mode.

2.4 Definitions Relating to Profile Generation

The units of position and time, used by the LM628/629, are
counts (4 X N encoder lines) and samples (sample intervals

= 2048/fc k) respectively. Velocity is therefore calculated
in counts/sample and acceleration in counts/sample/sam-
ple.

Definitions of “target”, “desired” and “actual” within the
profile generation activity as they apply to velocity, accelera-
tion and position are as follows. Final requested values are
called “target”, such as target position. The values comput-
ed by the profile generator each sample intervai on the way
to the target value are called “desired”. Real values from
the position encoder are called “actual”.

For example, the current actual position of the motor will
typically be a few counts away from the current desired po-
sition because a new value for desired position is calculated
every sample interval during profile generation. The differ-
ence between the current desired position and current actu-
al position relies on the ability of the control loop to keep the
motor on track. In the extreme example of a locked rotor
there could be a large difference between the current actual
and desired positions.

Current desired velocity refers to a fixed velocity at any
point on a on-going trajectory profile. While the profile de-
mands acceleration, from zero to the target velocity, the
velocity will incrementally increase at each sample interval.

Current actual velocity is determined by taking the differ-
ence in the actual position at the current and the previous
sample intervals. At velocities of many counts per sample
this is reasonably accurate, at low velocities, especially be-
low one count per sample, it is very inaccurate.

2.5 Profile Generation

Trajectory profiles are plotted in terms of velocity versus
time, Figure 5, and are velocity profiles by reason that a new
desired position is calculated every sample interval. For
constant velocity these desired position increments will be
the same every sample interval, for acceleration and decel-
eration the desired position increments will respectively in-
crease and decrease per sample interval. Target position is
the integral of the velocity profile.

STANDARDS TRAPEZOIDAL YELOCITY PROFILE

LIMITING VELOCITY

STOPPING POSITION
IS INTEGRAL OF
TRAPEZOID

EQUAL RATES
OF ACCELERATION
AND DECELERATION

VELOCITY

TIME
FIGURE 5. Typical Trajectory Velocity Profile

TL/H/11018-5
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When performing a move the LM628/629 uses the informa-
tion as specified by the host and accelerates until the target
velocity is reached. While doing this it takes note of the
number of counts taken to reach the target velocity. This
number of counts is subtracted from the target position to
determine where deceleration should commence to ensure
the motor stops at the target position. LM628/629 decelera-
tion rates are equal to the acceleration rates. In some cas-
es, depending on the relative target values of velocity, ac-
celeration and position, the target velocity will not be
reached and deceleration will commence immediately from
acceleration.

2.6 Trajectory Resolution

The resolution the motor sees for position is one integral
count. The algorithm used to calculate the trajectory adds
the velocity to the current desired position once per sample
period and produces the next desired position point. in or-
der to allow very low velocities it is necessary to have veloc-
ities of fractional counts per sample. The LM628/629 in ad-
dition to the 32-bit position range keeps track of 16 bits of
fractional position. The need for fractional velocity counts
can be illustrated by the following example using a 500 line
(2000 count) encoder and an 8 MHz clock LM628/629 giv-
ing a 256 us sample interval. If the smallest resolution is 1
count per sample then the minimum velocity would be 2
revolutions per second or 120 rpm. (1/2000 revs/count X
1/256 ps counts/second). Many applications require veloci-
ties and steps in velocity less than this amount. This is pro-
vided by the fractional counts of acceleration and velocity.

2.7 Position, Velocity and Acceleration Resolution

Every sample cycle, while the profile demands acceleration,
the acceleration register is added to the velocity register
which in turn is added to the position register. When the
demand for increasing acceleration stops, only velocity is
added to the position register. Only integer values are out-
put from the position register to the summing junction and
so fractional position counts must accumulate over many
sample intervals before an integer count is added and the
position register changed. Figure 6 shows the position, ve-
locity and acceleration registers.

The position dynamic range is derived from the 32 bits of
the integer position register, Figure 6. The MSB is used for
the direction sign in the conventional manner, the next bit
30 is used to signify when a position overflow called “wrap-
around” has occurred. If the wraparound bit is set (or reset
when going in a negative direction) while in operation the
status byte bit 4 is set and optionally can be used to inter-
rupt the host. The remaining 30 bits provide the available
dynamic range of position in seither the positive or negative
direction (£ 1,073,741,824 counts).

Velocity has a resolution of 1/216 counts/sample and ac-
celeration has a resolution of 1/216 counts/sample/sample
as mentioned above. The dynamic range is 30 bits in both
cases. The loss of one bit is due to velocity and acceleration
being unsigned and another bit is used to detect wrap-
around. This leaves 14 bits or 16,383 integral counts and 16
bits for fractional counts.

2.8 Velocity Mode

LM628 supports a velocity mode where the motor is com-
manded to continue at a specified velocity, until it is told to

r— 16 Bits 16 Bits

16 Bits —

Position

L

I Velocity

—

T

j Acceleration

I—— Integer 41—- Fraction J

TL/H/11018-6

FIGURE 6. Position, Velocity and Acceleration Registers
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stop (LTRJ bits 9 or 10). The average velocity will be as
specified but the instantaneous velocity will vary. Velocities
of fractional counts per sample will exhibit the poorest in-
stantaneous velocity. Velocity mode is a subset of position
mode where the position is continually updated and moved
ahead of the motor without a specified stop position. Care
should be exercised in the case where a rotor becomes
locked while in velocity mode as the profile generator will
continue to advance the position. When the rotor becomes
free high velocities will be attained to catch-up with the cur-
rent desired position.

2.9 Motor Output Port

LM628 output port is configured to 8 bits after reset. The
8-bit output is updated once per sample interval and held
until it is updated during the next sample interval. This al-
lows use of a DAC without a latch. For 12-bit operation the
PORT12 command should be issued immediately after re-
set. The output is multiplexed in two 6-bit words using pins
18 through 23. Pin 24 is low for the least significant word
and high for the most significant. The rising edge of the
active low strobe from pin 25 should be used to strobe the
output into an external latch, see Figure 7. The DAC output
is offset binary code, the zero codes are hex’'80’ for 8 bits
and hex’800’ for 12 bits.

2048 |

fouk
<

i
(PINS 1SEA7T;): DG Low BITS 6 HIGH BITS

SELECT:
(PIN 24)

STROBE:
(PIN 25)

fork fowx

TL/H/11018-7
FIGURE 7. LM628 12-Bit DAC Output Muitiplexed Timing
The choice of output resolution is dependant on the user’s
application. There is a fundamental trade-off between sam-
pling rate and DAC output resolution, the LM628 8-bit output
at a 256 ps sampling interval will most often provide as
good results as a slower, e.g. microcontroller, implementa-
tion which has a 4 ms typical sampling interval and uses a
12-bit output. The LM628 also gives the choice of a 12-bit
DAC output at a 256 ps sampling interval for high precision
applications.
LM629 PWM sign and magnitude signals are output from
pins 18 and 19 respectively. The sign output is used to con-
trol motor direction. The PWM magnitude output has a reso-
lution of 8 bits from maximum negative drive to maximum
positive drive. The magnitude output has an off condition,
with the output at logic low, which is useful for turning a
motor off when using a bridge motor drive circuit. The mini-
mum duty cycle is 1/128 increasing to a maximum of
127/128 in the positive direction and a maximum of
128/128 in the negative direcition, i.e., a continuous output.
There are four PWM periods in one LM629 sample interval.
With an 8 MHz clock this increases the PWM output rate to
15.6 kHz from the LM629 maximum 3.9 kHz sample rate,
see Figure 8 for further timing information.

DUTY CYCLE: PWM MAGNITUDE WAVEFORMS (pin 19} :

1 (ON)

0
‘ stz
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1
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256
fok |‘_
64 _ 509
omeame o LI LT LT LT

i

[ -
(8) 5= OFF

L 2048
L

foux
1

128
(o) 128 ko
128 pRive O (0FF)

TL/H/11018-8

Note: Sign output (pin 18) not shown.
FIGURE 8. LM629 PWM Output Signal Format

2.10 Host Interface

LM628/629 has three internal registers: status, high, and
low bytes, Figure 9, which are used to communicate with the
host microcontroller. These are controlled by the RD, WR,
and PS lines and by use of the busy bit of the status byte.
The status byte is read by bringing RD and PS low, bit 0 is
the busy bit. Commands are written by bringing WR and PS
low. When PS is high, WR brought fow writes data into
LM628/629 and similarly, RD is brought low to read data
from LM628/629. Data transfer is a two-byte operation writ-
ten in most to least significant byte order. The above de-
scription assumes that CS is low.

INTERNAL
DATABUS

—p{ STATUS
R PINS
Do-D7
0 HieH 4 L] o)
BYTE ~ "] DRIVER
—>
o Low
8YTE

TL/H/11018-9
FIGURE 9. Host Interface Internal I/0 Registers

2.11 Hardware Busy Bit Operation

Before and between all command byte and data byte pair
transfers, the busy bit must be read and checked to be at
logic low. If the busy bit is set and commands are issued
they will be ignored and if data is read it will be the current
contents of the 1/0 buffer and not the expected data. The
busy bit is set after the rising edge of the write signal for
commands and the second rising edge of the respective
read or write signal for two byte data transfers, Figure 10.
The busy bit remains high for approximately 15 ps.
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W & i

WR or RD

HOST
1/0 BUS

command
byte

BUSY

This sequence repeated until
all data bytes are written

__)T
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i

upper lower |
/ / /Xdata byte x; :; x data byte X// |
!

BIT / 15-25 us typical : \

'

/ :

TL/H/11018-10

FIGURE 10. Busy Bit Operation during Command and Data Write Sequence

The busy bit reset to logic low indicates that high and low
byte registers shown in Figure 9 have been either loaded or
read by the LM628/629 internal microcode. To service the
command or data transfer this microcode which performs
the trajectory and filter calculations is interrupted, except in
critical areas, and the on-going calculation is suspended.
The microcode was designed this way to achieve minimum
latency when communicating with the host. However, if this
communication becomes too frequent and on-going calcula-
tions are interrupted too often corruption will occur. In a
256 us sample interval, the filter calculation takes 50 us,
outputting a sample 10 us and trajectory calculation 90 us.
If the LM628 behaves in a manner that is unexpected the
host communication rate should be checked in relation to
these timings.

2.12 Filter Initial Values and Tuning

When connecting up a system for the first time there may be
a possibility that the loop phasing is incorrect. As this may
cause violent oscillation it is advisable to initially use a very
low value of proportional gain, say ky, = 1 (with kg, k; and il
all set to zero), which will provide a weak level of drive to the
motor. (The Start command, STT, is sent to LM628/629 to
close the control loop and energize the motor.) If the system
does oscillate with this low value of ky then the motor con-
nections should be reversed.

Having determined that the loop phasing is correct kp can
be increased to a value of about 20 to see that the control
system basically works. This value of kp should hold the
motor shaft reasonably stiffty, returning the motor to the set
position, which will be zero until trajectory values have been
input and a position move performed. If oscillation or unac-
ceptable ringing occurs with a kp value of 20 reduce this
until it stops. Low values of acceleration and velocity can
now be input, of around 100, and a position move com-
manded to say 1000 counts. All values suggested here are
decimal. For details of loading trajectory and filter parame-
ters see Section 3.0, reference (5) and the data sheet.

It is useful at this stage to try different values of acceleration
and velocity to get a feel for the system limitations. These
can be determined by using the reporting commands of de-

sired and actual position and velocity, to see if the error
between desired and actual positions of the motor are con-
stant and not increasing without bound. See Section 3.6 and
the data sheet for information about the reporting com-
mands. Clearly it will be difficult to tune for best system
response if the motor and its load cannot achieve the de-
manded values of acceleration and velocity. When correct
operation is confirmed and limiting values understood, filter
tuning can commence.

Due to the basic difficulty of accurately modeling a control
system, with the added problem of variations that can occur
in mechanical components over time and temperature, it is
always necessary at some stage to perform tuning empiri-
cally. Determining the PID filter coefficients by tuning is the
preferred method with LM628/629 because of the inherent
flexibility in changing the filter coefficients provided by this
programmable device.

Before tuning a control system the effect of each of the PID
filter coefficients should be understood. The following is a
very brief review, for a detailed understanding reference (2)
should be consulted. The proportional coefficient, kp, pro-
vides adjustment of the control system loop proportional
gain, as this is increased the output steady state error is
reduced. The error between the required and actual position
is effectively divided by the loop gain. However there is a
natural limitation on how far kp can be increased on its own
to reduce output position error because a reduction in
phase margin is also a consequence of increasing kp. This
is first encountered as ringing about the final position in re-
sponse to a step change input and then instability in the
form of oscillation as the phase margin becomes zero. To
improve stability, kq, the derivative coefficient, provides a
damping effect by providing a term proportional to velocity
in antiphase to the ringing, or viewed in another way, adds
some leading phase shift into the loop and increases the
phase margin.

In the tuning process the coefficients kp and kq are iterative-
ly increased to their optimum values constrained by the sys-
tem constants and are trade-offs between response time,
stability and final position error. When kp and kq have been
determined the integral coefficient, k;, can be introduced to
remove steady state errors at the load. The steady state

960




errors removed are the velocity lag that occurs with a con-
stant velocity output and the position error due to a constant
static torque. A value of integration limit, il, has to be input
with k;, otherwise k; will have no effect. The integral coeffi-
cient k; adds another variabie to the system to allow further
optimization, very high values of k; will decrease the phase
margin and hence stability, see Section 5 and reference (2)
for more details. Reference (5) gives more details of PID
filter tuning and how to load filter parameters.

Figure 11 illustrates how a relatively slow response with
overshoot can be compensated by adjustment of the PID
filter coefficients to give a faster critically damped response.

3.0 USER COMMAND SET

3.1 Overview
The following types of User Commands are available:

Initialization

Filter control commands

Trajectory control commands

Interrupt control commands

Data reporting commands
User commands are single bytes and have a varying num-
ber of accompanying data bytes ranging from zero to four-
teen depending upon the command. Both filter and trajecto-
ry control commands use a double buffered scheme to input
data. These commands load primary registers with multiple
words of data which are only transferred into secondary
working registers when the host issues a respective single
byte user command. This allows data to be input before its
actual use which can eliminate any potential communication
bottlenecks and allow synchronized operation of muiltiple
axes.

3.2 Host-LM628/629 Communication—The Busy Bit

Communication flow between the LM628/629 and its host
is controlled by using a busy bit, bit 0, in the Status Byte.
The busy bit must be checked to be at logic 0 by the host
before commands and data are issued or data is read. This
includes between data byte pairs for commands with multi-
ple words of data.

3.3 Loading the Trapezoidal Velocity Profile Generator

To initiate a motor move, trajectory generator values have
to be input to the LM628/629 using the Load Trajectory
Parameters, LTRJ, command. The command is followed by
a trajectory control word which details the information to be
loaded in subsequent data words. Table | gives the bit allo-
cations, a bit is set to logic 1 to give the function shown.

Underdamped

TABLE |. Trajectory Control Word Bit Ailocations

Bit Position Function

Bit 15 Not Used
Bit 14 Not Used
Bit 13 Not Used
Bit 12 Forward Direction (Velocity Mode Only)

Bit 11 Velocity Mode
Bit 10 Stop Smoothly (Decelerate as Programmed)
Bit 9 Stop Abruptly (Maximum Deceleration)

Bit 8 Turn Off Motor (Output Zero Drive)
Bit 7 Not Used

Bit 6 Not Used

Bit 5 Acceleration Will Be Loaded

Bit 4 Acceleration Data Is Relative

Bit 3 Velocity Will Be Loaded

Bit 2 Velocity Data |s Relative

Bit 1 Position Will Be Loaded

Bit 0 Position Data Is Relative

Bits 0 to 5 determine whether any, all or none of the posi-
tion, velocity or acceleration values are loaded and whether
they are absolute values or values relative to those previ-
ously loaded. All trajectory values are 32-bit values, position
values are both positive and negative. Velocity and acceler-
ation are 16-bit integers with 16-bit fractions whose absolute
value is always positive. When entering relative values en-
sure that the absolute value remains positive. The manual
stop commands bits 8, @ and 10 are intended to allow an
unprogrammed stop in position mode, while a position move
is in progress, perhaps by the demand of some external
event, and to provide a method to stop in velocity mode.
They do not specify how the motor will stop in position
mode at the end of a normal position move. In position
mode a programmed move will automatically stop with a
deceleration rate equal to the acceleration rate at the target
position. Setting a stop bit along with other trajectory param-
eters at the beginning of a move will result in no movement!
Bits 8, 9 and 10 should only be set one at a time, bit 8 turns
the motor off by outputting zero drive to the motor, bit 9
stops the motor at maximum deceleration by setting the tar-
get position equal to the current position and bit 10 stops
the motor using the current user-programmed acceleration
value. Bit 11 is set for operating in velocity mode and bit 12
is set for forward direction in velocity mode.

Critically Damped

10 ms/div

10 ms/div
TL/H/11018-11

FIGURE 11. Position vs Time for 100 Count Step Input
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Following immediately after the trajectory control word
should be two 16-bit data words for each parameter speci-
fied to be loaded. These should be in the descending order
of the trajectory control word bits, that is acceleration, ve-
locity and position. They are written to the LM628/629 as
two pairs of data bytes in most to least significant byte or-
der. The busy bit shouid be checked between the command
byte and the data byte pair forming the trajectory control
word and the individual data byte pairs of the data. The Start
command, STT, transfers the loaded trajectory data into the
working registers of the double buffered scheme to initiate
movement of the motor. This buffering aliows any parame-
ter, except acceleration, to be updated while the motor is
moving by loading data with the LTRJ command and to be
later executed by using the STT command.

New values of acceleration can be loaded with LTRJ while
the motor is moving, but cannot be executed by the STT
command until the trajectory has completed or the drive to
the motor is turned off by using bit 8 of the trajectory control
word. If acceleration has been changed and STT is issued
while the drive to the motor is still present, a command error
interrupt will be generated and the command ignored. Sepa-
rate pairs of LTRJ and STT commands should be issued to
first turn the motor off and then update acceleration. System
operation when changing acceleration while the motor is
moving, but with the drive removed, is discussed in Section
45.1.

3.4 Loading PID Filter Coefficients

PID filter coefficients are loaded using the Load Filter Pa-
rameters, LFIL, command and are the proportional coeffi-
cient kp, derivative coefficient ky and integral coefficient k;.
Associated with k;, an integration limit, il, has to be loaded.
This constrains the magnitude of the integration term of the
PID filter to the il value, see Section 4.4.2. Associated with
the derivative coefficient, a derivative sample rate can be
chosen from 2048/fc i to (2048 X 256)/fc k in steps of
2048/fc k. see Section 4.4.1.

The first pair of data bytes following the LFIL command byte
form the filter control word. The most significant byte sets
the derivative sample rate, the fastest rate, 2048/fc k, be-
ing hex'00’ the slowest rate (2048 X 256)/fc g being
hex'FF’. The lower four bits of the least significant byte tell
the LM628/629 which of the coefficients is going to be load-
ed, bit 3 is kp, bit 2 is k;, bit 1 is kq and bit 0 is il. Each filter
¢ oefficient and the integration limit can range in value from
hex’0000’ to '7FFF’, positive only. If all coefficient values
are loaded then ten bytes of data, including the filter control
word, will follow the LFIL command. Again the busy bit has
to be checked between the command byte and filter control
word and between data byte pairs. Use of new filter coeffi-
cient values by the LM628/629 is initiated by issuing the
single byte Update Filter command, UDF.

When controlled movement of the motor has been
achieved, by programming the filter and trajectory, attention
turns to incorporating the LM628/629 into a system. Inter-
rupt Control Commands and Data Reporting Commands en-
able the host microcontroller to keep track of LM628/629
activity.

3.5 Interrupt Control Commands

There are five commands that can be used to interrupt the
host microcontroller when a predefined condition occurs
and two commands that control interrupt operation. When

the LM628/629 is programmed to interrupt its host, the
event which caused this interrupt can be determined from
bits 1 to 6 of the Status Byte (additionally bit 0 is the busy bit
and bit 7 indicates that the motor is off). All the Interrupt
Control commands are executable during motion.

The Mask Interrupts command, MSKI, is used to tell
LM628/629 which of bits 1 to 6 will interrupt the host
through use of interrupt mask data associated with the com-
mand. The data is in the form of a data byte pair, bits 1-6 of
the least significant byte being set to logic 1 when an inter-
rupt source is enabled. The Reset Interrupts command,
RSTI, resets interrupt bits in the Status Byte by sending a
data byte pair, the least significant byte having logic 0 in bit
positions 1 to 6 if they are to be reset.

Executing the Set Index Position command, SIP, causes bit
3 of the status byte to be set when the absolute position of
the next index pulse is recorded in the index register. This
can be read with the command, Read Index Position, RDIP.

Executing either Load Position Error for Interrupt, LPEI, or
Load Position Error for Stopping, LPES, commands, sets bit
5 of the Status Byte when a position error exceeding a
specified limit occurs. An excessive position error can indi-
cate a serious system problem and these two commands
give the option when this occurs of either interrupting the
host or stopping the motor and interrupting the host. The
excessive position is specified following each command by
a data byte pair in most to least significant byte order.
Executing either Set Break Point Absolute, SBPA, or Set
Break Point Relative, SBPR, commands, sets bit 6 of the
status byte when either the specified, absolute or relative,
breakpoint respectively is reached. The data for SBPA can
be the full position range (hex’'C0000000’ to '3FFFFFFF’)
and is sent in two data byte pairs in most to least significant
byte order. The data for the Set Breakpoint Relative com-
mand is also of two data byte pairs, but its value should be
such that when added to the target position it remains within
the absolute position range. These commands can be used
1o signal the moment to update the on-going trajectory or
filter coefficients. This is achieved by transferring data from
the primary registers, previously loaded using LTRJ or LFIL,
to working registers, using the STT or UDF commands.

Interrupt bits 1, 2 and 4 of the Status Byte are not set by
executing interrupt commands but by events occurring dur-
ing LM628/629 operation as follows. Bit 1 is the command
error interrupt, bit 2 is the trajectory complete interrupt and
bit 4 is the wraparound interrupt. These bits are also
masked and reset by the MSKI and RST! commands re-
spectively. The Status Byte still indicates the condition of
interrupt bits 1-6 when they are masked from interrupting
the host, allowing them to be incorporated in a polling
scheme.

3.6 Data Reporting Commands

Read Status Byte,iDS‘:lNT, supported by a hardware regis-
ter accessed via CS, RD and PS control, is the most fre-
quently used method of determining LM628/629 status.
This is primarily to read the busy bit 0 while communicating
commands and data as described in Section 3.2.

There are seven other user commands which can read data
from LM628/629 data registers.
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The Read Signals Register command, RDSIGS, returns a
16-bit data word to the host. The least-significant byte re-
peats the RDSTAT byte except for bit 0 which indicates that
a SIP command has been executed but that an index pulse
has not occurred. The most significant byte has 6 bits that
indicate set-up conditions (bits 8, 9, 11, 12, 13 and 14). The
other two bits of the RDSIGS data word indicate that the
trajectory generator has completed its function, bit 10, and
that the host interrupt output (Pin 17) has been set to logic
1, bit 15. Full details of the bit assignments of this command
can be found in the data sheet.

The Read Index Position, RDIP, command reads the posi-
tion recorded in the 32 bits of the index register in four data
bytes. This command, with the SIP command, can be used
to acquire a home position or successive values. These
could be used, for example, for gross error checking.

Both on-going 32-bit position inputs to the summing junction
can be read. Read desired position, RDDP, reads the cur-
rent desired position the demand or “set point input” from
the trajectory generator and Read Real Position, RDRP,
reads the current actual position of the motor.

Read Desired Velocity, RDDV, reads the current desired ve-
jocity used to calculate the desired position profile by the
trajectory generator. It is a 32-bit value containing integer
and fractional velocity information. Read Real Velocity,
RDRYV, reads the instantaneous actual velocity and is a 16-
bit integer value.

Read Integration-Term Summation Value, RDSUM, reads
the accumulated value of the integration term. This is a 16-
bit value ranging from zero to the current, il, integration limit
value.

3.7 Software Example

The following example shows the flow of microcontroller
commands needed to get the LM628/629 to control a sim-
ple motor move. As it is non-specific to any microcontroller
pseudo commands WR,XXXXH and RD,XXXXH with hex im-
mediate data will be used to indicate read and write opera-
tions respectively by the host to and from the LM628/629.
Decisions use IF..THEN..ELSE. BUSY is a user routine to
check the busy bit in the Status Byte, WAIT is a user routine
to wait 1.5 ms after hardware reset.

LABEL MNEMONIC :REMARK
Initialization:
WAIT :Routine to wait 1.5 ms after reset.
RDSTAT :Check correct RESET operation by reading the

:Status Byte. This should be either hex’'84’ or 'C4’
IF Status byte not equal hex'84’ or 'C4’ THEN repeat

hardware RESET

:Make decision concerning validity of RESET
Optionally the Reset can be further checked for correct operation as follows. It is useful to include this to reset all interrupt bits in

the Status Byte before further action:

:LM628/629. This mask disables all interrupts.

MSKI :Mask interrupts

BUSY :Check busy bit O routine

WR, 0000H :Host writes two zero bytes of data to
BUSY :Check busy bit

RSTI :Reset Interrupts command

BUSY :Check busy bit

WR, 0000H

RDSTAT

sHost writes two zero bytes of data to LM628/629
:Status byte should read either hex'80' or 'CO’

IF Status byte not equal hex’80' or 'CO’ THEN repeat

hardware RESET

.
:

IF Status Byte equal to hex'CO’ THEN continue ELSE PORT

BUSY :Check busy bit

RSTI :Reset Interrupts

BUSY :Check busy bit

WR, 0000H :Reset all interrupt bits

Set Output Port Size for a 12-bit DAC.

PORT BUSY :Check busy bit
PORT12

:Sets LM628 output port to 12-bits

(Only for systems with 12-bit DAC)
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Load Filter Parameters

BUSY tCheck busy bit

LFIL :Load Filter Parameters command
BUSY :Check busy bit

WR,0008H :Filter Control Word

Bits 8 to 15 (MSB) set the derivative
sample rate.
Bit 3 Loading k, data
Bit 2 Loading ki data
Bit 1 Loading kg data
: Bit O Loading il data
:Choose to load ky, only at maximum
:derivative sample rate then Filter Control
:Word = 0008H
BUSY :Check busy bit
WR,0032H :Choose kp = 50, load data byte pair MS
stbyte first

e es sa es e

Update Filter

BUSY :Check busy bit
UDF :
Load Trajectory Parameters
BUSY :Check busy bit
LTRJ :Load trajectory parameters command.
BUSY :Check busy bit
WR, 002AH :Load trajectory control word:

H See Table I

:Choose Position mode, and load absolute
sacceleration, velocity and position. Then
itrajectory control word = 002AH. This means
:8 pairs of data bytes should follow.

BUSY :Check busy bit
WR, XXXXH :Load Acceleration integer word MS byte first
BUSY :Check busy bit
WR, XXXXH :Load Acceleration fractional word MS byte first
BUSY :Check busy bit
WR, XXXXH :Load Velocity integer word MS byte first
BUSY :iCheck busy bit
WR, XXXXH :Load Velocity fracticnal word MS byte first
BUSY :Check busy bit
WR, XXXXH :Load Position MS byte pair first
BUSY :Check busy bit
WR, XXXXH :Load position LS byte pair
Start Motion
BUSY :Check busy bit
STT :Start command
Check for Trajectory complete.
RDSTAT :Check Status Byte bit 2 for trajectory
scomplete
Busy bit check routine
BUSY RDSTAT :tRead status byte
If bit 0 is set THEN BUSY ELSE RETURN
END

*Consult reference (5) for more information on programming the LM628/629.
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4.0 HELPFUL USER IDEAS

4.1 Getting Started

This section outlines the actions that are necessary to im-
plement a simple motion control system using LM628/629.
More details on how LM628/629 works and the use of the
User Command Set are given in the sections “2.0 DEVICE
DESCRIPTION” and “3.0 USER COMMAND SET”.

4.2 Hardware
The following hardware connections need to be made:

4.2.1 Host Microcontroller Interface

Interface to the host microcontroller is via an 8-bit com-
mand/data port which is controlled by four lines. These are
the conventional chip select CS, read RD, write WR and a
line called Port Select PS, see Figure 13. PS is used to
select user Command or Data transfer between the
LM628/629 and the host. In the special case of the Status
Byte (RDSTAT) bringing PS, CS and RD low together allows
access to this hardware register at any time. An optional
interrupt line, HI, from the LM628/629 to the host can be
used. A microcontroller output line is necessary to control
the LM628/629 hardware reset action.

4.2.2 Position Encoder Interface

The two optical incremental position encoder outputs feed
into the LM628/629 quadrature decoder TTL inputs A and
B. The leading phase of the quadrature encoder output de-
fines the forward direction of the motor and should be con-
nected to input A. Optionally an index pulse may be used
from the position encoder. This is connected to the N input,
which should be tied high if not used, see Figure 13.

4.2.3 Output Interface

LM628 has a parallel output of either 8 or 12 bits, the latter
is output as two multiplexed 6-bit words. Figure 14 illustrates
how a motor might be driven using-a LM12 power linear
amplifier from the output of 8-bit DAC0800.

LM629 has a sign and magnitude PWM output, Figure 13, of
7-bit resolution plus sign. Figure 15 shows how the LM629
sign and magnitude outputs can be used to control the out-
puts of an LM18293 quad half-H driver. The half-H drivers
are used in pairs, by using 100 mQ current sharing resistors,
and form a full-H bridge driver of 2A output. The sign bit is
used to steer the PWM LM629 magnitude output to either
side of the H-bridge lower output transistors while holding
the upper transistors on the opposite side of the H-bridge
continuously on.

HOST WD >
INTERFACE —

LM628/629

DACO=DAC7
LM628
8 OUTPUT

PWM MAG
— > } LM629
PWM SIGN [ OUTPUT

BAL

e —

OPTICAL POSITION
ENCODER INTERFACE

TL/H/11018-13

FIGURE 13. LM628 and LM629 Host, Output and Position Encoder Interfaces
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lour*
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7
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TL/H/11018-14

FIGURE 14. LM628 Example of
Linear Motor Drive Using LM12
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FIGURE 15. LM629 H-Bridge Motor Drive Example Using LM18293
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4.3 Software

Making LM628/629 perform a motion control function re-
quires that the host microcontroller, after initializing
LM628/629, loads coefficients for the PID filter and then
loads trajectory information. The interrupt and data report-
ing commands can then be used by the host to keep track
of LM628/629 actions. For detailed descriptions see the
LM628/629 data sheet and Section 3.

4.4 Initialization

There is only one initialization operation that must be per-
formed; a check that hardware reset has operated correctly.
If required, the size of the LM628 output port should be
configured. Other operations which might be part of user's
system initialization are discussed under interrupt and Data
Reporting commands, Sections 3.5 and 3.6.

4.4.1 Hardware RESET Check

The hardware reset is activated by a logic low pulse at pin
27, RST, from the host of greater than 8 clock cycles. To
ensure that this reset has operated correctly the Status Byte
should be checked immediately after the reset pin goes
high, it should read hex’'00’. If the reset is successful this
will change to hex’84’ or 'C4’ within 1.5 ms. If not, the hard-
ware reset and check should be repeated. A further check
can be used to make certain that a reset has been success-
ful by using the Reset Interrupts command, RSTI. Before
sending the RST), issue the Mask Interrupts command,
MSKI, and mask data that disables all interrupts, this mask
is sent as two bytes of data equaling hex'0000’. Then issue
the RSTI command plus mask data that resets all interrupts,
this equals hex'0000’ and is again sent as two bytes. Do not
forget to check the busy bit between the command byte and
data byte pairs. When the chip has reset properly the status
byte will change from hex'84’ or 'C4’ to hex’'80' or 'CO’.

4.4.2 Initializing LM628 Output Port

Reset sets the LM628 output port size to 8 bits. If a 12-bit
DAC is being used, then the output port size is set by the
use of the PORT12 command.

4.4.3 Interrupt Commands

Optionally the commands which cause the LM628/629 to
take action on a predefined condition (e.g., SIP, LPEI, LPES,
SBPA and SBPR) can be included in the initialization, these
are discussed under Interrupt Commands.

4.5 Performance Refinements

4.5.1 Derivative Sample Rate

The derivative sample interval is controllable to improve the
stability of low velocity, high inertia loads. At low speeds,
when fractional counts for velocity are used, the integer po-
sition counts, desired and actual, only change after several
sample intervals of the LM628/629 (2048/tc k). This
means that for sample intervals between integer count
changes the error voltage will not change for successive
samples. As the derivative term, kg, muitiplies the difference
betweeen the previous and current error values, if the deriv-
ative sample interval is the same as the sample interval,
several consecutive sample intervals will have zero deriva-
tive term and hence no damping contribution. Lengthening
the derivative sample interval ensures a more constant de-
rivate term and hence improved stability. Derivative sample

interval is loaded with the filter coefficient values as the
most significant byte of the LFIL control word everytime the
command is used, the host therefore needs to store the
current value for re-loading at times of filter coefficient
change.

4.5.2 Integral Windup

Along with the integral filter coefficient, k;j, an integration
limit, il, has to be input into LM628/629 which allows the
user to set the maximum value of the integration term of
equation (3), Section 5.2.2. This term is then able to accu-
mulate up to the value of the integration limit and any further
increase due to error of the same sign is ignored. Setting
the integration limit enables the user to prevent an effect
called “Integral Windup”. For example, if an LM628/629
attempts to accelerate a motor at a faster rate than it can
achieve, a very large integral term will resuit. When the
LM628/629 tries to stop the motor at the target position the
large accumulated integral term will dominate the filter and
cause the motor to badly overshoot, and thus integral wind-
up has occurred.

4.5.3 Profiles Other Than Trapezoidal

EQUAL RATES
OF ACCELERATION
AND DECELERATION

VELOCITY

TIME

TL/H/11018-16
FIGURE 16. Generating a Non-Trapezoidal Profile

If it is required to have a velocity profile other than trapezoi-
dal, this can be accomplished by breaking the profile into
small pieces each of which is part of a small trapezoid. A
piecewise linear approximation to the required profile can
then be achieved by changing the maximum velocity before
the trapezoid has had time to complete, see Figure 16.

4.5.4 Synchronizing Axes

For controlling tightly coupled coordinated motion between
multiple-axes, synchronization is required. The best possible
synchronization that can be achieved between multiple
LM628/629 is within one sample interval, (2048/fc k.
256 ps for an 8 MHz clock, 341 us for a 6 MHz clock). This
is achieved by using the pipeline feature of the LM628/629
where all controlled axes are loaded individually with trajec-
tory values using the LTRJ command and then simulta-
neously given the start command STT. PID filter coefficients
can be updated in a similar manner using LFIL and UDF
commands.

4.6 Operating Constraints

4.6.1 Updating Acceleration on the Fly

Whereas velocity and target position can be updated while
the motor is moving, on the “fly”, the algorithm described in
Section 2.5 prevents this for acceleration. To change accel-
eration while the motor is moving in mid-trajectory the motor
off command has to be issued by setting LTRJ command bit
8. Then the new acceleration can be loaded, again using the
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LTRJ command. When the start command STT is issued
the motor will be energized and the trajectory generator will
start generating a new profile from the actual position when
the STT command was issued. In doing this the trajectory
generator will assume that the motor starts from a stationary
position in the normal way. If the motor has sufficient inertia
and is still moving when the STT command is issued then
the control loop will attempt to bring the motor on to the
new profile, possibly with a large error value being input to
the PID filter and a consequential saturated output until the
motor velocity matches the profile. This is a classic case of
overload in a feedback system. It will operate in an open
loop manner until the error input gets within controllable
bounds and then the feedback loop will ciose. Performance
in this situation is unpredictable and application specific.
LM628/629 was not intentionally designed to operate in this
way.

4.6.2 Command Update Rate

If an LM628/629 is updated too frequently by the host it will
not keep up with the commands given. The LM628/629
aborts the current trajectory calculation when it receives a
new STT command, resulting in the output staying at the
value of the previous sample. For this reason it is recom-
mended that trajectory is not updated at a greater rate than
once every 10 ms.

5.0 THEORY
5.1 PID Filter

5.1.1 PID Filter in the Continuous Domain

The LM628/629 uses a PID filter as the loop compensator,
the expression for the PID filter in the continuous domain is:

H(s) = Kp + Ki/s + Kgs 1)
Kp = proportional coefficient
Ki = integral coefficient
Kg = derivative coefficient

Where
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The Bode plots for this function (shown in Figure 17) show
the effect of the individual terms of equation (1). The propor-
tional term, Ky provides adjustment of proportional gain.
The derivative term K increases the system bandwidth but
more importantly adds leading phase shift to the control
loop at high frequencies. This improves stability by counter-
acting the lagging phase shift introduced by other control
loop components such as the motor. The integral term, K;,
provides a high DC gain which reduces static errors, but
introduces a lagging phase shift at low frequencies. The rel-
ative magnitudes of Ky, K; and loop proportional gain have
to be adjusted to achieve optimum performance without in-
troducing instability.

5.2 PID Filter Coefficlent Scaling Factors for LM628/629

While the easiest way to determine the PID filter coefficient
kp: kg, and kj values is to use tuning as described in Section
2.11, some users may want to use a more theoretical ap-
proach to at least find initial starting values before fine tun-
ing. As very often this analysis is performed in the continu-
ous (s) domain and transformed into the discrete digital do-
main for implementation, the relationship between the con-
tinuous domain coefficients and the values input into
LM628/629 is of interest.

5.2.1 PID Filter Difference Equation

In the discrete domain, equation (1) becomes the difference

equation:
N

u(n)=Kpe(n) + KT Ze(n) +Kg/Tsle(n)—e(n—1)] 2

n=0
Where:

T is the sample interval 2048/fc k
Ts is the derivative sample interval (2048/fc k X (1..255)

5.2.2 Difference Equation with LM628/629 Coefficients
In terms of LM628/629 coefficients, (2) becomes:
N

u(n) = kpe(n) +k; Z e(n) +kgle(n’) —e(n’—0)] (3)
n=0

e(n) or [e(n)—e(n'=1)]

kp or k4

Where:

kp, ki and kq are the discrete-time LM628/629 coeffi-
cients

e(n) is the position error at sample time n
n’ indicates sampling at the derivative sampling rate.

The error signal e(n) [or e(n’)] is a 16-bit number from the
output of the summing junction and is the input to the PID
filter. The 15-bit filter coefficients are respectively multiplied
by the 16-bit error terms as shown in equation (3) to pro-
duce 32-bit products.

5.2.3 LM628/629 PID Fliter Output

The proportional coefficient kp, is multiplied by the error sig-
nal directly. The error signal is continually summed at the
sample rate to previously accumulated errors to form the
integral signal and is maintained to 24 bits. To achieve a
more usable range from this term, only the most significant
16 bits are used and multiplied by the integral coefficient, k;.
The absolute value of this product is compared with the
integration limit, il, and the smallest value, appropriately
signed, is used. To form the derivative signal, the previous
error is subtracted from the current error over the derivative
sampling interval. This is multiplied by the derivative coeffi-
cient kq and the product contributes every sample interval
to the output independently of the user chosen derivative
sample interval.

The least significant 16 bits of the 32-bit products from the
three terms are added together to produce the resulting u(n)
of equation (3) each sample interval. From the PID filter 16-
bit result, either the most significant 8 or 12 bits are output,
depending on the output word size being used. A conse-
quence of this and the use of the 16 MSB’s of the integral
signal is a scaling of the filter coefficients in relation to the
continuous domain coefficients.

5.2.4 Scaling for kp and kq

Figure 18 gives details of the multiplication and output for kp
and kg. Taking the output from the MS byte of the LS 16 bits
of the 32-bit result register causes an effective 8-bit right-
shift or division of 256 associated with kp and kq as follows:

16 bits |

e wits LT 7]

Result register [

L1 1

32 bits

| S —
8-bit output

12-bit output
TL/H/11C18-18

FIGURE 18. Scaling of kp and kq




Result = kp X e(n)/256 = Kp x e(n) .. kp
256 X Kp.
Similarly for kqg:
Result = (kg x [e(n’) — e(n'—1)])/256

= Kg/Tg X e(n) .. kg = 256 X Kyg/Tg
Where Tg is the derivative sampling rate.
5.2.5 Scaling for k;

Figure 19 shows the multiplication and output for the inte-
gral term k;. The use of a 24-bit register for the error terms
summation gives further scaling:

Result = kj/256 X > e(n)/256
=K X T..kj = 65536 K; X T.
Where T is the sampling interval 2048/fc k.
For a 12-bit output the factors are:
ko = 16 X Kp, kg = 16 X Kg/Tg and ki = 4096 K; x T.
If the 32-bit result register overflows into the most significant

16-bits as a result of a calculation, then all the lower bits are
set high to give a predictable saturated output.

5.3 An Example of a Trajectory Calculation

[

l-— 166,667 COUNTS ——r——— 666,667 COUNTS —————»le— 166,667 COUNTS —»]

Problem: Determine the trajectory parameters for a motor
move of 500 revolutions in 1 minute with 15 seconds of
acceleration and deceleration respectively. Assume the op-
tical incremental encoder used has 500 lines.

The LM628/629 quadrature decoder gives four counts for
each encoder line giving 2000 counts per revolution in this
example. The total number of counts for this position move
is 2000 X 500 = 1,000,000 counts.

By definition, average velocity during the acceleration and
deceleration periods, from and to zero, is half the maximum
velocity. In this example, half the total time to make the
move (30 seconds) is taken by acceleration and decelera-
tion. Thus in terms of time, haif the move is made at maxi-
mum velocity and half the move at an average velocity of
half this maximum. Therefore, the combined distance trav-
eled during acceleration and deceleration is half that during

N

2 e(n)

n=0
O (" %) S— —

Result register
32 bits - I 11

24 bits | | | ]

—
8-bit output

12=bit output

TL/H/11018-19
FIGURE 19. Scaling for k;
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maximum velocity or 1 of the total, or 333,333 counts. Ac-
celeration and deceleration takes 166,667 counts respec-
tively.
The time interval used by the LM628/629 is the sample
interval which is 256 us for a fo x of 8 MHz.
The number of sample periods in 15 seconds =
256 us = 58,600 samples
Remembering that distance s =
acceleration 'a’ and time 't'.
Therefore acceleration a = 2S/t2
= 2 X 166,667/58,600
= 97.1 X 10—6 counts/sample2
Acceleration and velocity values are entered into
LM628/629 as a 32-bit integer double-word but represents
a 16-bit integer plus 16-bit fractional value. To achieve this
acceleration and velocity decimal values are scaled by
65536 and any remaining fractions discarded. This value is
then converted to hex to enter into LM628 in four bytes.
Scaled accelerationa = 97.1 X 10—6 X 65536
= 6.36 decimal = 00000006 hex.
The maximum velocity can be calculated in two ways, either
by the distance in counts traveled at maximum velocity di-
vided by the number of samples or by the acceleration mul-
tiplied by the number of samples over acceleration duration,
as follows:
Velocity = 666,667/117,200 = 97.1 X 10—6 X 58,600
= 5.69 counts/sample
Scaled by 65536 becomes 372,899.8 decimal = 0005B0A3
hex.
Inputting these values for acceleration and velocity with the
target position of 1,000,000 decimal, 000F4240 hex will
achieve the desired velocity profile.

6.0 QUESTIONS AND ANSWERS

6.1 The Two Most Popular Questions

6.1.1 Why doesn’t the motor move, I've loaded filter pa-
rameters, trajectory parameters and issued Update Fil-
ter, UDF, and Start, STT, commands?

Answer: The most like cause is that a stop bit (one of bits 8,
9 or 10 of the trajectory control word) has been set in error,
supposedly to cause a stop in position mode. This is unnec-
essary, in position mode the trajectory stops automatically
at the target position, see Section 3.3.

15s/

at2/2 is traveled due to

6.1.2 Can acceleration be changed on the fly?

Answer: No, not directly and a command error interrupt will
be generated when STT is issued if acceleration has been
changed. Acceleration can be changed if the motor is
turned off first using bit 8 of the Load Trajectory Parameter,
LTRJ, trajectory control word, see Section 4.6.1.

6.2.More on Acceleration Change

6.2.1 What happens at restart if acceleration is changed
with the motor drive off and the motor is still moving?
Answer: The trajectory generation starting position is the
actual position when the STT command is issued, but as-
sumes that the motor is stationary. If the motor is moving
the control loop will attempt to bring the motor back onto an
accelerating profile, producing a large error value and less
than predictable results. The LM628/629 was not designed
with the intention to allow acceleration changes with moving
motors.

6.2.2 Is there any way to change acceleration?

Answer: Acceleration change can be simulated by making
many small changes of maximum velocity. For instance if a
small velocity change is loaded, using LTRJ and STT com-
mands, issuing these repeatedly at predetermined time in-
tervals will cause the maximum velocity to increment pro-
ducing a piecewise linear acceleration profile. The actual
acceleration between velocity increments remains the
same.

6.3 More on Stop Commands

6.3.1 What happens if the on-going trajectory is
stopped by setting LTRJ control word bits 9 or 10, stop
abruptly or stop smoothly, and then restarted by issu-
ing Start, STT?

Answer: While stopped the motor position will be held by
the control loop at the position determined as a result of
issuing the stop command. Issuing STT will cause the motor
to restart the trajectory toward the original target position
with normal controlled acceleration.

6.3.2 What happens if the on-going trajectory is
stopped by setting LTRJ control word bit 8, motor-off?

Answer: The LM628’s DAC output is set to mid-scale, this
puts zero volts on the motor which will still have a dynamic
braking effect due to the commutation diodes. The LM629’s
PWM output sets the magnitude output to zero with a similar
effect. If the motor freewheels or is moved the desired and
actual positions will be the same. This can be verified using
the RDDP and RDRP commands. When Start, STT, is is-
sued the loop will be closed again and the motor will move
toward the original trajectory from the actual current posi-
tion.

6.3.3 If the motor is off, how can the control loop be
closed and the motor energized?

Answer: Simply by issuing the Start, STT command. If any
previous trajectory has completed then the motor will be
held in the current position. If a trajectory was in progress
when the motor-off command was issued then the motor
will restart and move to the target position in position mode,
or resume movement in velocity mode.

6.4 More on Define Home

6.4.1 What happens if the Define Home command, DFH,
Is Issued while a current trajectory is in progress?
Answer: The position where the DFH command is issued is
reset to zero, but the motor still stops at the original position
commanded, i.e., the position where DFH is issued is sub-
stracted from the original target position.

6.4.2 Does Issuing Define Home, DFH, zero both the tra-
Jectory and position register.

Answer: Yes, use Read Real Position, RDRP, and Read De-
sired Position, RDDP to verify.

6.5 More on Velocity

6.5.1 Why is a command error interrupt generated when
inputting negative values of relative velocity?

Answer: Because the negative relative velocity would cause
a negative absolute velocity which is not allowed. Negative
absolute values of velocity imply movement in the negative
direction which can be achieved by inputting a negative po-
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sition value or in velocity mode by not setting bit 12. Similar-
ly negative values of acceleration imply deceleration which
occurs automatically at the acceleration rate when the
LM628/629 stops the motor in position mode or if making a
transition from a higher to a lower value of velocity.

6.5.2 What happens in velocity (or position) mode when
the position range is exceeded?

Answer: The position range extends from maximum nega-
tive position hex'C0000000’ to maximum positive position
hex'3FFFFFFF’ using a 32-bit double word. Bit 31 is the
direction bit, logic 0 indicates forward direction, bit 30 is the
wraparound bit used to control position over-range in veloci-
ty (or position) mode.

When the position increases past hex'3FFFFFFF’ the wrap-
around bit 30 is set, which also sets the wraparound bit in
the Status byte bit 4. This can be polled by the host or
optionally used to interrupt the host as defined by the MSKI
commands. Essentially the host has to manage wraparound
by noting its occurrence and resetting the Status byte wrap-
around bit using the RSTI command. When the wraparound
bit 30 is set in the position register so is the direction bit.
This means one count past maximum positive position
hex'3FFFFFFF’ moves the position register onto the maxi-
mum negative position hex’'C0000000’. Continued increase
in positive direction causes the position register to count up
to zero and back to positive values of position and on
toward another wraparound.

Similarly when traveling in a negative direction, using two’s
complement arithmetic, position counts range from
hex' FFFFFFF’ (— 1 decimal) to the maximum negative posi-
tion of hex'C0000000’. One more negative count causes
the position register to change to hex'3FFFFFFF’, the maxi-
mum positive position. This time the wraparound bit 30 is
reset, causing the wraparound bit 4 of the status byte to be
set. Also the direction bit 31 is reset to zero. Further counts
in the negative direction cause the position register to count
down to zero as would be expected. With management
there is no reason why absolute position should be lost,
even when changing between velocity and position modes.

6.6 More on Use of Commands

6.6.1 If filter parameter and trajectory commands are
pipelined for synchronization of axes, can the Update
Filter, UDF, and Start, STT, commands be issued con-
secutively?

Answer: Yes.

6.6.2 Can commands be issued between another com-
mand and its data?

Answer: No.

6.6.3 What is the response time of the set breakpoint
commands, SBPA and SBPR?

Answer: There is an uncertainty of one sample interval in
the setting of the breakpoint bit 6 in the Status Byte in re-
sponse to these commands.

6.6.4 What happens when the Set Index Position, SIP,
command is issued?

Answer: On the next occurrence of all three inputs from the
position encoder being low the corresponding position is
loaded into the index register. This can be read with the
Read Index Position command, RDIP. Bit 0 of the Read Sig-
nals register, shows when an SIP command has been is-
sued but the index position has not yet been acquired.
RDSIGS command accesses the Read Signals Register.

6.6.5 What happens if the motor is not able to keep up

with the specified trajectory acceleration and velocity

values?

Answer: A large, saturated, position error will be generated,

and the control loop will be non-linear. The acceleration and

velocity values should be set within the capability of the

motor. Read Desired and Real Position commands, RDDP

and RDRP can be used to determine the size of the error.

The Load Position Error commands, for either host Interrupt

or motor Stopping, LPEI and LPES, can be used to monitor

the error size for controlled action where safety is a factor.

6.6.6 When is the command error bit 1 in the Status

Byte set?

Answer:

a) When an acceleration change is attempted when the mo-
tor is moving and the drive on.

b) When loading a relative velocity would cause a negative
absolute velocity.

¢) Incorrect reading and writing operations generally.

6.6.7 What does the trajectory complete bit 2 in the

Status Byte indicate?

Answer: That the trajectory loaded by LTRJ and initiated by

STT has completed. The motor may or may not be at this

position. Bit 2 is also set when the motor stop commands

are executed and completed.

6.6.8 What do the specified minimum and maximum val-

ues of velocity mean In reality?

Answer: Assume a 500 line encoder = 1/2000 revs/count

is used.

The maximum LM628/629 velocity is 16383 counts/sample

and for a 8 MHz clock the LM628/629 sample rate is 3.9k

samples/second, multiplying these values gives 32k revs/

second or 1.92M rpm.

The maximum encoder rate is 1M counts/second multiplied

by 1/2000 revs/count gives 500 revs/second or 30k rpm.

The encoder capture rate therefore sets the maximum ve-

locity limit.

The minimum LM628/629 velocity is 1/656536 counts/sam-

ple (one fractional count), multiplying this value by the sam-

ple rate and encoder revs/count gives 30 X 10~8 revs/

second or 1.8 X 103 rpm.

The LM628 provides no limitation to practical values of ve-

locity.

6.6.9 How long wili it take to get to position wraparound

In velocity mode traveling at 5000 rpm with a 500 line

encoder?

Answer: 107 minutes.
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